PHILIPS BF245C

DISCRETE SEMICONDUCTORS
DATA SHEET
BF245A; BF245B; BF245C
N-channel silicon field-effect
transistors
Product specification
Supersedes data of April 1995
File under Discrete Semiconductors, SC07
1996 Jul 30
Philips Semiconductors
Product specification
N-channel silicon field-effect transistors
FEATURES
BF245A; BF245B; BF245C
PINNING
• Interchangeability of drain and source connections
• Frequencies up to 700 MHz.
APPLICATIONS
PIN
SYMBOL
DESCRIPTION
1
d
drain
2
s
source
3
g
gate
• LF, HF and DC amplifiers.
DESCRIPTION
1
handbook, halfpage 2
General purpose N-channel symmetrical junction
field-effect transistors in a plastic TO-92 variant package.
3
d
g
s
MAM257
CAUTION
The device is supplied in an antistatic package. The
gate-source input must be protected against static
discharge during transport or handling.
Fig.1
Simplified outline (TO-92 variant)
and symbol.
QUICK REFERENCE DATA
SYMBOL
PARAMETER
VDS
drain-source voltage
CONDITIONS
MIN.
TYP.
MAX.
−
−
±30
UNIT
V
VGSoff
gate-source cut-off voltage
ID = 10 nA; VDS = 15 V
−0.25
−
−8
V
VGSO
gate-source voltage
open drain
−
−
−30
V
IDSS
drain current
VDS = 15 V; VGS = 0
BF245A
2
−
6.5
mA
BF245B
6
−
15
mA
BF245C
12
−
25
mA
Ptot
total power dissipation
Tamb = 75 °C
−
−
300
mW
yfs
forward transfer admittance
VDS = 15 V; VGS = 0;
f = 1 kHz; Tamb = 25 °C
3
−
6.5
mS
Crs
reverse transfer capacitance
VDS = 20 V; VGS = −1 V;
f = 1 MHz; Tamb = 25 °C
−
1.1
−
pF
1996 Jul 30
2
Philips Semiconductors
Product specification
N-channel silicon field-effect transistors
BF245A; BF245B; BF245C
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VDS
drain-source voltage
−
±30
V
VGDO
gate-drain voltage
open source
−
−30
V
VGSO
gate-source voltage
open drain
−
−30
V
ID
drain current
−
25
mA
IG
gate current
−
10
mA
Ptot
total power dissipation
up to Tamb = 75 °C;
−
300
mW
up to Tamb = 90 °C; note 1
−
300
mW
Tstg
storage temperature
−65
+150
°C
Tj
operating junction temperature
−
150
°C
Note
1. Device mounted on a printed-circuit board, minimum lead length 3 mm, mounting pad for drain lead minimum
10 mm × 10 mm.
THERMAL CHARACTERISTICS
SYMBOL
Rth j-a
PARAMETER
CONDITIONS
thermal resistance from junction to ambient
VALUE
in free air
thermal resistance from junction to ambient
UNIT
250
K/W
200
K/W
STATIC CHARACTERISTICS
Tj = 25 °C; unless otherwise specified.
SYMBOL
PARAMETER
UNIT
−
V
gate-source cut-off voltage
ID = 10 nA; VDS = 15 V
−0.25
−8.0
V
gate-source voltage
ID = 200 µA; VDS = 15 V
BF245A
−0.4
−2.2
V
BF245B
−1.6
−3.8
V
BF245C
−3.2
−7.5
V
BF245A
2
6.5
mA
BF245B
6
15
mA
BF245C
12
25
mA
VGS = −20 V; VDS = 0
−
−5
nA
VGS = −20 V; VDS = 0; Tj = 125 °C
−
−0.5
µA
VGSoff
VGS
drain current
gate cut-off current
VDS = 15 V; VGS = 0; note 1
Note
1. Measured under pulse conditions: tp = 300 µs; δ ≤ 0.02.
1996 Jul 30
MAX.
−30
gate-source breakdown voltage
IGSS
MIN.
IG = −1 µA; VDS = 0
V(BR)GSS
IDSS
CONDITIONS
3
Philips Semiconductors
Product specification
N-channel silicon field-effect transistors
BF245A; BF245B; BF245C
DYNAMIC CHARACTERISTICS
Common source; Tamb = 25 °C; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP. MAX.
UNIT
Cis
input capacitance
VDS = 20 V; VGS = −1 V; f = 1 MHz
−
4
−
pF
Crs
reverse transfer capacitance
VDS = 20 V; VGS = −1 V; f = 1 MHz
−
1.1
−
pF
Cos
output capacitance
VDS = 20 V; VGS = −1 V; f = 1 MHz
−
1.6
−
pF
gis
input conductance
VDS = 15 V; VGS = 0; f = 200 MHz
−
250
−
µS
gos
output conductance
VDS = 15 V; VGS = 0; f = 200 MHz
−
40
−
µS
yfs
forward transfer admittance
VDS = 15 V; VGS = 0; f = 1 kHz
3
−
6.5
mS
VDS = 15 V; VGS = 0; f = 200 MHz
−
6
−
mS
yrs
reverse transfer admittance
VDS = 15 V; VGS = 0; f = 200 MHz
−
1.4
−
mS
yos
output admittance
VDS = 15 V; VGS = 0; f = 1 kHz
−
25
−
µS
fgfs
cut-off frequency
VDS = 15 V; VGS = 0; gfs = 0.7 of its
value at 1 kHz
−
700
−
MHz
F
noise figure
VDS = 15 V; VGS = 0; f = 100 MHz;
RG = 1 kΩ (common source);
input tuned to minimum noise
−
1.5
−
dB
MGE785
−10
MGE789
6
handbook, halfpage
handbook, halfpage
ID
IGSS
(mA)
5
(nA)
−1
4
typ
−10−1
3
2
−10−2
1
−10−3
0
50
100
Tj (°C)
0
−4
150
VDS = 0; VGS = −20 V.
Fig.2
1996 Jul 30
−2
VGS (V)
0
VDS = 15 V; Tj = 25 °C.
Gate leakage current as a function of
junction temperature; typical values.
Fig.3
4
Transfer characteristics for BF245A;
typical values.
Philips Semiconductors
Product specification
N-channel silicon field-effect transistors
MBH555
6
BF245A; BF245B; BF245C
MGE787
15
handbook, halfpage
handbook, halfpage
ID
(mA)
5
ID
(mA)
VGS = 0 V
4
10
3
−0.5 V
2
5
−1 V
1
−1.5 V
0
0
10
0
−4
20
VDS (V)
VDS = 15 V; Tj = 25 °C.
Fig.4
−2
VGS (V)
0
VDS = 15 V; Tj = 25 °C.
Output characteristics for BF245A;
typical values.
Fig.5
MBH553
15
Transfer characteristics for BF245B;
typical values.
MGE788
30
handbook, halfpage
handbook, halfpage
ID
(mA)
ID
(mA)
VGS = 0 V
10
20
−0.5 V
−1 V
5
10
−1.5 V
−2 V
−2.5 V
0
0
10
VDS (V)
0
−10
20
VDS = 15 V; Tj = 25 °C.
Fig.6
1996 Jul 30
−5
VGS (V)
0
VDS = 15 V; Tj = 25 °C.
Output characteristics for BF245B;
typical values.
Fig.7
5
Transfer characteristics for BF245C;
typical values.
Philips Semiconductors
Product specification
N-channel silicon field-effect transistors
BF245A; BF245B; BF245C
MBH554
30
MGE775
4
handbook, halfpage
handbook, halfpage
ID
(mA)
ID
(mA)
3
VGS = 0 V
20
VGS = 0 V
2
−0.5 V
1
−1 V
−1 V
10
−2 V
−3 V
−1.5 V
−4 V
0
0
10
0
20
VDS (V)
0
VDS = 15 V; Tj = 25 °C.
Fig.8
50
100
Tj (°C)
150
VDS = 15 V.
Output characteristics for BF245C;
typical values.
Fig.9
MGE776
Drain current as a function of junction
temperature; typical values for BF245A.
MGE779
20
15
handbook, halfpage
handbook, halfpage
ID
(mA)
ID
(mA)
16
10
VGS = 0 V
12
VGS = 0 V
8
−2 V
5
−1 V
4
−2 V
−4 V
0
0
0
50
100
Tj (°C)
0
150
50
100
Tj (°C)
150
VDS = 15 V.
VDS = 15 V.
Fig.10 Drain current as a function of junction
temperature; typical values for BF245B.
Fig.11 Drain current as a function of junction
temperature; typical values for BF245C.
1996 Jul 30
6
Philips Semiconductors
Product specification
N-channel silicon field-effect transistors
MGE778
103
handbook, halfpage
gis
(µA/V)
102
102
MGE780
104
handbook, halfpage
bis
(mA/V)
gis
BF245A; BF245B; BF245C
10
brs
(µA/V)
Crs
(pF)
10
103
1
102
10−1
103
10
Crs
1
bis
brs
10
1
10
102
f (MHz)
10
10−1
102
f (MHz)
10−2
103
VDS = 15 V; VGS = 0; Tamb = 25 °C.
VDS = 15 V; VGS = 0; Tamb = 25 °C.
Fig.13 Common source reverse admittance as a
function of frequency; typical values.
Fig.12 Input admittance; typical values.
MGE782
10
−bfs
(mA/V)
MGE783
103
handbook, halfpage
handbook,
gfs, halfpage
10
gos
(µA/V)
8
bos
102
bos
(mA/V)
1
6
gfs
gos
4
10−1
10
2
−bfs
0
10
102
f (MHz)
1
103
10
VDS = 15 V; VGS = 0; Tamb = 25 °C.
f (MHz)
10−2
103
VDS = 15 V; VGS = 0; Tamb = 25 °C.
Fig.14 Common-source forward transfer admittance
as a function of frequency; typical values.
1996 Jul 30
102
Fig.15 Common-source output admittance as a
function of frequency; typical values.
7
Philips Semiconductors
Product specification
N-channel silicon field-effect transistors
BF245A; BF245B; BF245C
MGE781
MGE777
6
1.5
handbook, halfpage
handbook, halfpage
Cis
(pF)
Crs
(pF)
4
typ
typ
1
2
0
0
−2
−4
−6
0.5
−8
−10
VGS (V)
−2
0
VDS = 20 V; f = 1 MHz; Tamb = 25 °C.
−4
−6
−8
−10
VGS (V)
VDS = 20 V; f = 1 MHz; Tamb = 25 °C.
Fig.16 Input capacitance as a function of
gate-source voltage; typical values.
Fig.17 Reverse transfer capacitance as a function
of gate-source voltage; typical values.
MGE791
8
MGE784
−10
handbook, halfpage
handbook,
V halfpage
GSoff
at ID = 10 nA
|yfs|
(mA/V)
(V)
BF245C
BF245B
6
−8
BF245A
−6
4
−4
2
BF245C
−2
BF245B
0
0
5
10
−0
20
15
BF245A
0
ID (mA)
20
30
IDSS at VGS = 0 (mA)
VDS = 15 V; f = 1 kHz; Tamb = 25 °C.
VDS = 15 V; Tj = 25 °C.
Fig.18 Forward transfer admittance as a function of
drain current; typical values.
1996 Jul 30
10
Fig.19 Gate-source cut-off voltage as a function of
drain current; typical values.
8
Philips Semiconductors
Product specification
N-channel silicon field-effect transistors
MGE790
103
handbook, halfpage
BF245A; BF245B; BF245C
MGE786
3
handbook, halfpage
RDSon
F
(dB)
(kΩ)
102
2
typ
10
1
BF245A
1
BF245B
BF245C
10−1
0
−1
−2
−3
0
−4
1
10
102
VGS (V)
VDS = 0; f = 1 kHz; Tamb = 25 °C.
103
VDS = 15 V; VGS = 0; RG = 1 kΩ; Tamb = 25 °C.
Input tuned to minimum noise.
Fig.20 Drain-source on-state resistance as a
function of gate-source voltage;
typical values.
1996 Jul 30
f (MHz)
Fig.21 Noise figure as a function of frequency;
typical values.
9
Philips Semiconductors
Product specification
N-channel silicon field-effect transistors
BF245A; BF245B; BF245C
PACKAGE OUTLINE
handbook, full pagewidth
0.40
min
4.2 max
1.7
1.4
5.2 max
12.7 min
0.48
0.40
1
4.8
max
2
2.54
3
0.66
0.56
2.5 max
Dimensions in mm.
(1) Terminal dimensions within this zone are uncontrolled.
Fig.22 TO-92 variant.
1996 Jul 30
10
(1)
MBC015 - 1
Philips Semiconductors
Product specification
N-channel silicon field-effect transistors
BF245A; BF245B; BF245C
DEFINITIONS
Data Sheet Status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
1996 Jul 30
11