IRF IRG4ZH70UD

PD - 9.1627A
IRG4ZH70UD
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
●
●
●
●
●
●
●
UltraFast IGBT optimized for high switching frequencies
IGBT co-packaged with HEXFRED ultrafast,
ultra-soft recovery antiparallel diodes for use in
bridge configurations
Low Gate Charge
Low profile low inductance SMD-10 Package
Separated control & Power-connections for
easy paralleling
Inherently good coplanarity
Easy solder inspection and cleaning
n-channel
Surface Mountable
UltraFast CoPack IGBT
C
VCES = 1200V
VCE(ON)typ = 2.23V
G
@VGE = 15V, IC = 42A
E(k)
E
Benefits
●
●
●
●
●
Highest power density and efficiency available
HEXFRED Diodes optimized for performance with IGBTs.
Minimized recovery characteristics
IGBTs optimized for specific application conditions
High input impedance requires low gate drive power
Less noise and interference
SMD-10
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current ➀
Clamped Inductive Load Current ➁
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Max.
Units
1200
78
42
312
312
42
312
± 20
350
140
-55 to + 150
V
A
V
W
°C
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
Wt
Junction-to-Case - IGBT
Junction-to-Case - Diode
SMD-10 Case-to-Heatsink (typical), *
Weight
Min.
Typ.
Max.
—
—
—
—
—
—
0.44
6.0(0.21)
0.36
0.69
—
—
Units
°C/W
g (oz)
* Assumes device soldered to 3.0 oz. Cu on 3.0mm IMS/Aluminum board, mounted to flat, greased heatsink.
www.irf.com
1
IRG4ZH70UD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
VCE(on)
Parameter
Collector-to-Emitter Breakdown Voltage ➂
Temperature Coeff. of Breakdown Voltage
Collector-to-Emitter Saturation Voltage
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
Gate Threshold Voltage
Temperature Coeff. of Threshold Voltage
Forward Transconductance ➃
Zero Gate Voltage Collector Current
VFM
Diode Forward Voltage Drop
IGES
Gate-to-Emitter Leakage Current
V(BR)CES
∆V(BR)CES/∆TJ
Min.
1200
—
—
—
—
3.0
—
30
—
—
—
—
—
Typ. Max. Units
—
—
V
1.20 — V/°C
2.23 3.5
2.58 —
V
2.15 —
—
6.0
-13
— mV/°C
46
—
S
—
250
µA
—
10
mA
2.45 3.7
V
2.40 —
— ±100 nA
Conditions
VGE = 0V, IC = 250µA
VGE = 0V, IC = 1.0mA
IC = 42A
VGE = 15V
IC = 78A
see figures 2, 5
IC = 42A, TJ = 150°C
VCE = VGE, IC = 250µA
VCE = VGE, IC = 250µA
VCE = 100V, IC = 42A
VGE = 0V, VCE = 1200V
VGE = 0V, VCE = 1200V, TJ = 150°C
IC = 42A
see figure 13
IC = 42A, TJ = 150°C
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
trr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
Notes:
➀ Repetitive rating: VGE = 20V; pulse width limited by maximum junction
temperature (figure 20)
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ.
390
47
120
100
28
271
189
3.0
3.67
6.67
37
124
200
435
12.36
2.0
7090
420
56
107
160
10
16
680
1400
250
320
Max. Units
Conditions
590
IC = 42A
71
nC VCC = 400V
see figure 8
180
VGE = 15V
—
TJ = 25°C
—
ns
IC = 42A, VCC = 800V
400
VGE = 15V, RG = 5.0Ω
280
Energy losses include "tail" and
—
diode reverse recovery.
—
mJ see figures 9, 10, 18
9.8
—
TJ = 150°C, see figures 11, 18
—
ns
IC = 42A, VCC = 800V
—
VGE = 15V, RG = 5.0Ω
—
Energy losses include "tail" and
—
mJ diode reverse recovery.
—
nH
—
VGE = 0V
—
pF
VCC = 30V
see figure 7
—
ƒ = 1.0MHz
160
ns
TJ = 25°C see figure
240
TJ = 125°C
14
IF = 42A
15
A
TJ = 25°C see figure
24
TJ = 125°C
15
VR = 200V
1020 nC
TJ = 25°C see figure
2100
TJ = 125°C
16
di/dt = 200Aµs
—
A/µs TJ = 25°C see figure
—
TJ = 125°C
17
➂ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
➃ Pulse width 5.0µs, single shot.
➁ VCC = 80% (VCES), VGE = 20V, L =10µH, RG = 5.0Ω (figure 19)
2
www.irf.com
IRG4ZH70UD
40
F or b oth:
D uty c y c le : 50 %
T J = 12 5° C
T sink = 90 °C
G a te d riv e a s s pe c ified
LOAD CURRENT (A)
30
P ow er D is s ipation = 44 W
S q u a re w a v e :
20
60% of rated
voltage
I
10
Id e a l d io d es
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
1000
TJ = 25 ° C
100
V GE = 15V
20µs PULSE WIDTH
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
TJ = 150 ° C
100
TJ = 150 ° C
10
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
1000
TJ = 25 °C
10
V CC = 50V
5µs PULSE WIDTH
1
5
6
7
8
9
10
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4ZH70UD
4.0
V G E = 15V
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current (A)
80
60
40
20
VGE = 15V
80 us PULSE WIDTH
3.0
IC = 84 A
IC = 42 A
IC = 21 A
2.0
A
0
25
50
75
100
125
150
1.0
-60 -40 -20
TC , Case Temperature (°C )
Fig. 4 - Maximum Collector Current vs.
Case Temperature
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature (° C)
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
1
D = 0.50
0.1
0.01
0.001
0.00001
0.20
0.10
0.05
0.02
0.01
P DM
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D = t 1 / t2
2. Peak TJ = PDM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4ZH70UD
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
C, Capacitance (pF)
12000
10000
Cies
8000
6000
Coes
4000
Cres
2000
20
VGE , Gate-to-Emitter Voltage (V)
14000
15
10
5
0
0
1
10
0
100
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
100
= 800V
= 15V
= 25 ° C
= 42A
9.0
8.0
7.0
6.0
0
10
20
30
RGG , Gate Resistance ( Ω )
Fig. 9 - Typical Switching Losses vs.
Gate Resistance
www.irf.com
200
300
400
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Total Switching Losses (mJ)
Total Switching Losses (mJ)
V CC
V GE
TJ
IC
100
QG , Total Gate Charge (nC)
VCE , Collector-to-Emitter Voltage (V)
10.0
VCC = 400V
I C = 42A
40
RG =5.0Ω
5.0Ohm
VGE = 15V
VCC = 800V
IC = 84 A
IC = 42 A
10
IC = 21 A
1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature (° C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4ZH70UD
RG
TJ
VCC
25
VGE
1000
= 5.0Ω
5.0Ohm
= 150 ° C
= 800V
= 15V
I C , Collector Current (A)
Total Switching Losses (mJ)
30
VGE = 20V
T J = 125 oC
100
20
15
10
10
5
SAFE OPERATING AREA
1
0
20
30
40
50
60
70
80
1
90
10
100
1000
10000
VCE , Collector-to-Emitter Voltage (V)
I C , Collector Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
Instantaneous forward current - IF (A)
1000
100
TJ = 150°C
TJ = 125°C
TJ = 25°C
10
1
0.0
2.0
4.0
6.0
Forward Voltage Drop - V FM (V)
Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4ZH70UD
300
100
I F = 84A
I F = 42A
I F = 21A
I F = 84A
I F = 42A
I F = 21A
Irr- ( A)
trr- (nC)
200
10
100
V R = 2 00 V
T J = 12 5 °C
T J = 25 °C
VR = 200 V
T J = 12 5°C
T J = 25 °C
0
100
1
100
1000
di f /dt - (A/µ s)
Fig. 14 - Typical Reverse Recovery vs. dif/dt
1000
d i f /dt - (A /µ s )
Fig. 15 - Typical Recovery Current vs. dif/dt
5000
10000
VR = 2 00V
T J = 12 5°C
T J = 25 °C
4000
di (rec) M/dt- (A /µs)
I F = 84A
I F = 84A
Qrr- (nC)
3000
I F = 42A
I F = 21A
2000
I F = 42A
IF = 21A
1000
1000
V R = 2 00V
T J = 1 2 5 °C
T J = 2 5 °C
0
100
di f /dt - (A/µ s)
1000
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
100
100
1000
di f /dt - (A/µ s)
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
IRG4ZH70UD
90% V ge
Same type
device as
D .U.T.
+V ge
V ce
430µF
80%
of Vce
D .U .T.
Ic
90% Ic
10% V ce
Ic
5% Ic
td (off)
tf
E off =
Fig. 18a - Test Circuit for Measurement of
∫ Vce Ic dt
t1+5µ S
V ce ic dt
t1
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O LT A G E D .U .T .
10% + V g
trr
Q rr =
Ic
trr
id
Ic dtdt
tx
∫
+V g
tx
10% V c c
10% Irr
Vcc
D U T V O LT A G E
AND CURRENT
Vce
V pk
Irr
Vcc
10% Ic
Ipk
90% Ic
Ic
D IO D E R E C O V E R Y
W AVEFORMS
tr
td(on)
5% V c e
t1
∫
t2
c e ieIcdtdt
E on = VVce
t1
t2
E rec =
D IO D E R E V E R S E
RECOVERY ENERG Y
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫
t4
VVc
d idIcdtdt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4ZH70UD
V g G A T E S IG N A L
D E V IC E U N D E R T E S T
C U R R E N T D .U .T .
V O LT A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
RL=
480V
4 X IC @25°C
0 - 480V
50V
600 0µ F
100 V
Figure 19. Clamped Inductive Load Test Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4ZH70UD
Case Outline — SMD-10
17.30
Dimensions are shown in milimeters
14.20
E(k) G
4.27
n/c
0.90
5.55
29.00
C
0.90
E
E
Recomended footprint
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371
http://www.irf.com/
Data and specifications subject to change without notice.
3/98
10
www.irf.com