IRF IRF6794MTRPBF

PD - 97457
IRF6794MPbF
IRF6794MTRPbF
HEXFET® Power MOSFET plus Schottky Diode ‚
Typical values (unless otherwise specified)
RoHs Compliant Containing No Lead and Bromide 
VDSS
VGS
RDS(on)
RDS(on)
l Integrated Monolithic Schottky Diode
25V max ±20V max 1.3mΩ@ 10V 2.3mΩ@ 4.5V
l Low Profile (<0.7 mm)
l Dual Sided Cooling Compatible 
Qg tot Qgd
Qgs2
Qrr
Qoss Vgs(th)
l Low Package Inductance
31nC
11nC
4.4nC
51nC
27nC
1.8V
l Optimized for High Frequency Switching 
l Ideal for CPU Core DC-DC Converters
l Optimized for Sync. FET socket of Sync. Buck Converter
l Low Conduction and Switching Losses
l Compatible with existing Surface Mount Techniques 
l 100% Rg tested
DirectFET™ ISOMETRIC
MX
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
l
SQ
SX
ST
MQ
MT
MX
MP
Description
The IRF6794MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve
the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual
sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6794MPbF balances industry leading on-state resistance while minimizing gate charge along with low gate resistance to reduce both
conduction and switching losses. This part contains an integrated Schottky diode to reduce the Qrr of the body drain diode further reducing
the losses in a Synchronous Buck circuit. The reduced losses make this product ideal for high frequency/high efficiency DC-DC converters
that power high current loads such as the latest generation of microprocessors. The IRF6794MPbF has been optimized for parameters that
are critical in synchronous buck converter’s Sync FET sockets.
Absolute Maximum Ratings
Parameter
VDS
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
e
e
f
h
VGS, Gate-to-Source Voltage (V)
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
Typical RDS(on) (mΩ)
5
ID = 32A
4
3
TJ = 125°C
2
1
TJ = 25°C
0
2
4
6
8
10
12
14
16
18
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
Max.
Units
25
±20
32
25
200
250
200
26
V
A
mJ
A
14.0
ID= 26A
12.0
VDS = 20V
VDS = 13V
10.0
8.0
6.0
4.0
2.0
0.0
0
20
40
60
80
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
… Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.65mH, RG = 25Ω, IAS = 26A.
1
2/12/10
IRF6794MTRPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Drain-to-Source Breakdown Voltage
25
–––
–––
ΔΒVDSS/ΔTJ
Breakdown Voltage Temp. Coefficient
–––
14
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
1.3
1.7
VGS(th)
Gate Threshold Voltage
–––
2.3
3.0
1.35
1.8
2.35
V
VGS = 4.5V, ID = 26A
V
Gate Threshold Voltage Coefficient
–––
-4.7
–––
IDSS
Drain-to-Source Leakage Current
–––
–––
500
–––
–––
5.0
mA
–––
–––
100
nA
gfs
Qg
Qgs1
Gate-to-Source Forward Leakage
VGS = 0V, ID = 1.0mA
mV/°C Reference to 25°C, ID = 10mA
mΩ VGS = 10V, ID = 32A
ΔVGS(th)/ΔTJ
IGSS
Conditions
Typ. Max. Units
BVDSS
i
i
VDS = VGS, ID = 100µA
mV/°C VDS = VGS, ID = 10mA
µA VDS = 20V, VGS = 0V
VDS = 20V, VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
110
–––
–––
Total Gate Charge
–––
31
47
Pre-Vth Gate-to-Source Charge
–––
7.8
–––
VDS = 13V
VGS = 4.5V
S
VDS = 13V, ID = 26A
Qgs2
Post-Vth Gate-to-Source Charge
–––
4.4
–––
Qgd
Gate-to-Drain Charge
–––
11
–––
ID = 26A
Qgodr
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
7.8
–––
See Fig. 15
Qsw
–––
15
–––
Qoss
Output Charge
–––
27
–––
nC
RG
Gate Resistance
–––
0.30
–––
Ω
nC
VDS = 16V, VGS = 0V
i
VDD = 13V, VGS = 4.5V
td(on)
Turn-On Delay Time
–––
15
–––
tr
Rise Time
–––
25
–––
td(off)
Turn-Off Delay Time
–––
9.7
–––
RG = 1.8Ω
tf
Fall Time
–––
9.6
–––
Ciss
Input Capacitance
–––
4420
–––
See Fig. 17
VGS = 0V
Coss
Output Capacitance
–––
1260
–––
Crss
Reverse Transfer Capacitance
–––
530
–––
ns
pF
ID = 26A
VDS = 13V
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
Continuous Source Current
Min.
–––
Typ. Max. Units
–––
ISM
VSD
A
Pulsed Source Current
(Body Diode)
MOSFET symbol
32
(Body Diode)
g
Diode Forward Voltage
–––
–––
–––
–––
Conditions
showing the
250
integral reverse
0.75
V
p-n junction diode.
TJ = 25°C, IS = 26A, VGS = 0V
trr
Reverse Recovery Time
–––
27
41
ns
TJ = 25°C, IF = 26A
Qrr
Reverse Recovery Charge
–––
51
77
nC
di/dt = 370A/µs
i
i
Notes:
‡ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRF6794MTRPbF
Absolute Maximum Ratings
e
e
f
Max.
Units
2.8
1.8
100
270
-40 to + 150
W
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
°C
Thermal Resistance
Parameter
el
jl
kl
fl
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Typ.
Max.
Units
–––
12.5
20
–––
1.0
45
–––
–––
1.2
–––
°C/W
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
e
0.022
W/°C
Thermal Response ( Z thJA )
100
10
D = 0.50
0.20
0.10
0.05
1
0.02
0.01
τJ
0.1
R1
R1
τJ
τ1
R2
R2
R3
R3
R4
R4
τA
τ2
τ1
τ2
τ3
τ4
τ3
Ci= τi/Ri
Ci= τi/Ri
0.01
0.001
1E-006
0.0001
0.001
τA
τi (sec)
0.9810
0.000229
3.1819
0.014154
22.8717
1.0333
17.9602
40.9
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
τ4
Ri (°C/W)
0.01
0.1
1
10
100
1000
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ƒ
Notes:
ˆ Used double sided cooling , mounting pad with large heatsink.
‰ Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
ƒ Surface mounted on 1 in. square Cu
(still air).
www.irf.com
Š Rθ is measured at TJ of approximately 90°C.
‰ Mounted to a PCB with
small clip heatsink (still air)
‰ Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6794MTRPbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
3.5V
3.3V
3.0V
2.8V
2.6V
10
1
2.6V
100
BOTTOM
10
2.6V
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
0.1
1
0.1
1
10
100
0.1
VDS , Drain-to-Source Voltage (V)
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
Fig 5. Typical Output Characteristics
1.6
1000
Typical RDS(on) (Normalized)
ID = 32A
ID, Drain-to-Source Current(A)
VGS
10V
5.0V
4.5V
3.5V
3.3V
3.0V
2.8V
2.6V
100
TJ = 150°C
TJ = 25°C
TJ = -40°C
10
1
VGS = 10V
VGS = 4.5V
1.4
1.2
1.0
0.8
VDS = 15V
≤60µs PULSE WIDTH
0.6
0.1
1.5
2.0
2.5
3.0
3.5
4.0
-60 -40 -20 0
4.5
VGS, Gate-to-Source Voltage (V)
Fig 6. Typical Transfer Characteristics
Fig 7. Normalized On-Resistance vs. Temperature
14
100000
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
TJ = 25°C
12
Typical RDS (on) (mΩ)
Coss = Cds + Cgd
C, Capacitance(pF)
20 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
10000
Ciss
Coss
1000
Crss
10
8
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 7.0V
Vgs = 8.0V
Vgs = 10V
Vgs = 15V
6
4
2
0
100
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
0
25
50
75
100 125 150 175 200
ID, Drain Current (A)
Fig 9. Typical On-Resistance vs.
Drain Current and Gate Voltage
www.irf.com
IRF6794MTRPbF
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
100
10
TJ = 150°C
TJ = 25°C
TJ = -40°C
1
VGS = 0V
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
100
100µsec
10
DC
1
TA = 25°C
Tj = 150°C
Single Pulse
0.1
10msec
0.01
0
0.0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0.1
1.0
10.0
100.0
VDS , Drain-toSource Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 10. Typical Source-Drain Diode Forward Voltage
Fig 11. Maximum Safe Operating Area
Typical VGS(th) Gate threshold Voltage (V)
200
160
ID, Drain Current (A)
1msec
120
80
40
3.0
2.5
ID = 10mA
2.0
1.5
1.0
0
25
50
75
100
125
-75 -50 -25
150
0
25
50
75 100 125 150
TJ , Temperature ( °C )
TC , Case Temperature (°C)
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
EAS , Single Pulse Avalanche Energy (mJ)
900
ID
2.5A
3.5A
BOTTOM 25A
800
TOP
700
600
500
400
300
200
100
0
25
50
75
100
125
150
Starting TJ , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
www.irf.com
5
IRF6794MTRPbF
Id
Vds
Vgs
L
D
VCC
DUT
G
0
Vgs(th)
S
20K
1K
Qgodr
Fig 15a. Gate Charge Test Circuit
Qgd
Qgs2 Qgs1
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
V
RGSG
tp
D.U.T
+
- VDD
IAS
20V
A
0.01Ω
tp
I AS
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
VDS
VGS
RG
RD
VDS
90%
D.U.T.
+
- V DD
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
10%
VGS
td(on)
Fig 17a. Switching Time Test Circuit
6
tr
t d(off) tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6794MTRPbF
Driver Gate Drive
D.U.T
P.W.
+
ƒ
+
-
-

RG
*
•
•
•
•
„
***
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚
D=
Period
V DD
**
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
-
Ripple ≤ 5%
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
ISD
*** VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
DirectFET™ Board Footprint, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
D
S
G
S
D
www.irf.com
D
7
IRF6794MTRPbF
DirectFET™ Outline Dimension, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes
all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
CODE
A
B
C
D
E
F
G
H
J
K
L
M
R
P
MIN
6.25
4.80
3.85
0.35
0.68
0.68
1.38
0.80
0.38
0.88
2.28
0.616
0.020
0.08
MAX
6.35
5.05
3.95
0.45
0.72
0.72
1.42
0.84
0.42
1.01
2.41
0.676
0.080
0.17
IMPERIAL
MIN
0.246
0.189
0.152
0.014
0.027
0.027
0.054
0.032
0.015
0.035
0.090
0.0235
0.0008
0.003
MAX
0.250
0.201
0.156
0.018
0.028
0.028
0.056
0.033
0.017
0.039
0.095
0.0274
0.0031
0.007
DirectFET™ Part Marking
8
www.irf.com
IRF6794MTRPbF
DirectFET™ Tape & Reel Dimension (Showing component orientation).
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.12/09
www.irf.com
9