DISCRETE SEMICONDUCTORS DATA SHEET PMBF5484; PMBF5485; PMBF5486 N-channel field-effect transistors Product specification File under Discrete Semiconductors, SC07 April 1995 Philips Semiconductors Product specification PMBF5484; PMBF5485; PMBF5486 N-channel field-effect transistors FEATURES • Low noise • Interchangeability of drain and source connections • High gain. handbook, halfpage 3 DESCRIPTION g N-channel, symmetrical, silicon junction FETs in a surface-mountable SOT23 envelope. Intended for use in VHF/UHF amplifiers, oscillators and mixers. 1 d s 2 Top view MAM385 PINNING - SOT23 PIN DESCRIPTION 1 source 2 drain 3 gate MARKING CODES: PMBF5484: p6B Fig.1 Simplified outline and symbol. QUICK REFERENCE DATA SYMBOL MIN. MAX. UNIT − 25 V PMBF5484 1 5 mA PMBF5485 4 10 mA 8 20 mA − 250 mW VDS drain-source voltage IDSS drain current PMBF5485: p6M PMBF5486: p6H PARAMETER CONDITIONS VDS = 15 V; VGS = 0 PMBF5486 Ptot total power dissipation up to Tamb = 25 °C VGS(off) gate-source cut-off voltage VDS = 15 V; ID = 1 nA Yfs April 1995 PMBF5484 −0.3 −3 V PMBF5485 −0.5 −4 V PMBF5486 −2 −6 V PMBF5484 3 6 mS PMBF5485 3.5 7 mS PMBF5486 4 8 mS common source transfer admittance 2 VDS = 15 V; VGS = 0; f = 1 kHz Philips Semiconductors Product specification PMBF5484; PMBF5485; PMBF5486 N-channel field-effect transistors LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134). SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT VDS drain-source voltage − 25 V VGSO gate-source voltage − −25 V VGDO gate-drain voltage − −25 V IG DC forward gate current Ptot total power dissipation Tstg Tj − 10 mA − 250 mW storage temperature −65 +150 °C junction temperature − 150 °C up to Tamb = 25 °C (note 1) THERMAL RESISTANCE SYMBOL Rth j-a PARAMETER THERMAL RESISTANCE from junction to ambient (note 1) 500 K/W Note 1. Device mounted on an FR4 printed-circuit board. STATIC CHARACTERISTICS Tj = 25 °C unless otherwise specified. SYMBOL PARAMETER CONDITIONS V(BR)GSS gate-source breakdown voltage VDS = 0; IG = −1 µA IDSS drain current VDS = 15 V; VGS = 0 MIN. MAX. UNIT −25 − V PMBF5484 1 5 mA PMBF5485 4 10 mA 8 20 mA IGSS reverse gate leakage current PMBF5486 VDS = 0; VGS = −15 V − −1 nA VGSS gate-source forward voltage VDS = 0; IG = 1 mA − 1 V VGS(off) gate-source cut-off voltage VDS = 15 V; ID = 1 nA PMBF5484 −0.3 −3 V PMBF5485 −0.5 −4 V PMBF5486 −2 −6 V PMBF5484 3 6 mS PMBF5485 3.5 7 mS 4 8 mS PMBF5484 − 50 µS PMBF5485 − 60 µS PMBF5486 − 75 µS Yfs common source transfer admittance VDS = 15 V; VGS = 0 PMBF5486 Yos April 1995 common source output admittance VDS = 15 V; VGS = 0 3 Philips Semiconductors Product specification PMBF5484; PMBF5485; PMBF5486 N-channel field-effect transistors DYNAMIC CHARACTERISTICS Tj = 25 °C; VDS = 15 V; VGS = 0 SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Cis input capacitance f = 1 MHz − − 5 pF Cos output capacitance f = 1 MHz − − 2 pF Crs feedback capacitance f = 1 MHz − − 1 pF gis common source input conductance gfs PMBF5484 f = 100 MHz 100 − − µS PMBF5485; PMBF5486 f = 400 MHz − − 1 mS PMBF5484 f = 100 MHz 2.5 − − mS PMBF5485 f = 400 MHz 3 − 1 mS PMBF5486 f = 400 MHz 3.5 − 1 mS PMBF5484 f = 100 MHz − − 75 µS PMBF5485; PMBF5486 f = 400 MHz − − 100 µS f = 100 Hz − 5 − nV/√Hz common source transfer conductance gos common source output conductance Vn equivalent input noise voltage MRC168 handbook,25 halfpage MRC169 handbook, 10 halfpage I DSS Y fs (mS) (mA) 20 8 15 6 10 4 5 2 0 0 2 0 4 6 –VGS(off) (V) 0 2 4 VDS = 15 V; Tj = 25 °C; typical values. VDS = 15 V; Tj = 25 °C; typical values. Fig.2 Fig.3 April 1995 6 –VGS(off) (V) Drain current as a function of gate-source cut-off voltage. 4 Common source transfer admittance as a function of gate-source cut-off voltage. Philips Semiconductors Product specification PMBF5484; PMBF5485; PMBF5486 N-channel field-effect transistors MRC167 handbook, halfpage 2 handbook, halfpage Gos ( µ S) ID (mA) 80 60 1.5 40 1 20 0.5 0 0 1 2 3 4 5 0 6 MRC170 VGS = 0 V –0.25 V –0.5 V 0 4 8 12 PMBF5484 Tj = 25 °C. VDS = 15 V; Tj = 25 °C; typical values. Fig.4 16 VDS (V) –VGS(off) (V) Common source output conductance as a function of gate-source cut-off voltage. Fig.5 Typical output characteristics. MRC171 8 MRC172 8 handbook, halfpage handbook, halfpage ID (mA) V =0V GS ID (mA) V =0V GS 6 6 –0.5 V –1V 4 4 –1 V –2 V 2 2 –1.5 V 0 0 0 4 8 12 0 4 16 V (V) DS PMBF5485 Tj = 25 °C. 12 VDS (V) PMBF5486 Tj = 25 °C. Fig.6 Typical output characteristics. April 1995 8 Fig.7 Typical output characteristics. 5 16 Philips Semiconductors Product specification PMBF5484; PMBF5485; PMBF5486 N-channel field-effect transistors MRC173 MRC165 4 handbook,10 halfpage handbook, halfpage –I G 16 (pA) PMBF5486 ID (mA) 12 I D = 1 mA 10 3 10 2 10 0.1 mA PMBF5485 8 1 I GSS 4 –1 10 PMBF5484 0 –1.6 –2 10 –1.2 –0.8 –0.4 0 0 4 8 12 VGS (V) VDS = 15 V; Tj = 25 °C. 16 20 VDG (V) Tj = 25 °C. Fig.8 Typical input characteristics. Fig.9 MRC166 300 handbook, halfpage Gate current as a function of drain-gate voltage, typical values. MRC158 1 handbook, halfpage C rs (pF) Ptot (mW) 0.8 200 0.6 0.4 100 0.2 00 50 100 o Tamb ( C) 0 –10 150 –8 –6 –4 –2 0 VGS (V) VDS = 15 V; Tj = 25 °C. Fig.10 Power derating curve. April 1995 Fig.11 Typical feedback capacitance. 6 Philips Semiconductors Product specification PMBF5484; PMBF5485; PMBF5486 N-channel field-effect transistors MRC157 MRC160 handbook,100 halfpage 3.5 handbook, halfpage Cis (pF) 3 gis , b is (mS) 10 2.5 b is 2 1 g is 1.5 1 0.1 0.5 0 –10 –8 –6 –4 0.01 10 –2 0 VGS (V) 100 f (MHz) 1000 VDS = 15 V; VGS = 0; Tamb = 25 °C; typical values. VDS = 15 V; Tj = 25 °C. Fig.12 Typical input capacitance. Fig.13 Common source input conductance. MRC159 100 MRC162 handbook,100 halfpage handbook, halfpage –g rs , –brs g fs , –bfs (mS) (mS) 10 –brs 10 g fs 1 0.1 –b fs 1 –g rs 0.01 0.1 10 100 0.001 10 1000 f (MHz) f (MHz) 1000 VDS = 15 V; VGS = 0; Tamb = 25 °C; typical values. VDS = 15 V; VGS = 0; Tamb = 25 °C; typical values. Fig.14 Common source transfer conductance. April 1995 100 Fig.15 Common source feedback conductance. 7 Philips Semiconductors Product specification PMBF5484; PMBF5485; PMBF5486 N-channel field-effect transistors MRC161 100 handbook, halfpage gos , bos (mS) 10 b os 1 0.1 g os 0.01 10 100 f (MHz) 1000 VDS = 15 V; VGS = 0; Tamb = 25 °C; typical values. Fig.16 Common source output conductance. April 1995 8 Philips Semiconductors Product specification PMBF5484; PMBF5485; PMBF5486 N-channel field-effect transistors PACKAGE OUTLINE Plastic surface mounted package; 3 leads SOT23 D E B A X HE v M A 3 Q A A1 1 2 e1 bp c w M B Lp e detail X 0 1 2 mm scale DIMENSIONS (mm are the original dimensions) UNIT A A1 max. bp c D E e e1 HE Lp Q v w mm 1.1 0.9 0.1 0.48 0.38 0.15 0.09 3.0 2.8 1.4 1.2 1.9 0.95 2.5 2.1 0.45 0.15 0.55 0.45 0.2 0.1 OUTLINE VERSION REFERENCES IEC JEDEC EIAJ ISSUE DATE 97-02-28 SOT23 April 1995 EUROPEAN PROJECTION 9 Philips Semiconductors Product specification PMBF5484; PMBF5485; PMBF5486 N-channel field-effect transistors DEFINITIONS Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Short-form specification The data in this specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook. Limiting values Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. April 1995 10