IRF IRG4BC20FD

PD 91601A
IRG4BC20FD
Fast CoPack IGBT
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
Features
• Fast: optimized for medium operating
frequencies ( 1-5 kHz in hard switching, >20
kHz in resonant mode).
• Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
Generation 3
• IGBT co-packaged with HEXFREDTM ultrafast,
ultra-soft-recovery anti-parallel diodes for use in
bridge configurations
• Industry standard TO-220AB package
VCES = 600V
VCE(on) typ. = 1.66V
G
@VGE = 15V, IC = 9.0A
E
n-cha nn el
Benefits
• Generation -4 IGBTs offer highest efficiencies
available
• IGBTs optimized for specific application conditions
• HEXFRED diodes optimized for performance with
IGBTs. Minimized recovery characteristics require
less/no snubbing
• Designed to be a "drop-in" replacement for equivalent
industry-standard Generation 3 IR IGBTs
TO-220AB
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current Q
Clamped Inductive Load Current R
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Max.
Units
600
16
9.0
64
64
7.0
32
± 20
60
24
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1 N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Min.
Typ.
Max.
–––
–––
–––
–––
–––
–––
–––
0.50
–––
2 (0.07)
2.1
3.5
–––
80
–––
Units
°C/W
g (oz)
1
7/11/2000
IRG4BC20FD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ.
Collector-to-Emitter Breakdown VoltageS 600
—
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage —
0.72
VCE(on)
Collector-to-Emitter Saturation Voltage
— 1.66
— 2.06
— 1.76
VGE(th)
Gate Threshold Voltage
3.0
—
∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage
—
-11
gfe
Forward Transconductance T
2.9 5.1
ICES
Zero Gate Voltage Collector Current
—
—
—
—
V FM
Diode Forward Voltage Drop
—
1.4
—
1.3
IGES
Gate-to-Emitter Leakage Current
—
—
V(BR)CES
Max. Units
Conditions
—
V
VGE = 0V, IC = 250µA
—
V/°C VGE = 0V, IC = 1.0mA
2.0
IC = 9.0A
V GE = 15V
—
V
IC = 16A
See Fig. 2, 5
—
IC = 9.0A, TJ = 150°C
6.0
VCE = VGE, IC = 250µA
— mV/°C VCE = VGE, IC = 250µA
—
S
VCE = 100V, IC = 9.0A
250
µA
VGE = 0V, VCE = 600V
1700
VGE = 0V, VCE = 600V, TJ = 150°C
1.7
V
IC = 8.0A
See Fig. 13
1.6
IC = 8.0A, TJ = 150°C
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
t rr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Q rr
Diode Reverse Recovery Charge
di (rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
2
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ.
27
4.2
9.9
43
20
240
150
0.25
0.64
0.89
41
22
320
290
1.35
7.5
540
37
7.0
37
55
3.5
4.5
65
124
240
210
Max. Units
Conditions
40
IC = 9.0A
6.2
nC
VCC = 400V
See Fig. 8
15
VGE = 15V
—
TJ = 25°C
—
ns
IC = 9.0A, VCC = 480V
360
VGE = 15V, RG = 50Ω
220
Energy losses include "tail" and
—
diode reverse recovery.
—
mJ
See Fig. 9, 10, 18
1.3
—
TJ = 150°C, See Fig. 11, 18
—
ns
IC = 9.0A, VCC = 480V
—
VGE = 15V, RG = 50Ω
—
Energy losses include "tail" and
—
mJ
diode reverse recovery.
—
nH
Measured 5mm from package
—
VGE = 0V
—
pF
VCC = 30V
See Fig. 7
—
ƒ = 1.0MHz
55
ns
TJ = 25°C See Fig.
90
TJ = 125°C
14
IF = 8.0A
5.0
A
TJ = 25°C See Fig.
8.0
TJ = 125°C
15
VR = 200V
138
nC
TJ = 25°C See Fig.
360
TJ = 125°C
16
di/dt = 200A/µs
—
A/µs TJ = 25°C See Fig.
—
TJ = 125°C
17
www.irf.com
IRG4BC20FD
14
For both:
D uty cy cle: 50%
TJ = 125°C
T s ink = 90°C
G ate drive as specified
P ow e r Dis sip ation = 13 W
LOAD CURRENT (A)
12
10
8
S q u a re w a v e :
6 0% of rate d
volta ge
6
I
4
Id e a l d io d e s
2
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
TJ = 25 o C
TJ = 150 o C
10
V
= 15V
20µs PULSE WIDTH
GE
1
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
100
TJ = 150 o C
10
TJ = 25 oC
V
= 50V
5µs PULSE WIDTH
CC
1
5
6
7
8
9
10
11
12
13
14
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4BC20FD
16
3.0
V
= 15V
80 us PULSE WIDTH
IC = 18 A
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
GE
12
8
4
0
25
50
75
100
125
150
A
IC = 9.0
9A
2.0
IC = 4.5 A
1.0
-60 -40 -20
TC , Case Temperature ( ° C)
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
10
1
0.50
0.20
0.10
P DM
0.05
0.1
0.02
0.01
0.01
0.00001
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4BC20FD
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
C, Capacitance (pF)
800
Cies
600
400
Coes
200
C
res
20
VGE , Gate-to-Emitter Voltage (V)
1000
10
12
8
4
0
100
0
VCE , Collector-to-Emitter Voltage (V)
10
Total Switching Losses (mJ)
Total Switching Losses (mJ)
0.86
0.84
0.82
0.80
0.78
10
20
30
40
Ω
RG , Gate Resistance (Ohm)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
10
15
20
25
30
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
V CC = 480V
V GE = 15V
TJ = 25 ° C
0.88
I C = 9.0A
0
5
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0.90
VCC = 400V
I C = 9.0A
16
0
1
50
Ω
RG = 50Ohm
VGE = 15V
VCC = 480V
IC = 18 A
IC = 9.09 A
1
IC = 4.5 A
0.1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4BC20FD
100
= 50Ohm
Ω
= 150 ° C
= 480V
= 15V
I C , Collector-to-Emitter Current (A)
RG
TJ
VCC
2.5
VGE
2.0
1.5
1.0
0.5
VGE = 20V
T J = 125 oC
10
SAFE OPERATING AREA
1
0.0
0
4
8
12
16
1
20
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
I C , Collector-to-emitter Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
100
In s ta n ta n e o u s F o rw a rd C u rre n t - I F (A )
Total Switching Losses (mJ)
3.0
10
TJ = 1 50 °C
TJ = 1 25 °C
TJ = 25 °C
1
0.1
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
F o rw a rd V o lta g e D ro p - V F M (V )
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4BC20FD
100
100
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
80
I F = 8 .0A
I IR R M - (A )
t rr - (ns)
IF = 16 A
60
I F = 1 6A
10
IF = 8 .0 A
40
I F = 4.0 A
I F = 4 .0 A
20
0
100
1
100
1000
d i f /d t - (A /µ s)
1000
di f /dt - (A /µs)
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif/dt
10000
500
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
d i(re c )M /d t - (A /µ s )
Q R R - (n C )
400
300
I F = 16 A
200
I F = 8 .0A
I F = 4.0 A
1000
IF = 8 .0 A
I F = 1 6A
100
IF = 4.0 A
0
100
di f /dt - (A /µs)
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
1000
100
100
1000
d i f /d t - (A /µ s )
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
IRG4BC20FD
90% Vge
Same ty pe
device as
D .U.T.
+Vge
Vce
430µF
80%
of Vce
D .U .T.
Ic
9 0 % Ic
10% Vce
Ic
5 % Ic
td (o ff)
tf
Eoff =
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
∫
t1 + 5 µ S
V c e icIcd tdt
Vce
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O L T A G E D .U .T .
1 0 % +V g
trr
Q rr =
Ic
trr
id
t
Ic ddt
tx
∫
+Vg
tx
10% Vcc
1 0 % Irr
V cc
D UT VO LTAG E
AN D CU RRE NT
Vce
V pk
Irr
Vcc
1 0 % Ic
Ip k
9 0 % Ic
Ic
D IO D E R E C O V E R Y
W A V E FO R M S
tr
td (o n )
5% Vce
t1
∫
t2
ce ieIc
d t dt
E o n = VVce
t1
t2
E re c =
D IO D E R E V E R S E
REC OVERY ENER GY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫
t4
VVd
d idIc
d t dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4BC20FD
V g G A T E S IG N A L
D E V IC E U N D E R T E S T
C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L
1000V
D.U.T.
Vc*
RL=
480V
4 X IC @25°C
0 - 480V
50V
6000µ F
100 V
Figure 19. Clamped Inductive Load Test
Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4BC20FD
Notes:
Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
R VCC=80%(VCES), VGE=20V, L=10µH, RG = 50Ω (figure 19)
S Pulse width ≤ 80µs; duty factor ≤ 0.1%.
T Pulse width 5.0µs, single shot.
Case Outline — TO-220AB
2 .8 7 (.1 1 3 )
2 .6 2 (.1 0 3 )
1 0 .5 4 (.41 5 )
1 0 .2 9 (.40 5 )
4
3.78 (.149)
3.54 (.139)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255 )
6.10 (.240 )
1 5 .2 4 (.6 0 0 )
1 4 .8 4 (.5 8 4 )
1.15 (.045)
M IN
1
2
1 4 .0 9 (.5 5 5 )
1 3 .4 7 (.5 3 0 )
N O TE S :
1 D IM E N S IO N S & T O L E R A N C IN G
P E R A N S I Y 14 .5 M , 1 9 8 2 .
2 C O N T R O L L IN G D IM E N S IO N : IN C H .
3 D IM E N S IO N S A R E S H O W N
M ILL IM E T E R S (IN C H E S ).
4 C O N F O R M S T O JE D E C O U T L IN E
T O -2 2 0 A B .
LEAD
1234-
3
3X
1 .4 0 (.0 5 5 )
3 X 1 .1 5 (.0 4 5 )
-B -
4.69 (.185)
4.20 (.165)
3.96 (.160)
3.55 (.140)
A S S IG N M E N T S
GA TE
C O L LE C T O R
E M IT T E R
C O L LE C T O R
4.06 (.160 )
3.55 (.140 )
3X
0.93 (.037)
0.69 (.027)
0 .3 6 (.01 4 )
M B A M
2 .5 4 (.1 0 0)
3X
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2X
CONFORMS TO JEDEC OUTLINE TO-220AB
D im e ns io ns in M illim e ters a nd (In c he s )
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936
Data and specifications subject to change without notice. 7/00
10
www.irf.com