PD - 9.1627A IRG4ZH70UD INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features ● ● ● ● ● ● ● UltraFast IGBT optimized for high switching frequencies IGBT co-packaged with HEXFRED ultrafast, ultra-soft recovery antiparallel diodes for use in bridge configurations Low Gate Charge Low profile low inductance SMD-10 Package Separated control & Power-connections for easy paralleling Inherently good coplanarity Easy solder inspection and cleaning n-channel Surface Mountable UltraFast CoPack IGBT C VCES = 1200V VCE(ON)typ = 2.23V G @VGE = 15V, IC = 42A E(k) E Benefits ● ● ● ● ● Highest power density and efficiency available HEXFRED Diodes optimized for performance with IGBTs. Minimized recovery characteristics IGBTs optimized for specific application conditions High input impedance requires low gate drive power Less noise and interference SMD-10 Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current ➀ Clamped Inductive Load Current ➁ Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Max. Units 1200 78 42 312 312 42 312 ± 20 350 140 -55 to + 150 V A V W °C Thermal Resistance Parameter RθJC RθJC RθCS Wt Junction-to-Case - IGBT Junction-to-Case - Diode SMD-10 Case-to-Heatsink (typical), * Weight Min. Typ. Max. — — — — — — 0.44 6.0(0.21) 0.36 0.69 — — Units °C/W g (oz) * Assumes device soldered to 3.0 oz. Cu on 3.0mm IMS/Aluminum board, mounted to flat, greased heatsink. www.irf.com 1 IRG4ZH70UD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) VCE(on) Parameter Collector-to-Emitter Breakdown Voltage ➂ Temperature Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage VGE(th) ∆VGE(th)/∆TJ gfe ICES Gate Threshold Voltage Temperature Coeff. of Threshold Voltage Forward Transconductance ➃ Zero Gate Voltage Collector Current VFM Diode Forward Voltage Drop IGES Gate-to-Emitter Leakage Current V(BR)CES ∆V(BR)CES/∆TJ Min. 1200 — — — — 3.0 — 30 — — — — — Typ. Max. Units — — V 1.20 — V/°C 2.23 3.5 2.58 — V 2.15 — — 6.0 -13 — mV/°C 46 — S — 250 µA — 10 mA 2.45 3.7 V 2.40 — — ±100 nA Conditions VGE = 0V, IC = 250µA VGE = 0V, IC = 1.0mA IC = 42A VGE = 15V IC = 78A see figures 2, 5 IC = 42A, TJ = 150°C VCE = VGE, IC = 250µA VCE = VGE, IC = 250µA VCE = 100V, IC = 42A VGE = 0V, VCE = 1200V VGE = 0V, VCE = 1200V, TJ = 150°C IC = 42A see figure 13 IC = 42A, TJ = 150°C VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres trr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M/dt Diode Peak Rate of Fall of Recovery During tb Notes: ➀ Repetitive rating: VGE = 20V; pulse width limited by maximum junction temperature (figure 20) Min. — — — — — — — — — — — — — — — — — — — — — — — — — — — Typ. 390 47 120 100 28 271 189 3.0 3.67 6.67 37 124 200 435 12.36 2.0 7090 420 56 107 160 10 16 680 1400 250 320 Max. Units Conditions 590 IC = 42A 71 nC VCC = 400V see figure 8 180 VGE = 15V — TJ = 25°C — ns IC = 42A, VCC = 800V 400 VGE = 15V, RG = 5.0Ω 280 Energy losses include "tail" and — diode reverse recovery. — mJ see figures 9, 10, 18 9.8 — TJ = 150°C, see figures 11, 18 — ns IC = 42A, VCC = 800V — VGE = 15V, RG = 5.0Ω — Energy losses include "tail" and — mJ diode reverse recovery. — nH — VGE = 0V — pF VCC = 30V see figure 7 — ƒ = 1.0MHz 160 ns TJ = 25°C see figure 240 TJ = 125°C 14 IF = 42A 15 A TJ = 25°C see figure 24 TJ = 125°C 15 VR = 200V 1020 nC TJ = 25°C see figure 2100 TJ = 125°C 16 di/dt = 200Aµs — A/µs TJ = 25°C see figure — TJ = 125°C 17 ➂ Pulse width ≤ 80µs; duty factor ≤ 0.1%. ➃ Pulse width 5.0µs, single shot. ➁ VCC = 80% (VCES), VGE = 20V, L =10µH, RG = 5.0Ω (figure 19) 2 www.irf.com IRG4ZH70UD 40 F or b oth: D uty c y c le : 50 % T J = 12 5° C T sink = 90 °C G a te d riv e a s s pe c ified LOAD CURRENT (A) 30 P ow er D is s ipation = 44 W S q u a re w a v e : 20 60% of rated voltage I 10 Id e a l d io d es 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 1000 TJ = 25 ° C 100 V GE = 15V 20µs PULSE WIDTH 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com TJ = 150 ° C 100 TJ = 150 ° C 10 I C , Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 1000 TJ = 25 °C 10 V CC = 50V 5µs PULSE WIDTH 1 5 6 7 8 9 10 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4ZH70UD 4.0 V G E = 15V VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current (A) 80 60 40 20 VGE = 15V 80 us PULSE WIDTH 3.0 IC = 84 A IC = 42 A IC = 21 A 2.0 A 0 25 50 75 100 125 150 1.0 -60 -40 -20 TC , Case Temperature (°C ) Fig. 4 - Maximum Collector Current vs. Case Temperature 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (° C) Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 1 D = 0.50 0.1 0.01 0.001 0.00001 0.20 0.10 0.05 0.02 0.01 P DM t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4ZH70UD VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc C, Capacitance (pF) 12000 10000 Cies 8000 6000 Coes 4000 Cres 2000 20 VGE , Gate-to-Emitter Voltage (V) 14000 15 10 5 0 0 1 10 0 100 Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 100 = 800V = 15V = 25 ° C = 42A 9.0 8.0 7.0 6.0 0 10 20 30 RGG , Gate Resistance ( Ω ) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 200 300 400 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage Total Switching Losses (mJ) Total Switching Losses (mJ) V CC V GE TJ IC 100 QG , Total Gate Charge (nC) VCE , Collector-to-Emitter Voltage (V) 10.0 VCC = 400V I C = 42A 40 RG =5.0Ω 5.0Ohm VGE = 15V VCC = 800V IC = 84 A IC = 42 A 10 IC = 21 A 1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (° C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4ZH70UD RG TJ VCC 25 VGE 1000 = 5.0Ω 5.0Ohm = 150 ° C = 800V = 15V I C , Collector Current (A) Total Switching Losses (mJ) 30 VGE = 20V T J = 125 oC 100 20 15 10 10 5 SAFE OPERATING AREA 1 0 20 30 40 50 60 70 80 1 90 10 100 1000 10000 VCE , Collector-to-Emitter Voltage (V) I C , Collector Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA Instantaneous forward current - IF (A) 1000 100 TJ = 150°C TJ = 125°C TJ = 25°C 10 1 0.0 2.0 4.0 6.0 Forward Voltage Drop - V FM (V) Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4ZH70UD 300 100 I F = 84A I F = 42A I F = 21A I F = 84A I F = 42A I F = 21A Irr- ( A) trr- (nC) 200 10 100 V R = 2 00 V T J = 12 5 °C T J = 25 °C VR = 200 V T J = 12 5°C T J = 25 °C 0 100 1 100 1000 di f /dt - (A/µ s) Fig. 14 - Typical Reverse Recovery vs. dif/dt 1000 d i f /dt - (A /µ s ) Fig. 15 - Typical Recovery Current vs. dif/dt 5000 10000 VR = 2 00V T J = 12 5°C T J = 25 °C 4000 di (rec) M/dt- (A /µs) I F = 84A I F = 84A Qrr- (nC) 3000 I F = 42A I F = 21A 2000 I F = 42A IF = 21A 1000 1000 V R = 2 00V T J = 1 2 5 °C T J = 2 5 °C 0 100 di f /dt - (A/µ s) 1000 Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 100 100 1000 di f /dt - (A/µ s) Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4ZH70UD 90% V ge Same type device as D .U.T. +V ge V ce 430µF 80% of Vce D .U .T. Ic 90% Ic 10% V ce Ic 5% Ic td (off) tf E off = Fig. 18a - Test Circuit for Measurement of ∫ Vce Ic dt t1+5µ S V ce ic dt t1 ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf G A T E V O LT A G E D .U .T . 10% + V g trr Q rr = Ic trr id Ic dtdt tx ∫ +V g tx 10% V c c 10% Irr Vcc D U T V O LT A G E AND CURRENT Vce V pk Irr Vcc 10% Ic Ipk 90% Ic Ic D IO D E R E C O V E R Y W AVEFORMS tr td(on) 5% V c e t1 ∫ t2 c e ieIcdtdt E on = VVce t1 t2 E rec = D IO D E R E V E R S E RECOVERY ENERG Y t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ t4 VVc d idIcdtdt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4ZH70UD V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T . V O LT A G E IN D .U .T . C U R R E N T IN D 1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 1000V Vc* RL= 480V 4 X IC @25°C 0 - 480V 50V 600 0µ F 100 V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4ZH70UD Case Outline — SMD-10 17.30 Dimensions are shown in milimeters 14.20 E(k) G 4.27 n/c 0.90 5.55 29.00 C 0.90 E E Recomended footprint WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 3/98 10 www.irf.com