PHILIPS BF1205C

BF1205C
Dual N-channel dual gate MOS-FET
Rev. 01 — 18 May 2004
Product data sheet
1. Product profile
1.1 General description
The BF1205C is a combination of two dual gate MOS-FET amplifiers with shared source
and gate 2 leads and an integrated switch. The integrated switch is operated by the gate 1
bias of amplifier b.
The source and substrate are interconnected. Internal bias circuits enable
DC stabilization and a very good cross-modulation performance during AGC. Integrated
diodes between the gates and source protect against excessive input voltage surges. The
transistor has a SOT363 micro-miniature plastic package.
CAUTION
This device is sensitive to electrostatic discharge (ESD). Therefore care should be taken
during transport and handling.
MSC895
1.2 Features
■ Two low noise gain controlled amplifiers in a single package; one with a fully integrated
bias and one with a partly integrated bias
■ Internal switch to save external components
■ Superior cross-modulation performance during AGC
■ High forward transfer admittance
■ High forward transfer admittance to input capacitance ratio.
1.3 Applications
■ Gain controlled low noise amplifiers for VHF and UHF applications with 5 V supply
voltage
◆ digital and analog television tuners
◆ professional communication equipment.
BF1205C
Philips Semiconductors
Dual N-channel dual gate MOS-FET
1.4 Quick reference data
Table 1:
Quick reference data
Per MOS-FET unless otherwise specified.
Symbol Parameter
Conditions
VDS
drain-source voltage
ID
drain current (DC)
Ptot
total power dissipation
Ts ≤ 107 °C
yfs
forward transfer admittance
f = 1 MHz
Cig1-ss
input capacitance at gate 1
Min
Typ
Max Unit
-
-
6
V
-
-
30
mA
-
-
180
mW
amplifier a; ID = 19 mA
26
31
41
mS
amplifier b; ID = 13 mA
28
33
43
mS
amplifier a
-
2.2
2.7
pF
amplifier b
-
2.0
2.5
pF
[1]
f = 1 MHz
Crss
reverse transfer capacitance f = 1 MHz
-
20
-
fF
NF
noise figure
amplifier a; f = 400 MHz
-
1.3
1.9
dB
amplifier b; f = 800 MHz
-
1.4
2.1
dB
amplifier a
100
105
-
dBµV
amplifier b
100
103
-
dBµV
-
-
150
°C
Xmod
input level for k = 1% at
40 dB AGC
junction temperature
Tj
[1]
cross-modulation
Ts is the temperature at the soldering point of the source lead.
2. Pinning information
Table 2:
Discrete pinning
Pin
Description
1
gate 1 (a)
2
gate 2
3
gate 1 (b)
4
drain (b)
5
source
6
drain (a)
Simplified outline
6
1
5
2
Symbol
4
3
AMP a
g1
(a)
d
(a)
g2
s
g1
(b)
d
(b)
001aaa706
AMP b
sym033
9397 750 13005
Product data sheet
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Rev. 01 — 18 May 2004
2 of 22
BF1205C
Philips Semiconductors
Dual N-channel dual gate MOS-FET
3. Ordering information
Table 3:
Ordering information
Type number
BF1205C
Package
Name
Description
Version
-
plastic surface mounted package; 6 leads
SOT363
4. Marking
Table 4:
Marking
Type number
Marking code [1]
BF1205C
M6*
[1]
* = p or -: made in Hong Kong.
* = t: made in Malaysia.
* = W: made in China.
5. Limiting values
Table 5:
Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol
Parameter
Conditions
Min
Max
Unit
Per MOS-FET
VDS
drain-source voltage
-
6
V
ID
drain current (DC)
-
30
mA
IG1
gate 1 current
-
±10
mA
IG2
gate 2 current
-
±10
mA
-
180
mW
Ts ≤ 107 °C
[1]
Ptot
total power dissipation
Tstg
storage temperature
−65
+150
°C
Tj
junction temperature
-
150
°C
[1]
Ts is the temperature at the soldering point of the source lead.
6. Thermal characteristics
Table 6:
Thermal characteristics
Symbol
Parameter
Conditions
Rth(j-s)
thermal resistance from junction
to soldering point
9397 750 13005
Product data sheet
Typ
Unit
240
K/W
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Rev. 01 — 18 May 2004
3 of 22
BF1205C
Philips Semiconductors
Dual N-channel dual gate MOS-FET
001aaa551
250
Ptot
(mW)
200
150
100
50
0
0
50
100
150
200
Ts (°C)
Fig 1. Power derating curve.
7. Static characteristics
Table 7:
Static characteristics
Tj = 25 °C.
Symbol
Parameter
Conditions
Min
Typ
Max Unit
amplifier a
6
-
-
V
amplifier b
Per MOS-FET; unless otherwise specified
V(BR)DSS
drain-source breakdown voltage
VG1-S = VG2-S = 0 V; ID = 10 µA
6
-
-
V
V(BR)G1-SS
gate 1-source breakdown voltage
VGS = VDS = 0 V; IG1-S = 10 mA
6
-
10
V
V(BR)G2-SS
gate 2-source breakdown voltage
VGS = VDS = 0 V; IG2-S = 10 mA
6
-
10
V
V(F)S-G1
forward source-gate 1 voltage
VG2-S = VDS = 0 V; IS-G1 = 10 mA
0.5
-
1.5
V
V(F)S-G2
forward source-gate 2 voltage
VG1-S = VDS = 0 V; IS-G2 = 10 mA
0.5
-
1.5
V
VG1-S(th)
gate 1-source threshold voltage
VDS = 5 V; VG2-S = 4 V; ID = 100 µA
0.3
-
1.0
V
VG2-S(th)
gate 2-source threshold voltage
VDS = 5 V; VG1-S = 5 V; ID = 100 µA
0.4
-
1.0
V
IDSX
drain-source current
VG2-S = 4 V; VDS(b) = 5 V; RG1 = 150 kΩ
IG1-S
IG2-S
gate1 cut-off current
gate 2 cut-off current
amplifier a; VDS(a) = 5 V
[1]
14
-
24
mA
amplifier b
[2]
9
-
17
mA
amplifier a; VG1-S(a) = 5 V; ID(b) = 0 A
-
-
50
nA
amplifier b; VG1-S(b) = 5 V; VDS(b) = 0 V
-
-
50
nA
-
-
20
nA
VG2-S = VDS(a) = 0 V
VG2-S = 4 V;
VG1-S(a) = VDS(a) = VDS(b) = 0 V;
VG1-S(b) = 0 V;
[1]
RG1 connects gate 1 (b) to VGG = 0 V (see Figure 3).
[2]
RG1 connects gate 1 (b) to VGG = 5 V (see Figure 3).
9397 750 13005
Product data sheet
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Rev. 01 — 18 May 2004
4 of 22
BF1205C
Philips Semiconductors
Dual N-channel dual gate MOS-FET
001aaa552
20
ID
(mA)
16
(1)
(2)
12
(3)
g1 (a)
d (a)
8
(4)
g2
s
4
(6)
(5)
g1 (b)
d (b)
RG1
0
0
1
2
3
4
5
VGG
VGG (V)
001aaa553
(1) ID(b); RG1 = 120 kΩ.
VGG = 5 V: amplifier a is off; amplifier b is on
(2) ID(b); RG1 = 150 kΩ.
VGG = 0 V: amplifier a is on; amplifier b is off.
(3) ID(b); RG1 = 180 kΩ.
(4) ID(a); RG1 = 180 kΩ.
(5) ID(a); RG1 = 150 kΩ.
(6) ID(a); RG1 = 120 kΩ.
Fig 2. Drain currents of MOS-FET a and b as function
of VGG.
Fig 3. Functional diagram.
8. Dynamic characteristics
8.1 Dynamic characteristics for amplifier a
Table 8:
Dynamic characteristics for amplifier a [1]
Common source; Tamb = 25 °C; VG2-S = 4 V; VDS = 5 V; ID = 19 mA.
Symbol
Parameter
Conditions
Min
Typ Max
Unit
yfs
forward transfer admittance
Tj = 25 °C
26
31
41
mS
Cig1-ss
input capacitance at gate 1
f = 1 MHz
-
2.2
2.7
pF
Cig2-ss
input capacitance at gate 2
f = 1 MHz
-
3.0
-
pF
Coss
output capacitance
f = 1 MHz
-
0.9
-
pF
Crss
reverse transfer capacitance
f = 1 MHz
-
20
-
fF
Gtr
power gain
BS = BS(opt); BL = BL(opt)
f = 200 MHz; GS = 2 mS; GL = 0.5 mS
31
35
39
dB
f = 400 MHz; GS = 2 mS; GL = 1 mS
26
30
34
dB
f = 800 MHz; GS = 3.3 mS; GL = 1 mS
21
25
29
dB
NF
noise figure
f = 11 MHz; GS = 20 mS; BS = 0 S
-
3.0
-
dB
f = 400 MHz; YS = YS(opt)
-
1.3
1.9
dB
f = 800 MHz; YS = YS(opt)
-
1.4
2.1
dB
9397 750 13005
Product data sheet
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Rev. 01 — 18 May 2004
5 of 22
BF1205C
Philips Semiconductors
Dual N-channel dual gate MOS-FET
Table 8:
Dynamic characteristics for amplifier a [1] …continued
Common source; Tamb = 25 °C; VG2-S = 4 V; VDS = 5 V; ID = 19 mA.
Symbol
Parameter
Xmod
Conditions
cross-modulation
Min
Typ Max
Unit
at 0 dB AGC
90
-
-
dBµV
at 10 dB AGC
-
90
-
dBµV
at 20 dB AGC
-
99
-
dBµV
at 40 dB AGC
100
105 -
dBµV
input level for k = 1%; fw = 50 MHz; funw = 60 MHz
[1]
For the MOS-FET not in use: VG1-S(b) = 0 V; VDS(b) = 0 V.
[2]
Measured in Figure 33 test circuit.
[2]
8.1.1 Graphs for amplifier a
001aaa554
30
001aaa555
32
(1)
ID
(mA)
(2)
ID
(mA)
(3)
(1)
(2)
(4)
24
(3)
20
(4)
(5)
16
(5)
(6)
10
(7)
(6)
8
(8)
(9)
(7)
0
0
0
0.4
0.8
1.2
1.6
2
VG1-S (V)
0
4
6
VDS (V)
(1) VG2-S = 4 V.
(1) VG1-S(a) = 1.8 V.
(2) VG2-S = 3.5 V.
(2) VG1-S(a) = 1.7 V.
(3) VG2-S = 3 V.
(3) VG1-S(a) = 1.6 V.
(4) VG2-S = 2.5 V.
(4) VG1-S(a) = 1.5 V.
(5) VG2-S = 2 V.
(5) VG1-S(a) = 1.4 V.
(6) VG2-S = 1.5 V.
(6) VG1-S(a) = 1.3 V.
(7) VG2-S = 1 V.
(7) VG1-S(a) = 1.2 V.
VDS(a) = 5 V; VG1-S(b) = VDS(b) = 0 V; Tj = 25 °C.
2
(8) VG1-S(a) = 1.1 V.
(9) VG1-S(a) = 1 V.
VG2-S = 4 V; VG1-S(b) = VDS(b) = 0 V; Tj = 25 °C.
Fig 4. Transfer characteristics; typical values.
Fig 5. Output characteristics; typical values.
9397 750 13005
Product data sheet
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Rev. 01 — 18 May 2004
6 of 22
BF1205C
Philips Semiconductors
Dual N-channel dual gate MOS-FET
001aaa556
40
yfs
(mS)
ID (a)
(mA)
16
(1)
(2)
30
001aaa557
20
12
20
(3)
8
(4)
10
4
(5)
(6)
0
0
0
8
16
24
32
0
(1) VG2-S = 4 V.
20
40
60
ID (b) (µA)
ID (mA)
VDS(a) = 5 V; VG2-S = 4 V; VDS(b) = 5 V;
VG1-S(b) = 0 V; Tj = 25 °C.
(2) VG2-S = 3.5 V.
(3) VG2-S = 3 V.
(4) VG2-S = 2.5 V.
(5) VG2-S = 2 V.
(6) VG2-S = 1.5 V.
VDS(a) = 5 V; VG1-S(b) = VDS(b) = 0 V; Tj = 25 °C.
Fig 6. Forward transfer admittance as a function of
drain current; typical values.
Fig 7. Drain current as a function of internal G1
current (current in pin drain (b) if MOS-FET (b)
is switched off); typical values.
9397 750 13005
Product data sheet
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Rev. 01 — 18 May 2004
7 of 22
BF1205C
Philips Semiconductors
Dual N-channel dual gate MOS-FET
001aaa558
20
001aaa559
32
ID
(mA)
16
ID
(mA)
24
(1)
12
(2)
(3)
16
(4)
(5)
8
(6)
8
4
0
0
0
1
2
3
4
5
Vsupply (V)
VDS(a) = VDS(b) = Vsupply, VG2-S = 4 V, Tj = 25 °C,
RG1(b) = 150 kΩ (connected to ground); see
Figure 3.
0
2
4
6
VG2-S (V)
(1) VDS(b) = 5 V.
(2) VDS(b) = 4.5 V.
(3) VDS(b) = 4 V.
(4) VDS(b) = 3.5 V.
(5) VDS(b) = 3 V.
(6) VDS(b) = 2.5 V.
VDS(a) = 5 V; VG1-S(b) = 0 V; gate 1 (a) = open;
Tj = 25 °C.
Fig 8. Drain current of amplifier a as a function of
supply voltage of a and b amplifier; typical
values.
001aaa560
120
Fig 9. Drain current as a function of gate 2 and drain
supply voltage; typical values.
001aaa561
0
gain
reduction
(dB)
10
Vunw
(dBµV)
110
20
100
30
90
40
80
50
0
10
20
30
40
50
gain reduction (dB)
VDS(a) = VDS(b) = 5 V; VG1-S(b) = 0 V; fw = 50 MHz;
funw = 60 MHz; Tamb = 25 °C; see Figure 33.
Fig 10. Unwanted voltage for 1% cross-modulation as a
function of gain reduction; typical values.
0
2
3
4
VAGC (V)
VDS(a) = VDS(b) = 5 V; VG1-S(b) = 0 V; f = 50 MHz; see
Figure 33.
Fig 11. Gain reduction as a function of AGC voltage;
typical values.
9397 750 13005
Product data sheet
1
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Rev. 01 — 18 May 2004
8 of 22
BF1205C
Philips Semiconductors
Dual N-channel dual gate MOS-FET
001aaa562
32
001aaa564
102
bis, gis
(mS)
ID
(mA)
10
24
bis
16
1
8
10−1
gis
10−2
0
0
20
40
60
gain reduction (dB)
10
VDS(a) = 5 V; VG2-S(a) = 4 V; VDS(b) = VG1-S(b) = 0 V;
ID(a) = 19 mA.
Fig 12. Drain current as a function of gain reduction;
typical values.
001aaa565
yfs
(mS)
102
−ϕfs
(deg)
yfs
Fig 13. Input admittance as a function of frequency;
typical values.
001aaa566
103
−ϕrs
10
102
yrs
−ϕfs
10
1
10
1
103
102
10
1
10
f (MHz)
1
103
102
f (MHz)
VDS(a) = 5 V; VG2-S(a) = 4 V; VDS(b) = VG1-S(b) = 0 V;
ID(a) = 19 mA.
Fig 14. Forward transfer admittance and phase as a
function of frequency; typical values.
VDS(a) = 5 V; VG2-S(a) = 4 V; VDS(b) = VG1-S(b) = 0 V;
ID(a) = 19 mA.
Fig 15. Reverse transfer admittance and phase as a
function of frequency: typical values.
9397 750 13005
Product data sheet
103
−ϕrs
(deg)
yrs
(mS)
102
10
103
f (MHz)
VDS(a) = VDS(b) = 5 V; VG1-S(b) = 0 V; f = 50 MHz;
Tamb = 25 °C; see Figure 33.
102
102
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Rev. 01 — 18 May 2004
9 of 22
BF1205C
Philips Semiconductors
Dual N-channel dual gate MOS-FET
001aaa567
10
bos, gos
(mS)
bos
1
gos
10−1
10−2
102
10
103
f (MHz)
VDS(a) = 5 V; VG2-S(a) = 4 V; VDS(b) = VG1-S(b) = 0 V; ID(a) = 19 mA.
Fig 16. Output admittance as a function of frequency; typical values.
8.1.2 Scattering parameters for amplifier a
Table 9:
Scattering parameters for amplifier a
VDS(a) = 5 V; VG2-S = 4 V; ID(a) = 19 mA; VDS(b) = 0 V; VG-1S(b) = 0 V; Tamb = 25 °C.
f
(MHz)
S11
S21
S12
Magnitude
ratio
Angle
(deg)
Magnitude
ratio
Angle
(deg)
50
0.992
−3.91
3.07
100
0.990
−7.76
3.06
200
0.982
300
S22
Magnitude
ratio
Angle
(deg)
Magnitude
ratio
Angle
(deg)
175.56 0.0007
83.61
0.992
−1.47
171.18 0.0017
83.19
0.992
−2.93
−15.42 3.04
162.42 0.0026
78.19
0.990
−5.84
0.971
−22.99 3.01
153.79 0.0037
73.75
0.988
−8.71
400
0.956
−30.52 2.96
145.22 0.0047
69.82
0.985
−11.59
500
0.938
−37.83 2.90
136.78 0.0055
66.12
0.982
−14.48
600
0.917
−45.14 2.83
128.46 0.0061
62.11
0.979
−17.31
700
0.893
−52.31 2.76
120.20 0.0065
58.86
0.975
−20.14
800
0.867
−59.47 2.69
111.98 0.0068
58.28
0.972
−22.98
900
0.838
−66.23 2.60
103.90 0.0067
50.64
0.968
−25.85
1000
0.807
−73.10 2.52
95.875 0.0065
47.28
0.966
−28.74
8.1.3 Noise data for amplifier a
Table 10: Noise data for amplifier a
VDS(a) = 5 V; VG2-S = 4 V; ID(a) = 19 mA; VDS(b) = 0 V; VG-1S(b) = 0 V; Tamb = 25 °C.
f
(MHz)
Fmin
(dB)
Γopt
ratio
(deg)
rn
(Ω)
400
1.3
0.718
16.06
0.683
800
1.4
0.677
37.59
0.681
9397 750 13005
Product data sheet
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Rev. 01 — 18 May 2004
10 of 22
BF1205C
Philips Semiconductors
Dual N-channel dual gate MOS-FET
8.2 Dynamic characteristics for amplifier b
Table 11: Dynamic characteristics for amplifier b
Common source; Tamb = 25 °C; VG2-S = 4 V; VDS = 5 V; ID = 13 mA.
Symbol
Parameter
Conditions
Min
Typ
Max Unit
yfs
forward transfer admittance
Tj = 25 °C
28
33
43
mS
Cig1-ss
input capacitance at gate 1
f = 1 MHz
-
2.0
2.5
pF
Cig2-ss
input capacitance at gate 2
f = 1 MHz
-
3.4
-
pF
Coss
output capacitance
f = 1 MHz
-
0.85
-
pF
Crss
reverse transfer capacitance f = 1 MHz
-
20
-
fF
f = 200 MHz; GS = 2 mS; GL = 0.5 mS
31
35
39
dB
f = 400 MHz; GS = 2 mS; GL = 1 mS
28
32
36
dB
f = 800 MHz; GS = 3.3 mS; GL = 1 mS
24
28
32
dB
power gain
Gtr
NF
noise figure
[1]
BS = BS(opt); BL = BL(opt)
f = 11 MHz; GS = 20 mS; BS = 0 S
-
5
-
dB
f = 400 MHz; YS = YS(opt)
-
1.3
1.9
dB
-
1.4
2.1
dB
f = 800 MHz; YS = YS(opt)
Xmod
cross-modulation
input level for k = 1%; fw = 50 MHz; funw = 60 MHz
at 0 dB AGC
90
-
-
dBµV
at 10 dB AGC
-
88
-
dBµV
at 20 dB AGC
-
94
-
dBµV
at 40 dB AGC
100
103
-
dBµV
[1]
For the MOS-FET not in use: VG1-S(a) = 0 V; VDS(a) = 0 V.
[2]
Measured in Figure 34 test circuit.
9397 750 13005
Product data sheet
[2]
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Rev. 01 — 18 May 2004
11 of 22
BF1205C
Philips Semiconductors
Dual N-channel dual gate MOS-FET
8.2.1 Graphs for amplifier b
001aaa568
(1)
(4)
30
ID
(mA)
(2)
ID
(mA)
001aaa569
32
(1)
(3)
24
(2)
(5)
20
(3)
(4)
16
(5)
(6)
10
(6)
8
(7)
(7)
0
0
0
0.4
0.8
1.2
1.6
2
VG1-S (V)
0
2
4
6
VDS (V)
(1) VG2-S = 4 V.
(1) VG1-S(b) = 1.6 V.
(2) VG2-S = 3.5 V.
(2) VG1-S(b) = 1.5 V.
(3) VG2-S = 3 V.
(3) VG1-S(b) = 1.4 V.
(4) VG2-S = 2.5 V.
(4) VG1-S(b) = 1.3 V.
(5) VG2-S = 2 V.
(5) VG1-S(b) = 1.2 V.
(6) VG2-S = 1.5 V.
(6) VG1-S(b) = 1.1 V.
(7) VG2-S = 1 V.
(7) VG1-S(b) = 1 V.
VDS(b) = 5 V; VDS(a) = VG1-S(a) = 0 V; Tj = 25 °C.
VG2-S = 4 V; VDS(a) = VG1-S(a) = 0 V; Tj = 25 °C.
Fig 17. Transfer characteristics; typical values.
Fig 18. Output characteristics; typical values.
9397 750 13005
Product data sheet
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Rev. 01 — 18 May 2004
12 of 22
BF1205C
Philips Semiconductors
Dual N-channel dual gate MOS-FET
001aaa570
100
(1)
IG1
(µA)
80
001aaa571
(1)
(2)
40
(2)
Yfs
(mS)
(3)
(3)
30
(4)
(4)
60
20
40
(5)
(5)
10
20
(6)
(6)
(7)
(7)
0
0
0
0.4
0.8
1.2
0
1.6
2
VG1-S (V)
8
24
32
ID (mA)
(1) VG2-S = 4 V.
(1) VG2-S = 4 V.
(2) VG2-S = 3.5 V.
(2) VG2-S = 3.5 V.
(3) VG2-S = 3 V.
(3) VG2-S = 3 V.
(4) VG2-S = 2.5 V.
(4) VG2-S = 2.5 V.
(5) VG2-S = 2 V.
(5) VG2-S = 2 V.
(6) VG2-S = 1.5 V.
(6) VG2-S = 1.5 V.
(7) VG2-S = 1 V.
(7) VG2-S = 1 V.
VDS(b) = 5 V; VDS(a) = VG1-S(a) = 0 V; Tj = 25 °C.
VDS(b) = 5 V; VDS(a) = VG1-S(a) = 0 V; Tj = 25 °C.
Fig 19. Gate 1 current as a function of gate 1 voltage;
typical values.
001aaa572
24
16
Fig 20. Forward transfer admittance as a function of
drain current; typical values.
001aaa573
16
ID
(mA)
ID
(mA)
12
16
8
8
4
0
0
10
20
30
40
50
IG1 (µA)
VDS(b) = 5 V; VG2-S = 4 V; VDS(a) = VG1-S(a) = 0 V;
Tj = 25 °C.
Fig 21. Drain current as a function of gate 1 current;
typical values.
0
0
2
3
4
5
VGG (V)
VDS(b) = 5 V; VG2-S = 4 V; VDS(a) = VG1-S(a) = 0 V;
Tj = 25 °C; RG1(b) = 150 kΩ (connected to VGG); see
Figure 3.
Fig 22. Drain current as a function of gate 1 supply
voltage (VGG); typical values.
9397 750 13005
Product data sheet
1
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Rev. 01 — 18 May 2004
13 of 22
BF1205C
Philips Semiconductors
Dual N-channel dual gate MOS-FET
001aaa574
24
001aaa575
16
(1)
ID
(mA)
(1)
ID
(mA)
(2)
(3)
(2)
12
(4)
(3)
16
(5)
(4)
(5)
8
(6)
(7)
(8)
8
4
0
0
0
2
4
VGG = VDS (V)
6
0
2
4
6
VG2-S (V)
(1) RG1(b) = 68 kΩ.
(1) VGG = 5.0 V.
(2) RG1(b) = 82 kΩ.
(2) VGG = 4.5 V.
(3) RG1(b) = 100 kΩ.
(3) VGG = 4.0 V.
(4) RG1(b) = 120 kΩ.
(4) VGG = 3.5 V.
(5) RG1(b) = 150 kΩ.
(5) VGG = 3.0 V.
VDS(b) = 5 V; VDS(a) = VG1-S(a) = 0 V; Tj = 25 °C;
RG1(b) = 150 kΩ (connected to VGG); see Figure 3.
(6) RG1(b) = 180 kΩ.
(7) RG1(b) = 220 kΩ.
(8) RG1(b) = 270 kΩ.
VG2-S = 4 V; VDS(a) = VG1-S(a) = 0 V; Tj = 25 °C;
RG1(b) is connected to VGG; see Figure 3.
Fig 23. Drain current as a function of gate 1 (VGG),
drain supply voltage and value of RG1; typical
values.
Fig 24. Drain current as a function of gate 2 voltage;
typical values.
9397 750 13005
Product data sheet
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Rev. 01 — 18 May 2004
14 of 22
BF1205C
Philips Semiconductors
Dual N-channel dual gate MOS-FET
001aaa576
30
Vunw
(dBµV)
(1)
IG1
(µA)
(2)
20
001aaa577
120
110
(3)
(4)
100
(5)
10
90
80
0
0
2
4
6
0
20
VG2-S (V)
(1) VGG = 5.0 V.
40
60
gain reduction (dB)
VDS(b) = 5 V; VGG = 5 V; VDS(a) = VG1-S(a) = 0 V;
RG1(b) = 150 kΩ (connected to VGG); fw = 50 MHz;
funw = 60 MHz; Tamb = 25 °C; see Figure 34.
(2) VGG = 4.5 V.
(3) VGG = 4.0 V.
(4) VGG = 3.5 V.
(5) VGG = 3.0 V.
VDS(b) = 5 V; VDS(a) = VG1-S(a) = 0 V; Tj = 25 °C;
RG1(b) = 150 kΩ (connected to VGG); see Figure 3.
Fig 25. Gate 1 current as a function of gate 2 voltage;
typical values.
001aaa578
0
Fig 26. Unwanted voltage for 1% cross-modulation as a
function of gain reduction; typical values.
001aaa579
16
gain
reduction
(dB)
10
ID
(mA)
12
20
8
30
4
40
50
0
0
1
2
3
4
0
VAGC (V)
VDS(b) = 5 V; VGG = 5 V; VDS(a) = VG1-S(a) = 0 V;
RG1(b) = 150 kΩ (connected to VGG); f = 50 MHz;
Tamb = 25 °C; see Figure 34.
Fig 27. Typical gain reduction as a function of AGC
voltage.
40
60
gain reduction (dB)
VDS(b) = 5 V; VGG = 5 V; VDS(a) = VG1-S(a) = 0 V;
RG1(b) = 150 kΩ (connected to VGG); f = 50 MHz;
Tamb = 25 °C; see Figure 34.
Fig 28. Drain current as a function of gain reduction;
typical values.
9397 750 13005
Product data sheet
20
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Rev. 01 — 18 May 2004
15 of 22
BF1205C
Philips Semiconductors
Dual N-channel dual gate MOS-FET
001aaa581
102
001aaa582
102
102
bis, gis
(mS)
yfs
yfs
(mS)
10
−ϕfs
(deg)
bis
1
10
10
−ϕfs
gis
10−1
10−2
10
102
1
103
10
f (MHz)
f (MHz)
VDS(b) = 5 V; VG2-S = 4 V; VDS(a) = VG1-S(a) = 0 V;
ID(b) = 13 mA.
VDS(b) = 5 V; VG2-S = 4 V; VDS(a) = VG1-S(a) = 0 V;
ID(b) = 13 mA.
Fig 29. Input admittance as a function of frequency;
typical values.
001aaa583
103
103
−ϕrs
(deg)
yrs
(µS)
−ϕrs
102
1
103
102
102
Fig 30. Forward transfer admittance and phase as a
function of frequency; typical values.
001aaa584
10
bos, gos
(mS)
bos
1
yrs
gos
10
10
1
10
1
103
102
10−1
10−2
10
VDS(b) = 5 V; VG2-S = 4 V; VDS(a) = VG1-S(a) = 0 V;
ID(b) = 13 mA.
Fig 31. Reverse transfer admittance and phase as a
function of frequency; typical values.
103
VDS(b) = 5 V; VG2-S = 4 V; VDS(a) = VG1-S(a) = 0 V;
ID(b) = 13 mA.
Fig 32. Output admittance as a function of frequency;
typical values.
9397 750 13005
Product data sheet
102
f (MHz)
f (MHz)
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Rev. 01 — 18 May 2004
16 of 22
BF1205C
Philips Semiconductors
Dual N-channel dual gate MOS-FET
8.2.2 Scattering parameters for amplifier b
Table 12: Scattering parameters for amplifier b
VDS(b) = 5 V; VG2-S = 4 V; ID(b) = 13 mA; VDS(a) = 0 V; VG1-S(a) = 0 V; Tamb = 25 °C.
f
(MHz)
S11
S21
50
0.986
−3.66
3.26
100
0.982
−7.01
200
300
S12
Magnitude Angle Magnitude
ratio
(deg) ratio
Angle
(deg)
S22
Magnitude
ratio
Angle Magnitude
(deg) ratio
Angle
(deg)
175.93 0.0008
84.23
0.988
−1.65
3.24
172.04 0.0015
84.91
0.988
−3.27
0.975
−13.71 3.22
164.24 0.0029
83.96
0.986
−6.50
0.966
−20.36 3.19
156.53 0.0042
82.86
0.984
−9.69
400
0.955
−27.04 3.15
148.86 0.0055
81.88
0.982
−12.88
500
0.943
−33.62 3.10
141.24 0.0066
80.92
0.978
−16.07
600
0.927
−40.16 3.05
133.70 0.0076
80.15
0.975
−19.21
700
0.909
−46.70 2.99
126.13 0.0086
79.68
0.972
−22.35
800
0.891
−52.07 2.92
118.64 0.0094
78.28
0.968
−25.52
900
0.868
−59.48 2.84
111.09 0.0100
78.28
0.965
−28.65
1000
0.846
−65.86 2.77
103.58 0.0107
78.15
0.961
−31.85
8.2.3 Noise data for amplifier b
Table 13: Noise data for amplifier b
VDS(b) = 5 V; VG2-S = 4 V; ID(b) = 13 mA; VDS(a) = 0 V; VG1-S(a) = 0 V; Tamb = 25 °C.
f
(MHz)
Fmin
(dB)
Γopt
ratio
(deg)
rn
(Ω)
400
1.3
0.695
13.11
0.694
800
1.4
0.674
32.77
0.674
9397 750 13005
Product data sheet
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Rev. 01 — 18 May 2004
17 of 22
BF1205C
Philips Semiconductors
Dual N-channel dual gate MOS-FET
9. Test information
VDS(a)
VAGC
5V
4.7 nF
10 kΩ
4.7 nF
RGEN
50 Ω
g2
4.7 nF
Vi
BF1205C
g1 (b)
50 Ω
4.7 nF
d (a)
g1 (a)
4.7 nF
50 Ω
L1
2.2 µH
RL
50 Ω
S
d (b)
L2
2.2 µH
RG1
4.7 nF
VGG
VDS(b)
0V
5V
001aaa563
Fig 33. Cross-modulation test set-up for amplifier a.
VDS(a)
VAGC
5V
4.7 nF
10 kΩ
4.7 nF
50 Ω
d (a)
g1 (a)
4.7 nF
g2
4.7 nF
RGEN
50 Ω
L1
2.2 µH
g1 (b)
50 Ω
BF1205C
S
4.7 nF
d (b)
L2
2.2 µH
RG1
RL
50 Ω
4.7 nF
Vi
VGG
VDS(b)
5V
5V
001aaa580
Fig 34. Cross-modulation test set-up for amplifier b.
9397 750 13005
Product data sheet
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Rev. 01 — 18 May 2004
18 of 22
BF1205C
Philips Semiconductors
Dual N-channel dual gate MOS-FET
10. Package outline
Plastic surface mounted package; 6 leads
SOT363
D
E
B
y
X
A
HE
6
5
v M A
4
Q
pin 1
index
A
A1
1
2
e1
3
bp
c
Lp
w M B
e
detail X
0
1
2 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
A1
max
bp
c
D
E
e
e1
HE
Lp
Q
v
w
y
mm
1.1
0.8
0.1
0.30
0.20
0.25
0.10
2.2
1.8
1.35
1.15
1.3
0.65
2.2
2.0
0.45
0.15
0.25
0.15
0.2
0.2
0.1
OUTLINE
VERSION
SOT363
REFERENCES
IEC
JEDEC
EIAJ
SC-88
EUROPEAN
PROJECTION
ISSUE DATE
97-02-28
Fig 35. Package outline.
9397 750 13005
Product data sheet
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Rev. 01 — 18 May 2004
19 of 22
BF1205C
Philips Semiconductors
Dual N-channel dual gate MOS-FET
11. Revision history
Table 14:
Revision history
Document ID
Release date
Data sheet status
Change notice
Order number
Supersedes
BF1205C_1
20040518
Product data
-
9397 750 13005
-
9397 750 13005
Product data sheet
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Rev. 01 — 18 May 2004
20 of 22
BF1205C
Philips Semiconductors
Dual N-channel dual gate MOS-FET
12. Data sheet status
Level
Data sheet status [1]
Product status [2] [3]
Definition
I
Objective data
Development
This data sheet contains data from the objective specification for product development. Philips
Semiconductors reserves the right to change the specification in any manner without notice.
II
Preliminary data
Qualification
This data sheet contains data from the preliminary specification. Supplementary data will be published
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in
order to improve the design and supply the best possible product.
III
Product data
Production
This data sheet contains data from the product specification. Philips Semiconductors reserves the
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant
changes will be communicated via a Customer Product/Process Change Notification (CPCN).
[1]
Please consult the most recently issued data sheet before initiating or completing a design.
[2]
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at
URL http://www.semiconductors.philips.com.
[3]
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.
13. Definitions
14. Disclaimers
Short-form specification — The data in a short-form specification is
extracted from a full data sheet with the same type number and title. For
detailed information see the relevant data sheet or data handbook.
Life support — These products are not designed for use in life support
appliances, devices, or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors
customers using or selling these products for use in such applications do so
at their own risk and agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.
Limiting values definition — Limiting values given are in accordance with
the Absolute Maximum Rating System (IEC 60134). Stress above one or
more of the limiting values may cause permanent damage to the device.
These are stress ratings only and operation of the device at these or at any
other conditions above those given in the Characteristics sections of the
specification is not implied. Exposure to limiting values for extended periods
may affect device reliability.
Application information — Applications that are described herein for any
of these products are for illustrative purposes only. Philips Semiconductors
make no representation or warranty that such applications will be suitable for
the specified use without further testing or modification.
Right to make changes — Philips Semiconductors reserves the right to
make changes in the products - including circuits, standard cells, and/or
software - described or contained herein in order to improve design and/or
performance. When the product is in full production (status ‘Production’),
relevant changes will be communicated via a Customer Product/Process
Change Notification (CPCN). Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no
license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are
free from patent, copyright, or mask work right infringement, unless otherwise
specified.
15. Contact information
For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: [email protected]
9397 750 13005
Product data sheet
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Rev. 01 — 18 May 2004
21 of 22
BF1205C
Philips Semiconductors
Dual N-channel dual gate MOS-FET
16. Contents
1
1.1
1.2
1.3
1.4
2
3
4
5
6
7
8
8.1
8.1.1
8.1.2
8.1.3
8.2
8.2.1
8.2.2
8.2.3
9
10
11
12
13
14
15
Product profile . . . . . . . . . . . . . . . . . . . . . . . . . . 1
General description. . . . . . . . . . . . . . . . . . . . . . 1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Quick reference data. . . . . . . . . . . . . . . . . . . . . 2
Pinning information . . . . . . . . . . . . . . . . . . . . . . 2
Ordering information . . . . . . . . . . . . . . . . . . . . . 3
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 3
Thermal characteristics. . . . . . . . . . . . . . . . . . . 3
Static characteristics. . . . . . . . . . . . . . . . . . . . . 4
Dynamic characteristics . . . . . . . . . . . . . . . . . . 5
Dynamic characteristics for amplifier a . . . . . . . 5
Graphs for amplifier a . . . . . . . . . . . . . . . . . . . . 6
Scattering parameters for amplifier a . . . . . . . 10
Noise data for amplifier a . . . . . . . . . . . . . . . . 10
Dynamic characteristics for amplifier b . . . . . . 11
Graphs for amplifier b . . . . . . . . . . . . . . . . . . . 12
Scattering parameters for amplifier b . . . . . . . 17
Noise data for amplifier b . . . . . . . . . . . . . . . . 17
Test information . . . . . . . . . . . . . . . . . . . . . . . . 18
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 19
Revision history . . . . . . . . . . . . . . . . . . . . . . . . 20
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . 21
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Contact information . . . . . . . . . . . . . . . . . . . . 21
© Koninklijke Philips Electronics N.V. 2004
All rights are reserved. Reproduction in whole or in part is prohibited without the prior
written consent of the copyright owner. The information presented in this document does
not form part of any quotation or contract, is believed to be accurate and reliable and may
be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under
patent- or other industrial or intellectual property rights.
Date of release: 18 May 2004
Document order number: 9397 750 13005
Published in The Netherlands