PHILIPS PHW7N60

Philips Semiconductors
Product specification
PowerMOS transistor
GENERAL DESCRIPTION
N-channel enhancement mode
field-effect power transistor in a
plastic envelope featuring high
avalanche energy capability, stable
off-state
characteristics,
fast
switching and high thermal cycling
performance with low thermal
resistance. Intended for use in
Switched Mode Power Supplies
(SMPS), motor control circuits and
general
purpose
switching
applications.
PINNING - SOT429 (TO247)
PIN
QUICK REFERENCE DATA
SYMBOL
PARAMETER
VDS
ID
Ptot
RDS(ON)
Drain-source voltage
Drain current (DC)
Total power dissipation
Drain-source on-state resistance
PIN CONFIGURATION
gate
2
drain
3
source
MAX.
UNIT
600
7
147
1.2
V
A
W
Ω
SYMBOL
DESCRIPTION
1
tab
PHW7N60
d
g
drain
1
2
3
s
LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134)
SYMBOL PARAMETER
CONDITIONS
ID
Continuous drain current
IDM
PD
∆PD/∆Tmb
VGS
EAS
Pulsed drain current
Total dissipation
Linear derating factor
Gate-source voltage
Single pulse avalanche
energy
Peak avalanche current
Tmb = 25 ˚C; VGS = 10 V
Tmb = 100 ˚C; VGS = 10 V
Tmb = 25 ˚C
Tmb = 25 ˚C
Tmb > 25 ˚C
IAS
Tj, Tstg
Operating junction and
storage temperature range
VDD ≤ 50 V; starting Tj = 25˚C; RGS = 50 Ω;
VGS = 10 V
VDD ≤ 50 V; starting Tj = 25˚C; RGS = 50 Ω;
VGS = 10 V
MIN.
MAX.
UNIT
-
7
4.5
28
147
1.176
± 30
570
A
A
A
W
W/K
V
mJ
-
7
A
- 55
150
˚C
THERMAL RESISTANCES
SYMBOL
PARAMETER
Rth j-mb
Thermal resistance junction to
mounting base
Thermal resistance junction to
ambient
Rth j-a
June 1997
CONDITIONS
1
MIN.
TYP.
MAX.
UNIT
-
-
0.85
K/W
-
45
-
K/W
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
PHW7N60
ELECTRICAL CHARACTERISTICS
Tj = 25 ˚C unless otherwise specified
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
V(BR)DSS
VGS = 0 V; ID = 0.25 mA
600
-
-
V
∆V(BR)DSS /
∆Tj
RDS(ON)
VGS(TO)
gfs
IDSS
Drain-source breakdown
voltage
Drain-source breakdown
voltage temperature coefficient
Drain-source on resistance
Gate threshold voltage
Forward transconductance
Drain-source leakage current
VDS = VGS; ID = 0.25 mA
-
0.7
-
V/K
IGSS
Gate-source leakage current
VGS = 10 V; ID = 4.1 A
VDS = VGS; ID = 0.25 mA
VDS = 30 V; ID = 4.1 A
VDS = 600 V; VGS = 0 V
VDS = 480 V; VGS = 0 V; Tj = 125 ˚C
VGS = ±30 V; VDS = 0 V
2.0
3
-
0.9
3.0
4.5
2
50
10
1.2
4.0
100
500
200
Ω
V
S
µA
µA
nA
Qg(tot)
Qgs
Qgd
Total gate charge
Gate-source charge
Gate-drain (Miller) charge
ID = 6.2 A; VDD = 360 V; VGS = 10 V
-
90
6
44
110
7
60
nC
nC
nC
td(on)
tr
td(off)
tf
Turn-on delay time
Turn-on rise time
Turn-off delay time
Turn-off fall time
VDD = 300 V; ID = 6.2 A;
RG = 9.1 Ω; RD = 47 Ω
-
17
43
118
50
-
ns
ns
ns
ns
Ld
Internal drain inductance
-
5
-
nH
Ls
Internal source inductance
Measured from drain lead 6 mm
from package to centre of die
Measured from source lead 6 mm
from package to source bond pad
-
12.5
-
nH
Ciss
Coss
Crss
Input capacitance
Output capacitance
Feedback capacitance
VGS = 0 V; VDS = 25 V; f = 1 MHz
-
1100
140
80
-
pF
pF
pF
MIN.
TYP.
MAX.
UNIT
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS
Tj = 25 ˚C unless otherwise specified
SYMBOL
PARAMETER
CONDITIONS
IS
Tmb = 25˚C
-
-
7
A
Tmb = 25˚C
-
-
28
A
VSD
Continuous source current
(body diode)
Pulsed source current (body
diode)
Diode forward voltage
IS = 7 A; VGS = 0 V
-
-
1.5
V
trr
Reverse recovery time
IS = 6.2 A; VGS = 0 V;
dI/dt = 100 A/µs
-
530
-
ns
Qrr
Reverse recovery charge
-
6.7
-
µC
ISM
June 1997
2
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
120
PHW7N60
Normalised Power Derating
PD%
1
BUKx57-mv
Zth j-mb / (K/W)
D=
0.5
110
100
90
0.2
80
0.1
70
0.1
0.05
60
50
0.02
40
0.01
30
tp
PD
0
20
10
0
0
20
40
60
80
100
Tmb / C
120
1E-05
Fig.1. Normalised power dissipation.
PD% = 100⋅PD/PD 25 ˚C = f(Tmb)
120
1E-01
1E+01
Fig.4. Transient thermal impedance.
Zth j-mb = f(t); parameter D = tp/T
Normalised Current Derating
ID%
1E-03
t/s
tp
T
t
T
0.001
140
D=
ID, Drain current (Amps)
20
PHP6N60
Tj = 25 C
110
10 V
7V
100
90
15
6V
80
5.5 V
70
60
50
10
5V
40
30
VGS = 4.5 V
5
20
10
0
0
20
40
60
80
Tmb / C
100
120
0
140
0
Fig.2. Normalised continuous drain current.
ID% = 100⋅ID/ID 25 ˚C = f(Tmb); conditions: VGS ≥ 10 V
100
ID / A
5
10
15
20
25
VDS, Drain-Source voltage (Volts)
30
Fig.5. Typical output characteristics.
ID = f(VDS); parameter VGS
BUK457-600B
PHP6N60
RDS(on), Drain-Source on resistance (Ohms)
4
Tj = 25 C
5V
VGS = 4.5 V
ID
S/
=
N)
VD
3
tp = 10 us
O
S(
10
RD
5.5 V
100 us
2
6V
1 ms
1
10 V
DC
10 ms
100 ms
1
0.1
10
100
0
1000
VDS / V
Fig.3. Safe operating area. Tmb = 25 ˚C
ID & IDM = f(VDS); IDM single pulse; parameter tp
June 1997
0
5
10
ID, Drain current (Amps)
15
20
Fig.6. Typical on-state resistance.
RDS(ON) = f(ID); parameter VGS
3
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
PHW7N60
ID, Drain current (Amps)
VDS = 30 V
20
VGS(TO) / V
PHP6N60
max.
4
Tj = 25 C
15
typ.
3
Tj = 150 C
10
min.
2
5
0
1
0
0
2
4
6
VGS, Gate-Source voltage (Volts)
8
-60
10
gfs, Transconductance (S)
0
20
40
60
Tj / C
80
100
120
140
PHP6N60
1E-01
SUB-THRESHOLD CONDUCTION
ID / A
VDS = 30 V
8
1E-02
6
1E-03
Tj = 25 C
150 C
4
1E-04
2
1E-05
0
-20
Fig.10. Gate threshold voltage.
VGS(TO) = f(Tj); conditions: ID = 0.25 mA; VDS = VGS
Fig.7. Typical transfer characteristics.
ID = f(VGS); parameter Tj
10
-40
2%
typ
98 %
1E-06
0
5
10
ID, Drain current (A)
15
0
20
Fig.8. Typical transconductance.
gfs = f(ID); parameter Tj
2
VGS / V
3
4
Fig.11. Sub-threshold drain current.
ID = f(VGS); conditions: Tj = 25 ˚C; VDS = VGS
Normalised RDS(ON) = f(Tj)
a
1
10000
PHP6N60
Junction capacitances (pF)
2
Ciss
1000
1
100
Coss
Crss
0
-60
-40
-20
0
20
40 60
Tj / C
80
10
100 120 140
Fig.9. Normalised drain-source on-state resistance.
a = RDS(ON)/RDS(ON)25 ˚C = f(Tj); ID = 6.2 A; VGS = 10 V
June 1997
1
10
100
VDS, Drain-Source voltage (Volts)
1000
Fig.12. Typical capacitances, Ciss, Coss, Crss.
C = f(VDS); conditions: VGS = 0 V; f = 1 MHz
4
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
15
PHW7N60
PHP6N60
VGS, Gate-Source voltage (Volts)
20
PHP6N60
IF, Source-Drain diode current (Amps)
VGS = 0 V
ID = 6.2 A
Tj = 25 C
240 V
120 V
VDD = 360 V
15
10
10
Tj = 25 C
150 C
5
5
0
0
50
100
Qg, Gate charge (nC)
0
150
Switching times (ns)
PHP6N60
120
VDD = 300 V
VGS = 10 V
RD = 47 Ohms
ID = 6.2 A
Tj = 25 C
0.4
0.6
0.8
1
VSDS, Source-Drain voltage (Volts)
1.2
1.4
EAS, Normalised unclamped inductive energy (%)
110
100
90
80
70
td(off)
100
0.2
Fig.16. Source-Drain diode characteristic.
IF = f(VSDS); parameter Tj
Fig.13. Typical turn-on gate-charge characteristics.
VGS = f(QG); parameter VDS
1000
0
60
50
tf
tr
40
30
20
td(on)
10
0
10
10
20
30
40
RG, Gate resistance (Ohms)
50
0
60
20
Fig.14. Typical switching times.
td(on), tr, td(off), tf = f(RG)
1.15
40
60
80
100
Starting Tj ( C)
120
140
Fig.17. Normalised unclamped inductive energy.
EAS% = f(Tj)
Normalised Drain-source breakdown voltage
V(BR)DSS @ Tj
+
V(BR)DSS @ 25 C
1.1
VDD
L
1.05
VDS
-
VGS
1
-ID/100
0
0.95
0.9
0.85
-100
RGS
-50
0
50
Tj, Junction temperature (C)
100
R 01
shunt
150
Fig.18. Unclamped inductive test circuit.
EAS = 0.5 ⋅ LID2 ⋅ V(BR)DSS /(V(BR)DSS − VDD )
Fig.15. Normalised drain-source breakdown voltage.
V(BR)DSS/V(BR)DSS 25 ˚C = f(Tj)
June 1997
T.U.T.
5
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
PHW7N60
MECHANICAL DATA
Dimensions in mm
5.3 max
16 max
1.8
Net Mass: 5 g
5.3
o 3.5
max
7.3
3.5
21
max
seating
plane
15.5
max
2.5
15.5
min
4.0
max
1
2
3
0.9 max
2.2 max
1.1
3.2 max
5.45
0.4 M
5.45
Fig.19. SOT429 (TO247); pin 2 connected to mounting base.
Notes
1. Observe the general handling precautions for electrostatic-discharge sensitive devices (ESDs) to prevent
damage to MOS gate oxide.
2. Refer to mounting instructions for SOT429 envelopes.
3. Epoxy meets UL94 V0 at 1/8".
June 1997
6
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
PHW7N60
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and
operation of the device at these or at any other conditions above those given in the Characteristics sections of
this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
 Philips Electronics N.V. 1997
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the
copyright owner.
The information presented in this document does not form part of any quotation or contract, it is believed to be
accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under patent or other
industrial or intellectual property rights.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices or systems where malfunction of these
products can be reasonably expected to result in personal injury. Philips customers using or selling these products
for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting
from such improper use or sale.
June 1997
7
Rev 1.000