PHILIPS PHP33N10

Philips Semiconductors
Product specification
PowerMOS transistor
GENERAL DESCRIPTION
N-channel enhancement mode
field-effect power transistor in a
plastic envelope featuring stable
blocking voltage, fast switching and
high thermal cycling performance
with low thermal resistance. Intended
for use in Switched Mode Power
Supplies (SMPS), motor control
circuits and general purpose
switching applications.
PINNING - TO220AB
PIN
QUICK REFERENCE DATA
SYMBOL
PARAMETER
MAX.
UNIT
VDS
ID
Ptot
RDS(ON)
Drain-source voltage
Drain current (DC)
Total power dissipation
Drain-source on-state resistance
100
34
175
0.057
V
A
W
Ω
PIN CONFIGURATION
DESCRIPTION
1
gate
2
drain
3
source
tab
PHP33N10
SYMBOL
d
tab
g
drain
s
1 23
LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134)
SYMBOL PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
ID
Continuous drain current
IDM
PD
∆PD/∆Tmb
VGS
Tj, Tstg
Pulsed drain current
Total dissipation
Linear derating factor
Gate-source voltage
Operating junction and
storage temperature range
Tmb = 25 ˚C; VGS = 10 V
Tmb = 100 ˚C; VGS = 10 V
Tmb = 25 ˚C
Tmb = 25 ˚C
Tmb > 25 ˚C
- 55
34
24
136
150
1.167
± 30
175
A
A
A
W
W/K
V
˚C
THERMAL RESISTANCES
SYMBOL
PARAMETER
Rth j-mb
Thermal resistance junction to
mounting base
Thermal resistance junction to
ambient
Rth j-a
April 1998
CONDITIONS
1
MIN.
TYP.
MAX.
UNIT
-
-
1
K/W
-
60
-
K/W
Rev 1.100
Philips Semiconductors
Product specification
PowerMOS transistor
PHP33N10
ELECTRICAL CHARACTERISTICS
Tj = 25 ˚C unless otherwise specified
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
V(BR)DSS
VGS = 0 V; ID = 0.25 mA
100
-
-
V
∆V(BR)DSS /
∆Tj
RDS(ON)
VGS(TO)
gfs
IDSS
Drain-source breakdown
voltage
Drain-source breakdown
voltage temperature coefficient
Drain-source on resistance
Gate threshold voltage
Forward transconductance
Drain-source leakage current
VDS = VGS; ID = 0.25 mA
-
0.15
-
V/K
IGSS
Gate-source leakage current
2.0
12
-
0.052
3.0
16
1
100
10
0.057
4.0
25
250
100
Ω
V
S
µA
µA
nA
Qg(tot)
Qgs
Qgd
Total gate charge
Gate-source charge
Gate-drain (Miller) charge
ID = 17 A; VDD = 80 V; VGS = 10 V
-
42
8
20
50
11
30
nC
nC
nC
td(on)
tr
td(off)
tf
Turn-on delay time
Turn-on rise time
Turn-off delay time
Turn-off fall time
VDD = 50 V; ID = 17 A;
RG = 9.1 Ω; RD = 2.9 Ω
-
18
40
125
50
-
ns
ns
ns
ns
Ld
Internal drain inductance
-
3.5
-
nH
Ld
Internal drain inductance
-
4.5
-
nH
Ls
Internal source inductance
Measured from contact screw on
tab to centre of die
Measured from drain lead 6 mm
from package to centre of die
Measured from source lead 6 mm
from package to source bond pad
-
7.5
-
nH
Ciss
Coss
Crss
Input capacitance
Output capacitance
Feedback capacitance
VGS = 0 V; VDS = 25 V; f = 1 MHz
-
1500
450
130
-
pF
pF
pF
MIN.
TYP.
MAX.
UNIT
VGS = 10 V; ID = 17 A
VDS = VGS; ID = 0.25 mA
VDS = 50 V; ID = 17 A
VDS = 100 V; VGS = 0 V
VDS = 80 V; VGS = 0 V; Tj = 150 ˚C
VGS = ±30 V; VDS = 0 V
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS
Tj = 25 ˚C unless otherwise specified
SYMBOL
PARAMETER
CONDITIONS
IS
Tmb = 25˚C
-
-
34
A
Tmb = 25˚C
-
-
136
A
VSD
Continuous source current
(body diode)
Pulsed source current (body
diode)
Diode forward voltage
IS = 34 A; VGS = 0 V
-
-
1.5
V
trr
Reverse recovery time
IS = 17 A; VGS = 0 V;
dI/dt = 100 A/µs
-
200
-
ns
Qrr
Reverse recovery charge
-
1.0
-
µC
ISM
April 1998
2
Rev 1.100
Philips Semiconductors
Product specification
PowerMOS transistor
Normalised Power Derating
PD%
120
PHP33N10
Zth j-mb / (K/W)
10
BUKx56-lv
110
100
90
D=
1
80
0.5
70
0.2
0.1
0.05
60
0.1
50
0.02
40
30
0.01
tp
PD
D=
0
20
10
0
0
20
40
60
80 100
Tmb / C
120
140
160
180
1E-05
Fig.1. Normalised power dissipation.
PD% = 100⋅PD/PD 25 ˚C = f(Tmb)
1E-03
t/s
1E-01
1E+01
Fig.4. Transient thermal impedance.
Zth j-mb = f(t); parameter D = tp/T
Normalised Current Derating
ID%
120
t
T
0.001
tp
T
70
ID / A
110
60
100
90
20
VGS / V =
15
10
BUK456-100A
8
7
50
80
70
40
6
60
30
50
40
20
30
5
20
10
10
0
0
0
20
40
60
80 100
Tmb / C
120
140
160
180
ID / A
2
4
0.2
RDS(ON) / Ohm
4.5 5
VD
)=
100
N
(O
10
BUK456-100A
5.5
6
6.5
7
VGS / V =
A
B
S
RD
8
Fig.5. Typical output characteristics.
ID = f(VDS); parameter VGS
BUK456-100A,B
ID
S/
6
VDS / V
Fig.2. Normalised continuous drain current.
ID% = 100⋅ID/ID 25 ˚C = f(Tmb); conditions: VGS ≥ 10 V
1000
4
0
7.5
8
tp = 10 us
10
0.1
100 us
10
20
1 ms
DC
10 ms
100 ms
1
0
1
100
10
1000
VDS / V
Fig.3. Safe operating area. Tmb = 25 ˚C
ID & IDM = f(VDS); IDM single pulse; parameter tp
April 1998
0
20
40
ID / A
60
80
Fig.6. Typical on-state resistance.
RDS(ON) = f(ID); parameter VGS
3
Rev 1.100
Philips Semiconductors
Product specification
PowerMOS transistor
PHP33N10
ID / A
70
VGS(TO) / V
BUK456-100A
max.
25
Tj / C =
60
4
150
typ.
50
3
40
min.
2
30
20
1
10
0
0
0
2
4
6
8
10
-60
-20
20
VGS / V
100
140
180
Fig.10. Gate threshold voltage.
VGS(TO) = f(Tj); conditions: ID = 0.25 mA; VDS = VGS
Fig.7. Typical transfer characteristics.
ID = f(VGS); parameter Tj
gfs / S
60
Tj / C
BUK456-100A
SUB-THRESHOLD CONDUCTION
ID / A
1E-01
20
1E-02
2%
1E-03
10
typ
98 %
1E-04
1E-05
1E-06
0
0
20
40
ID / A
60
0
Fig.8. Typical transconductance.
gfs = f(ID); parameter Tj
2.4
2
VGS / V
3
4
Fig.11. Sub-threshold drain current.
ID = f(VGS); conditions: Tj = 25 ˚C; VDS = VGS
Normalised RDS(ON) = f(Tj)
a
1
10000
C / pF
BUK4y6-100
2.2
2.0
1.8
Ciss
1.6
1000
1.4
Coss
1.2
1.0
0.8
100
Crss
0.6
0.4
0.2
0
-60
-20
20
60
Tj / C
100
140
10
180
0
40
VDS / V
Fig.9. Normalised drain-source on-state resistance.
a = RDS(ON)/RDS(ON)25 ˚C = f(Tj); ID = 17 A; VGS = 10 V
April 1998
20
Fig.12. Typical capacitances, Ciss, Coss, Crss.
C = f(VDS); conditions: VGS = 0 V; f = 1 MHz
4
Rev 1.100
Philips Semiconductors
Product specification
PowerMOS transistor
PHP33N10
BUK456-100
VGS / V
12
120
110
100
90
80
70
VDS / V =20
10
8
80
6
60
50
40
30
20
10
0
4
2
0
0
20
40
20
QG / nC
Fig.13. Typical turn-on gate-charge characteristics.
VGS = f(QG); parameter VDS
1.15
EAS, Normalised unclamped inductive energy (%)
40
60
80
100
120
Starting Tj ( C)
160
180
Fig.16. Normalised unclamped inductive energy.
EAS% = f(Tj)
Normalised Drain-source breakdown voltage
V(BR)DSS @ Tj
+
V(BR)DSS @ 25 C
1.1
VDD
L
VDS
1.05
-
VGS
1
-ID/100
T.U.T.
0
0.95
0.9
RGS
0.85
-100
-50
0
50
Tj, Junction temperature (C)
100
IF / A
R 01
shunt
150
Fig.17. Unclamped inductive test circuit.
EAS = 0.5 ⋅ LID2 ⋅ V(BR)DSS /(V(BR)DSS − VDD )
Fig.14. Normalised drain-source breakdown voltage.
V(BR)DSS/V(BR)DSS 25 ˚C = f(Tj)
70
140
BUK456-100A
60
50
40
Tj / C = 150
25
30
20
10
0
0
1
VSDS / V
2
Fig.15. Source-Drain diode characteristic.
IF = f(VSDS); parameter Tj
April 1998
5
Rev 1.100
Philips Semiconductors
Product specification
PowerMOS transistor
PHP33N10
MECHANICAL DATA
Dimensions in mm
4,5
max
Net Mass: 2 g
10,3
max
1,3
3,7
2,8
5,9
min
15,8
max
3,0 max
not tinned
3,0
13,5
min
1,3
max 1 2 3
(2x)
0,9 max (3x)
2,54 2,54
0,6
2,4
Fig.18. SOT78 (TO220AB); pin 2 connected to mounting base.
Notes
1. Observe the general handling precautions for electrostatic-discharge sensitive devices (ESDs) to prevent
damage to MOS gate oxide.
2. Refer to mounting instructions for SOT78 (TO220) envelopes.
3. Epoxy meets UL94 V0 at 1/8".
April 1998
6
Rev 1.100
Philips Semiconductors
Product specification
PowerMOS transistor
PHP33N10
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and
operation of the device at these or at any other conditions above those given in the Characteristics sections of
this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
 Philips Electronics N.V. 1998
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the
copyright owner.
The information presented in this document does not form part of any quotation or contract, it is believed to be
accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under patent or other
industrial or intellectual property rights.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices or systems where malfunction of these
products can be reasonably expected to result in personal injury. Philips customers using or selling these products
for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting
from such improper use or sale.
April 1998
7
Rev 1.100