S pe c if icat io n , V 2. 5 , A pr il 20 0 4 TUA6034, TUA6036 3- Ban d Di g i tal T V / S et- T op -B ox Tu ne r IC TA IF UN Ver s i on 2 .5 W i re l e s s C o m mu n i c a t i o n N e v e r s t o p t h i n k i n g . Edition 2004-04-28 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany © Infineon Technologies AG 2004. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or the Infineon Technologies Companies and our Infineon Technologies Representatives worldwide (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. S pe c if icat io n , V 2. 5 , A pr il 20 0 4 TUA6034, TUA6036 3- Ban d Di g i tal T V / S et- T op -B ox Tu ne r IC TA IF UN Ver s i on 2 .5 W i re l e s s C o m mu n i c a t i o n N e v e r s t o p t h i n k i n g . TUA6034, TUA6036 Revision History: Page Page (in previous (in current Version) Version) 2004-04-28 V 2.5 Subjects (major changes since last revision) Revision History: Target Spec. V1.1, January 2001 Data Sheet: Target Spec. V1.0, November 2000 div. div. in extended mode reference division ratio 80 replaced by 32 5-2 5-2 new definition of thermal properties Revision History: Current Version:Preliminary Spec. V1.2, April 2001 Data Sheet: Target Spec. V1.1, January 2001 div. div. status: preliminary div. div. bug fixes: TSSOP and VQFN pinning. Changes: application focus to digital applications, tbd’s replaced by values 5-10, 5-11 5-10, 5-11 phase noise values added 5-21 5-21 diagrams added Revision History: Current Version:Preliminary Spec. V1.3, July 2001 Data Sheet: Target Spec. V1.2, April 2001 div. div Stand-by mode added 5-5 5-5 Crystal Oscillator: Input impedances added 5-7 5-7 Output leakage current replaced by port output voltage Symbol for port output saturation voltages changed 5-12 5-12 AGC source current 2 and AGC output voltage changed 5-15 5-15 Definition for MA1= 0 and MA0 = 1 changed Revision History: Current Version:Preliminary Spec. V1.4, October 2001 Data Sheet: Target Spec. V1.3, July 2001 3-5, 3-7 3-5, 3-7 PNP ports: Pull-down resistors added 5-5 5-5 MID band: IVCC corrected 5-10, 5-11 5-10, 5-11 Phase Noise: new values 5-12 5-12 AGC output voltage changed Revision History: Current Version:Preliminary Spec. V2.0, May2002 Data Sheet: Target Spec. V1.4, October 2001 all all preliminary and confidential deleted TUA6034, TUA6036 Revision History: div div 2004-04-28 V 2.5 tbf’s replaced, ISDB-T application deleted Revision History: Current Version:Preliminary Spec. V2.1, August 2002 Data Sheet: Target Spec. V2.0, May 2002 5-6 5-6 Bus output SDA, Low-level output voltage, IOL = 6 mA at 400 kHz deleted Revision History: Current Version:Preliminary Spec. V2.2, December 2002 Data Sheet: Target Spec. V2.1, August 2002 3-2 ff 3-2 ff Pinning of TUA6034-V changed Revision History: Current Version: V2.3, February 2003 Data Sheet: Target Spec. V2.2, December 2002 all all Mirrored version TUA6036 added Revision History: Current Version V2.4, March 2003 Data Sheet: Target Spec. V2.3, February 2003 2-10, 4-29, 4-30 2-10, 4-29, 4-30 Frequencies corrected 5-34 5-34 Ambient temperature extended 5-38, 5-39, 5-40 5-38, 5-39, 5-40 Input IP2,Input IIP3, Output voltage causing 1 dB compression added, test frequencies changed Revision History: Current Version: V2.5, April 2004 Data Sheet: Target Spec. V2.4, March 2003 5-35 33 Crystal oscillation frequency added div. div. TUA6034-V in VQFN-48 package n.a. 28 ISDB-T application added all all New Infineon template (A5 letter page size) We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] TUA6034, TUA6036 Product Info General Description The TUA6034, TUA6036 ’TAIFUN’ device combines a mixer-oscillator block with a digitally programmable phase locked loop (PLL) for use in TV and VCR tuners and in settop-box applications. Features PLL General • • • • • • Suitable for PAL, NTSC, DVB and ATSC Wideband AGC detector for internal tuner AGC − 5 programmable take-over points − 2 programmable time constants Low phase noise Full ESD protection • • • • • • • Mixer/Oscillator • • • • • • High impedance mixer input (common emitter) for LOW band Low impedance mixer input (common base) for MID band Low impedance mixer input (common base) for HIGH band 2 pin oscillator for LOW band 2 pin oscillator for MID band 4 pin oscillator for HIGH band • 4 independent I2C addresses I2C bus protocol compatible with 3.3 V and 5V micro-controllers up to 400 kHz High voltage VCO tuning output 4 PNP ports 1 NPN port/ADC input Internal LOW/MID/HIGH band switch Stand-by mode Lock-in flag 6 programmable reference divider ratios (24, 28, 32, 64, 80, 128) 4 programmable charge pump currents Application • The IC is suitable for PAL, NTSC, DVB-C, DVB-T, ISDB-T and ATSC tuners. The focus is on digital terrestrial. IF-Amplifier • The AGC stage makes the tuner AGC independent of the Video-IF AGC. Symmetrical IF preamplifier with low output impedance able to drive a compensated SAW filter (500Ω//40pF) Ordering Information Type Ordering Code Package TUA6034-T Q67034-H0009 TSSOP-38 TUA6036-T Q67037-A0012 TSSOP-38 TUA6034-V Q67034-H0008 VQFN-48 Specification 6 V 2.5, 2004-04-28 TUA6034, TUA6036 Table of Contents Page 1 1.1 1.1.1 1.1.2 1.1.3 1.1.4 1.2 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Mixer/Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 IF-Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 2.1 2.2 2.3 2.4 2.4.1 2.4.2 2.4.3 2.4.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definition and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Circuit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mixer-Oscillator block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PLL block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2C-Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12 15 21 24 24 24 25 25 3 3.1 3.2 3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Circuit for ATSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Circuit for DVB-T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Circuit for ISDB-T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 27 28 29 4 4.1 4.1.1 4.1.2 4.1.3 4.2 4.3 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6 4.5 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 4.5.6 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2C Bus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input admittance (S11) of the LOW band mixer (40 to 150 MHz) . . . . . Input impedance (S11) of the MID band mixer (150 to 455 MHz) . . . . . Input impedance (S11) of the HIGH band mixer (450 to 865 MHz) . . . . Output admittance (S22) of the of the mixers (30 to 50 MHz) . . . . . . . . Input impedance (S11) of the IF amplifier (30 to 50 MHz) . . . . . . . . . . . Output impedance (S22) of the IF amplifier (30 to 50 MHz) . . . . . . . . . Measurement Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gain (GV) measurement in LOW band . . . . . . . . . . . . . . . . . . . . . . . . . Gain (GV) measurement in MID and HIGH bands . . . . . . . . . . . . . . . . Matching circuit for optimum noise figure in LOW band . . . . . . . . . . . . Noise figure (NF) measurement in LOW band . . . . . . . . . . . . . . . . . . . Noise figure (NF) measurement in MID and HIGH bands . . . . . . . . . . . Cross modulation measurement in LOW band . . . . . . . . . . . . . . . . . . . 30 30 30 32 33 46 51 52 52 52 53 53 54 54 55 55 55 56 56 57 57 Specification 7 V 2.5, 2004-04-28 4.5.7 4.5.8 5 5.1 5.2 Cross modulation measurement in MID and HIGH bands . . . . . . . . . . . 58 Ripple susceptibility measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 TSSOP-38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 VQFN-48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Specification 8 V 2.5, 2004-04-28 TUA6034, TUA6036 Product Description 1 Product Description The TUA6034, TUA6036 ’TAIFUN’ device combines a mixer-oscillator block with a digitally programmable phase locked loop (PLL) for use in TV and VCR tuners and in settop-box applications. The mixer-oscillator block includes three balanced mixers (one mixer with an unbalanced high-impedance input and two mixers with a balanced low-impedance input), two 2-pin asymmetrical oscillators for the LOW and the MID band, one 4-pin symmetrical oscillator for the HIGH band, an IF amplifier, a reference voltage, and a band switch. The PLL block with four independently selectable chip addresses forms a digitally programmable phase locked loop. With a 4 MHz quartz crystal, the PLL permits precise setting of the frequency of the tuner oscillator up to 1024 MHz in increments of 31.25, 50, 62.5, 125, 142.86 or 166.7 kHz. The tuning process is controlled by a microprocessor via an I2C bus. The device has 5 output ports, one of them (P4) can also be used as ADC input port. A flag is set when the loop is locked. The lock flag can be read by the processor via the I2C bus. 1.1 Features 1.1.1 General • • • • Suitable for PAL, NTSC, DVB, ISDB-T and ATSC Wideband AGC detector for internal tuner AGC − 5 programmable take-over points − 2 programmable time constants Low phase noise Full ESD protection 1.1.2 • • • • • • High impedance mixer input (common emitter) for LOW band Low impedance mixer input (common base) for MID band Low impedance mixer input (common base) for HIGH band 2 pin oscillator for LOW band 2 pin oscillator for MID band 4 pin oscillator for HIGH band 1.1.3 • Mixer/Oscillator IF-Amplifier Symmetrical IF preamplifier with low output impedance able to drive a compensated SAW filter (500 Ω//40 pF) Specification 9 V 2.5, 2004-04-28 TUA6034, TUA6036 Product Description 1.1.4 • • • • • • • • • • 4 independent I2C addresses I2C bus protocol compatible with 3.3 V and 5V micro-controllers up to 400 kHz High voltage VCO tuning output 4 PNP ports 1 NPN port/ADC input Stand-by mode Internal LOW/MID/HIGH band switch Lock-in flag 6 programmable reference divider ratios (24, 28, 32, 64, 80, 128) 4 programmable charge pump currents 1.2 • • PLL Application The IC is suitable for PAL, NTSC, DVB-C, DVB-T, ISDB-T and ATSC tuners. The focus is on digital terrestrial. The AGC stage makes the tuner AGC independent of the Video-IF AGC. Recommended band limits in MHz: Table 1 ATSC tuners RF input Oscillator Band min max min max LOW 55.25 157.25 101 203 MID 163.25 451.25 201 479 HIGH 457.25 861.25 503 907 Table 2 DVB-T tuners RF input Oscillator Band min max min max LOW 48.25 154.25 87.15 193.15 MID 161.25 439.25 200.15 478.15 HIGH 447.25 863.25 486.15 902.15 Specification 10 V 2.5, 2004-04-28 TUA6034, TUA6036 Product Description Table 3 ISDB-T tuners RF input Band min Oscillator max min max LOW 93 167 150 224 MID 173 467 230 524 HIGH 473 767 530 824 Note: Tuning margin of 3 MHz not included. Specification 11 V 2.5, 2004-04-28 TUA6034, TUA6036 Functional Description 2 Functional Description 2.1 Pin Configuration Figure 1 Specification OSCLOWOUT 1 38 HIGHIN OSCLOWIN 2 37 HIGHIN OSCGND 3 36 MIDIN OSCMIDIN 4 35 MIDIN OSCMIDOUT 5 34 LOWIN OSCHIGHIN 6 33 RFGND OSCHIGHOUT 7 32 MIXOUT OSCHIGHOUT 8 31 MIXOUT OSCHIGHIN 9 VCC 10 IFGND 11 IFOUT 12 TUA6034-T TSSOP-38 package 30 IFIN 29 IFIN 28 P2 27 AGC IFOUT 13 26 GND PLLGND 14 25 SDA VT 15 24 SCL CP 16 23 AS P4/ADC 17 22 P1 XTAL 18 21 P0 XTAL 19 20 P3 Pin Configuration TUA6034 in TSSOP-38 Package 12 V 2.5, 2004-04-28 TUA6034, TUA6036 Functional Description Figure 2 Specification HIGHIN 1 38 OSCLOWOUT HIGHIN 2 37 OSCLOWIN MIDIN 3 36 OSCGND MIDIN 4 35 OSCMIDIN LOWIN 5 34 OSCMIDOUT RFGND 6 33 OSCHIGHIN MIXOUT 7 32 OSCHIGHOUT MIXOUT 8 31 OSCHIGHOUT IFIN 9 30 OSCHIGHIN IFIN 10 29 VCC P2 11 28 IFGND AGC 12 27 IFOUT GND 13 26 IFOUT SDA 14 25 PLLGND SCL 15 24 VT AS 16 23 CP P1 17 22 P4/ADC P0 18 21 XTAL P3 19 20 XTAL TUA6036-T TSSOP-38 package Pin Configuration TUA6036 in TSSOP-38 Package 13 V 2.5, 2004-04-28 TUA6034, TUA6036 37 LOWIN 38 MIDIN 39 MIDIN 40 HIGHIN 41 HIGHIN 42 n.c. 43 OSCLOWOUT 44 OSCLOWIN 45 OSCGND 46 OSCMIDIN 47 OSCMIDOUT 48 n.c. Functional Description n.c. 1 36 n.c. n.c. 2 35 RFGND OSCHIGHIN 3 34 MIXOUT OSCHIGHOUT 4 33 MIXOUT OSCHIGHOUT 5 32 IFIN OSCHIGHIN 6 31 IFIN TUA6034-V VQFN-48 package VCC 7 30 n.c. Figure 3 Specification n.c. 24 AS 23 P1 22 25 SCL P0 21 VT 12 P3 20 26 SDA XTAL 19 PLLGND 11 XTAL 18 27 GND n.c. 17 IFOUT 10 P4/ADC 16 28 AGC CP 15 IFOUT 9 n.c. 14 29 P2 n.c. 13 IFGND 8 Pin Configuration TUA6034 in VQFN-48 Package 14 V 2.5, 2004-04-28 TUA6034, TUA6036 Functional Description 2.2 Pin Definition and Functions Table 4 Pin No. Pin Defintion and Functions Symbol TSS VQ OP- FN38 48 Equivalent I/O Schematic Average DC voltage pin designation in parenthesis refer to VQFN-48 package LOW 1/38 43 OSCLOWOUT 2.1 V 2/37 44 OSCLOWIN 1.45 V MID HIGH 0.0 V 0.0 V 1 (43) 2 (44) 3/36 45 OSCGND oscillator ground 4/35 46 OSCMIDIN 1.45 V 5/34 47 OSCMIDOUT 2.1 V 0.0 V 5 (47) 4 (46) Specification 15 V 2.5, 2004-04-28 TUA6034, TUA6036 Functional Description Pin No. Symbol TSS VQ OP- FN38 48 Equivalent I/O Schematic Average DC voltage pin designation in parenthesis refer to VQFN-48 package LOW MID HIGH 6/33 3 OSCHIGHIN 1.5 V 7/32 4 OSCHIGHOUT 2.4 V 8/31 5 OSCHIGHOUT 9/30 6 OSCHIGHIN 2.4 V 7 (4) 8 (5) 6 (3) 9 (6) 1.5 V 10/ 29 7 VCC supply voltage 5.0 V 5.0 V 5.0 V 11/ 28 8 IFGND IF ground 0.0 V 0.0 V 0.0 V 12/ 27 9 IFOUT 2.2 V 2.2 V 2.2 V 13/ 26 10 IFOUT 2.2 V 2.2 V 2.2 V 14/ 25 11 PLLGND 0.0 V 0.0 V 0.0 V 15/ 24 12 VT VT VT VT 16/ 23 15 CP 2.0 V 2.0 V 2.0 V 12 (9) 13 (10) PLL ground 16 (15) 15 (12) Specification 16 V 2.5, 2004-04-28 TUA6034, TUA6036 Functional Description Pin No. Symbol TSS VQ OP- FN38 48 17/ 22 16 Equivalent I/O Schematic Average DC voltage pin designation in parenthesis refer to VQFN-48 package P4/ADC LOW MID HIGH 5 V or VCE 5 V or VCE 5 V or VCE 1.7 V 1.7 V 1.7 V 1.7 V 1.7 V 1.7 V 0 V or VCC VCE 0 V or VCC VCE 0 V or VCC VCE VCC VCE n.a. n.a. n.a. VCC VCE n.a. 17 (16) 18/ 21 18 XTAL 19/ 20 19 XTAL 20/ 19 20 P3 21/ 18 21 P0 22/ 17 22 P1 Specification 18 (18) 19 (19) 20 (20) or 21 (21) or 22 (22) 17 V 2.5, 2004-04-28 TUA6034, TUA6036 Functional Description Pin No. Symbol TSS VQ OP- FN38 48 23/ 16 23 Equivalent I/O Schematic pin designation in parenthesis refer to VQFN-48 package AS Average DC voltage LOW MID HIGH n.a. n.a. n.a. n.a. n.a. n.a. n.a n.a n.a 0.0 0.0 0.0 23 (23) 24/ 15 25 SCL 24 (25) 25/ 14 26 SDA 25 (26) 26/ 13 27 GND Specification ground 18 V 2.5, 2004-04-28 TUA6034, TUA6036 Functional Description Pin No. Symbol TSS VQ OP- FN38 48 27/ 12 28 Equivalent I/O Schematic Average DC voltage pin designation in parenthesis refer to VQFN-48 package AGC LOW MID HIGH 3.5 V 3.5 V 3.5 V n.a. n.a. 0 V or VCC VCE n.a. n.a. n.a. n.a. n.a. n.a. 4.0 V 4.0 V 4.0 V 4.0 V 4.0 V 4.0 V 0.0 V 0.0 V 0.0 V 27 (28) 28/ 11 29 P2 28 (29) 29/ 10 31 IFIN 30/9 32 IFIN 31/8 33 MIXOUT 32/7 34 MIXOUT 29 (31) 30 (32) 31 (33) 32 (34) Oscillator 33/6 35 RFGND Specification RF ground 19 V 2.5, 2004-04-28 TUA6034, TUA6036 Functional Description Pin No. Symbol TSS VQ OP- FN38 48 34/5 37 Equivalent I/O Schematic Average DC voltage pin designation in parenthesis refer to VQFN-48 package LOWIN LOW MID HIGH 1.9 V 34 (37) 35/4 38 MIDIN 0.75 V 35 (38) 36 (39) 36/3 39 MIDIN 37/2 40 HIGHIN 0.75 V 38/1 41 HIGHIN 0.75 V 0.75 V 37 (40) Specification 38 (41) 20 V 2.5, 2004-04-28 TUA6034, TUA6036 Functional Description 2.3 Functional Block Diagram OSCLOWOUT 38 1 OSCLOWIN 2 Oscillator LOW OSCGND 3 P0 OSCMIDIN 4 Oscillator MID OSCMIDOUT 5 Mixer HIGH P0.P1 P1 OSCHIGHIN 7 OSCHIGHOUT 8 OSCHIGHIN 9 36 MIDIN RF Input MID 35 MIDIN 34 LOWIN 33 RFGND 32 MIXOUT 31 MIXOUT 30 IFIN 10 29 IFIN 28 P2 27 AGC HIGHIN P1 Oscillator HIGH Mixer LOW RF Input LOW P0 P0.P1 SAW Filter Driver P0 VCC ATC IFGND P1 6 OSCHIGHOUT VCC 37 P0.P1 Mixer MID HIGHIN RF Input HIGH 11 AGC Detector AGC IFOUT Prog. Divider 12 I 2C Bus FL IFOUT 13 PLLGND 14 VT 15 CP 16 P4/ADC 17 XTAL 18 XTAL 19 Figure 4 Specification 26 Lock Detector f div Charge Pump Phase/ Freq Comp f ref PORTS CP, OS Crystal Oscillator Reference Divider ADC GND 25 SDA 24 SCL 23 AS 22 P1 21 P0 20 P3 Block Diagram TUA6034 in TSSOP-38 Package 21 V 2.5, 2004-04-28 TUA6034, TUA6036 Functional Description HIGHIN 1 HIGHIN 2 MIDIN 3 MIDIN 4 LOWIN 5 RF Input HIGH Mixer HIGH Oscillator LOW P1 P0 P0.P1 P0.P1 RF Input MID Mixer MID Oscillator MID P1 RFGND MIXOUT 7 MIXOUT 8 P0 IFIN 9 IFIN P2 Mixer LOW Oscillator HIGH P0 P0.P1 SAW Filter Driver VCC 10 AGC Detector 11 OSCLOWOUT 37 OSCLOWIN 36 OSCGND 35 OSCMIDIN 34 OSCMIDOUT 33 OSCHIGHIN 32 OSCHIGHOUT 31 OSCHIGHOUT 30 OSCHIGHIN 29 VCC 28 IFGND 27 IFOUT 26 IFOUT 25 PLLGND 24 VT 23 CP 22 P4/ADC 21 XTAL 20 XTAL P1 6 RF Input LOW 38 ATC AGC AGC 12 Prog. Divider I 2C Bus FL GND SDA 13 14 SCL 15 AS 16 P1 17 P0 18 P3 19 Figure 5 Specification Lock Detector PORTS f div f ref Phase/ Freq Comp Charge Pump CP, OS ADC Reference Divider Crystal Oscillator Block Diagram TUA6036 in TSSOP-38 Package 22 V 2.5, 2004-04-28 TUA6034, TUA6036 LOWIN HIGHIN 41 37 n.c. 42 MIDIN OSCLOWOUT 43 38 OSCLOWIN 44 MIDIN OSCGND 45 39 OSCMIDIN 46 HIGHIN OSCMIDOUT 47 40 n.c. 48 Functional Description n.c. 1 Oscillator LOW n.c. 2 Mixer HIGH RF Input HIGH 36 n.c. 35 RFGND 34 MIXOUT 33 MIXOUT 32 IFIN 31 IFIN 30 n.c. 29 P2 28 AGC 27 GND 26 SDA 25 SCL P1 P0 OSCHIGHIN 3 OSCHIGHOUT 4 OSCHIGHOUT 5 OSCHIGHIN 6 P0.P1 P0.P1 Oscillator MID Mixer MID P1 RF Input MID P1 Oscillator HIGH Mixer LOW RF Input LOW P0 P0.P1 P0 SAW Filter Driver VCC 7 IFGND AGC Detector Lock Detector VCC 8 AGC Prog. Divider IFOUT 9 FL f div f ref I 2C Bus IFOUT 10 Phase/ Freq Comp Reference Divider PLLGND 11 Charge Pump Crystal Oscillator PORTS ADC VT 12 Figure 6 Specification 21 22 23 24 P1 AS n.c. 18 XTAL P0 17 n.c. 20 16 P4/ADC P3 15 CP 19 14 n.c. XTAL 13 n.c. CP, OS Block Diagram TUA6034 in VQFN-48 package 23 V 2.5, 2004-04-28 TUA6034, TUA6036 Functional Description 2.4 Circuit Description 2.4.1 Mixer-Oscillator block The mixer-oscillator block includes three balanced mixers (one mixer with an unbalanced high-impedance input and two mixers with a balanced low-impedance input), two 2-pin asymmetrical oscillators for the LOW and the MID band, one 4-pin symmetrical oscillator for the HIGH band, an IF amplifier, a reference voltage, and a band switch. Filters between tuner input and IC separate the TV frequency signals into three bands. The band switching in the tuner front-end is done by using three PNP port outputs. In the selected band the signal passes a tuner input stage with a MOSFET amplifier, a doubletuned bandpass filter and is then fed to the mixer input of the IC which has in case of LOW band a high-impedance input and in case of MID or HIGH band a low-impedance input. The input signal is mixed there with the signal from the activated on chip oscillator to the IF frequency. The IF is filtered by means of an IF filter in between the 2 mixer output pins and the 2 input pins of the following IF amplifier. The IF amplifier has a low output impedance to drive the SAW filter directly. 2.4.2 PLL block The oscillator signal is internally DC-coupled as a differential signal to the programmable divider inputs. The signal subsequently passes through a programmable divider with ratio N = 256 through 32767 and is then compared in a digital frequency/phase detector with a reference frequency fref = 31.25, 50, 62.5, 125, 142.86 or 166.67 kHz. This frequency is derived from a balanced, low-impedance 4 MHz crystal oscillator (pins XTAL, XTAL) divided by 128, 80, 64, 32, 28 or 24. The reference frequencies will be different with a quartz other than 4 MHz. The phase detector has two outputs which drive four current sources of a charge pump. If the negative edge of the divided VCO signal appears prior to the negative edge of the reference signal, the positive current source pulses for the duration of the phase difference. In the reverse case the negative current source pulses. If the two signals are in phase, the charge pump output (CP) goes into the high-impedance state (PLL is locked). An active low-pass filter integrates the current pulses to generate the tuning voltage for the VCO (internal amplifier, external pull-up resistor at VT and external RC circuitry). The charge pump output is also switched into the high-impedance state if the control bits T2, T1, T0 = 0, 1, 0. Here it should be noted, however, that the tuning voltage can alter over a long period in the high impedance state as a result of self discharge in the peripheral circuity. VT may be switched off by the control bit OS to allow external adjustments. Specification 24 V 2.5, 2004-04-28 TUA6034, TUA6036 Functional Description If the VCO is not oscillating the PLL locks to a tuning voltage of 33V (VTH). By means of control bits CP, T0, T1 and T2 the pump current can be switched between four values by software. This programmability permits alteration of the control response of the PLL in the locked-in state. In this way different VCO gains can be compensated, for example. The software controlled ports P0 to P4 are general purpose open-collector outputs. The test bits T2, T1, T0 =1, 0, 0 switch the test signals fdiv (divided input signal) and fref (i.e .4 MHz / 64) to P0 and P1 respectively. The lock detector resets the lock flag FL if the width of the charge pump current pulses is greater than the period of the crystal oscillator (i.e. 250 ns). Hence, if FL = 1, the maximum deviation of the input frequency from the programmed frequency is given by ∆f = ± IP ∗ (KVCO / fXTAL) ∗ (C1+C2) / (C1∗C2) where IP is the charge pump current, KVCO the VCO gain, fXtal the crystal oscillator frequency and C1, C2 the capacitances in the loop filter (see Chapter 3). As the charge pump pulses at i.e. 62.5 kHz (= fref), it takes a maximum of 16 µs for FL to be reset after the loop has lost lock state. Once FL has been reset, it is set only if the charge pump pulse width is less than 250 ns for eight consecutive fref periods. Therefore it takes between 128 and 144 µs for FL to be set after the loop regains lock. 2.4.3 AGC The wide band AGC stage detects the level of the IF output signal and generates an AGC voltage for gain control of the tuners input transistors. The AGC take-over and the time constant are selectable by the I2C bus. 2.4.4 I2C-Bus Interface Data is exchanged between the processor and the PLL via the I2C bus. The clock is generated by the processor (input SCL). Pin SDA functions as an input or output depending on the direction of the data (open collector, external pull-up resistor). Both inputs have a hysteresis and a low-pass characteristic, which enhance the noise immunity of the I2C bus. The data from the processor pass through an I2C bus controller. Depending on their function the data are subsequently stored in registers. If the bus is free, both lines will be in the marking state (SDA, SCL are high). Each telegram begins with the start condition Specification 25 V 2.5, 2004-04-28 TUA6034, TUA6036 Functional Description and ends with the stop condition. Start condition: SDA goes low, while SCL remains high. Stop condition: SDA goes high while SCL remains high. All further information transfer takes place during SCL = low, and the data is forwarded to the control logic on the positive clock edge. The table ’Bit Allocation’ (see Table 8 on page 46) should be referred to for the following description. All telegrams are transmitted byte-by-byte, followed by a ninth clock pulse, during which the control logic returns the SDA line to low (acknowledge condition). The first byte is comprised of seven address bits. These are used by the processor to select the PLL from several peripheral components (address select). The LSB bit (R/W) determines whether data are written into (R/W = 0) or read from (R/W = 1) the PLL. In the data portion of the telegram during a WRITE operation, the MSB bit of the first or third data byte determines whether a divider ratio or control information is to follow. In each case the second byte of the same data type has to follow the first byte. Appropriate setting of the test bits will decide whether the band-switch byte or the auxiliary byte will be transmitted (see Table 11 on page 47). If the address byte indicates a READ operation, the PLL generates an acknowledge and then shifts out the status byte onto the SDA line. If the processor generates an acknowledge, a further status byte is output; otherwise the data line is released to allow the processor to generate a stop condition. The status word consists of three bits from the A/D converter, the lock flag and the power-on flag. Four different chip addresses can be set by an appropriate DC level at pin AS (see Table 10 on page 47). While the supply voltage is applied, a power-on reset circuit prevents the PLL from setting the SDA line to low, which would block the bus. The power-on reset flag POR is set at power-on and if VCC falls below 3.2 V. It will be reset at the end of a READ operation. Specification 26 V 2.5, 2004-04-28 TUA6034, TUA6036 Applications 3 Applications 3.1 Application Circuit for ATSC BB659C 2k7 2p2 100p 2 L1 2k7 BB659C 3 4 5 L2 HIGHIN OSCGND MID 37 OSCMIDIN MIDIN 6 36 35 1n LOW Input 34 OSCHIGHIN RFGND OSCHIGHOUT MIXOUT OSCHIGHOUT MIXOUT 33 OSCHIGHIN 4n7 560 10 +5V 11 100n transformer 2:10 12p 12 13 TOKO 7KL600 GCS-A1010DX 14 R2 560 C1 15 100n C2 1n5 16 R1 15k 17 VCC IFGND IFOUT IFOUT TUA6034-T 9 33k 32 1p2 8 100n TOKO B4F 617DB-1023 1n LOWIN OSCMIDOUT 1p2 + 33 V MID Input balun 1:1 1n 68p 7 L3 IFOUT TOKO B4F 617DB-1023 22p 1p2 1k8 P4/ ADC OSCLOWIN HIGH Input balun 1:1 2p2 1p2 BB565 C3 22n 38 1p2 1k8 47n HIGHIN 1p5 82p 15p OSCLOWOUT 2p7 12 8R2 22p 1 VT 68p IFIN P2 AGC GND AS P4/ADC 29 P2 28 150n SCL CP L4 30 SDA PLLGND 31 IFIN P1 27 4 MHz 18 P0 XTAL 25 P3 XTAL SDA 220 100p 24 SCL 220 100p 23 4n7 22 4n7 21 39p 19 AGC 26 39p 4n7 4n7 4n7 20 AS P1 P0 P3 4n7 Recommended band limits for ATSC in MHz RF input Oscillator LOW MID HIGH Figure 7 min 55.25 163.25 457.25 max 157.25 451.25 861.25 min 101 201 503 Coils for ATSC application turns diam. wire diam. max 203 479 907 L1 L2 L3 L4 8.5 2.5 1.5 12.5 3.2 mm 3 mm 2.4 mm 3.5 mm 0.5 mm 0.5 mm 0.5 mm 0.3 mm Application Circuit for ATSC Remark: TUA 6036 has reversed pinning. Specification 27 V 2.5, 2004-04-28 TUA6034, TUA6036 Applications Application Circuit for DVB-T 2k7 BB659C 2p2 100p 2k7 2 3 BB659C 4 5 OSCGND MID 37 MIDIN OSCMIDIN LOWIN OSCMIDOUT TOKO B4F 617DB-1023 22p 36 35 MID Input balun 1:1 1n TOKO B4F 617DB-1023 1n 1n LOW Input 34 6 OSCHIGHIN RFGND OSCHIGHOUT MIXOUT 33 1p2 BB565 100p 7 L3 OSCHIGHOUT 1p2 1k8 9 OSCHIGHIN 4n7 10 +5V 11 100n IFOUT 32 1k5 1p2 8 transformer 2:10 12 12p 13 TOKO 7KL600 GCS-A1010DX 14 R2 220 VCC IFGND IFOUT MIXOUT 31 L4 330n 22p + 33 V C1 4n7 R1 68k 33k 100n 15 30 IFIN P2 47p 22p AGC GND PLLGND SDA L5 330n 29 P2 28 150n IFOUT 16 17 VT 4n7 27 AGC 26 25 SDA 220 SCL CP AS P4/ADC P1 XTAL P0 24 4 MHz 18 100p 23 4n7 22 4n7 21 39p 19 4n7 P3 XTAL SCL 220 39p 4n7 100p IFIN 100p C2 100p P4/ ADC HIGHIN OSCLOWIN HIGH Input balun 1:1 2p2 1p2 1k8 C3 22n 38 1p2 L2 15p HIGHIN 1p5 82p 8R2 OSCLOWOUT 2p7 L1 12 22p 1 TUA6034-T 3.2 20 AS P1 P0 P3 4n7 Recommended band limits for DVB-T in MHz RF input Oscillator LOW MID HIGH min 48.25 161.25 447.25 max 154.25 439.25 863.25 min 87.15 200.15 486.15 Coils for DVB-T application turns diam. wire diam. max 193.15 478.15 902.15 L1 L2 L3 L4, L5 8.5 2.5 1.5 SMD 3.2 mm 3 mm 2.4 mm 0805 0.5 mm 0.5 mm 0.5 mm 330n SMD = Surface Mounted Device Figure 8 Application Circuit for DVB-T Remark: TUA 6036 has reversed pinning. Specification 28 V 2.5, 2004-04-28 TUA6034, TUA6036 Applications Application Circuit for ISDB-T BB659C 2k7 2p2 100p 2 L1 2k7 BB659C 3 OSCLOWIN HIGHIN OSCGND MID 37 36 4 MIDIN OSCMIDIN 35 5 L2 HIGH Input balun 1:1 2p2 TOKO B4F 617DB-1023 22p MID Input balun 1:1 1n TOKO B4F 617DB-1023 1n 1n LOW Input LOWIN OSCMIDOUT 34 1p2 6 OSCHIGHIN RFGND OSCHIGHOUT MIXOUT 33 1p2 56p 7 L3 BB555 OSCHIGHOUT 1p2 1k8 9 OSCHIGHIN 4n7 10 +5V 11 100n IFOUT transformer 2:10 12 12p 13 TOKO 7KL600 GCS-A1010DX 14 R2 100 C2 270p + 33 V C1 6n8 15 16 R1 33k 33k 100n 32 1p2 8 P4/ ADC 38 1p2 1k8 C3 22n HIGHIN 1p5 82p 15p OSCLOWOUT 2p7 12 8R2 22p 1 17 VCC IFGND IFOUT MIXOUT TUA6034-T 3.3 12p 12p 30p L5 220n 31 30 IFIN P2 29 P2 28 150n AGC GND PLLGND SDA SCL CP AS P4/ADC P1 4n7 27 AGC 26 25 SDA 220 100p 24 4 MHz 18 P0 XTAL 100p 23 4n7 22 4n7 21 39p 19 P3 XTAL SCL 220 39p 4n7 56p IFIN IFOUT VT 1k5 L4 220n 4n7 20 AS P1 P0 P3 4n7 Recommended band limits for ISDB-T in MHz RF input Oscillator LOW MID HIGH min 93 173 473 max 167 467 767 min 150 230 530 Coils for ISDB-T application turns diam. wire diam. max 224 524 824 L1 L2 L3 L4, L5 8.5 2.5 1.5 SMD 3.2 mm 3 mm 2.4 mm 0805 0.5 mm 0.5 mm 0.5 mm 220n SMD = Surface Mounted Device Figure 9 Application Circuit for ISDB-T Remark: TUA 6036 has reversed pinning. Specification 29 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference 4 Reference 4.1 Electrical Data 4.1.1 Absolute Maximum Ratings Attention: The maximum ratings may not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the IC will result. Table 5 # Absolute Maximum Ratings Parameter1) Symbol Supply voltage VCC Limit Values min. 1. 2. Ambient temperature TA 3. Junction temperature TJ 4. Storage temperature TStg 5. Temperature difference junction to case3) TJC CP VCP Unit Remarks max. -0.3 6 V -40 TAmax2) °C +125 °C +125 °C 2 K 3 V 1 mA -40 PLL 6. 7. 8. 9. -0.3 ICP Crystal oscillator pin XTAL VQ IQ 10. Bus input/output SDA VSDA 11. Bus output current SDA ISDA(L) 12. Bus input SCL VSCL 13. Chip address switch AS 6 -5 6 V 10 mA -0.3 6 V VAS -0.3 6 V 14. VCO tuning output (loop filter) VVT -0.3 35 V 15. NPN port output voltage of P4 VP4 -0.3 6 V Specification -0.3 V mA 30 open collector open collector V 2.5, 2004-04-28 TUA6034, TUA6036 Reference # Parameter1) Symbol Limit Values Unit Remarks min. max. -1 10 mA 16. NPN port output current of P4 IP4(L) 17. P4/ADC input/output voltage VP4/ADC -0.3 6 V 18. NPN port output current of P4 IP4/ADC(L) -1 10 mA open collector, tmax = 0.1 s at 5.5 V 19. PNP port output voltage of P0, P1, P2, P3 VP0, 1, 2, 3 -0.3 6 V open collector 20. PNP port output current of P1 IP1(L) +1 -25 mA open collector, tmax = 0.1 s at 5.5 V 21. PNP port output current of P0 IP0(L) +1 -10 mA open collector, tmax = 0.1 s at 5.5 V 22. PNP port output current of P2, P3 IP2, 3(L) +1 -5 mA open collector, tmax = 0.1 s at 5.5 V 23. 7 Total port output current of PNP ports ΣIP(L) -40 mA tmax = 0.1 s at 5.5 V open collector, tmax = 0.1 s at 5.5 V Mixer-Oscillator 24. Mix inputs LOW band VLOW 25. Mix inputs MID/HIGH 26. band VMID/HIGH 27. VCO base voltage VB 28. VCO collector voltage -0.3 3 V 2 V -5 6 mA -0.3 3 V LOW, MID and HIGH band oscillators VC 6 V LOW, MID and HIGH band oscillators VESD 2 kV IMID/HIGH ESD-Protection4) 29. all pins 1) All values are referred to ground (pin), unless stated otherwise. Currents with a positive sign flow into the pin and currents with a negative sign flow out of pin. Specification 31 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference 2) The maximum ambient temperature depends on the mounting conditions of the package. Any application mounting must guarantee not to exceed the maximum junction temperature of 125 °C. As reference the temperature difference junction to case is given. 3) Referred to top center of package. 4) According to EIA/JESD22-A114-B (HBM incircuit test), as a single device incircuit contact discharge test. 4.1.2 Operating Range Table 6 # Operating Range Parameter Symbol Limit Values min. max. Unit Remarks 1. Supply voltage VCC +4.5 +5.5 2. Programmable divider factor N 256 32767 3. LOW mixer input frequency range fMIXV 30 200 MHz 4. MID and HIGH band mixer input frequency range fMIXU 130 900 MHz 5. LOW oscillator frequency range fOH 65 250 MHz 6. MID band oscillator frequency range fOU 165 530 MHz 7. HIGH band oscillator frequency range fOU 400 950 MHz 8. Ambient temperature TA -20 TAmax1) °C V 1) see 4.1.1 Absolute Maximum Ratings on page 30. Specification 32 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference 4.1.3 Table 7 # AC/DC Characteristics AC/DC Characteristics, TA = 25°C, VCC = 5V Parameter Symbol Limit Values min. typ. max. Unit Test Conditions ■ Supply 1. Supply voltage VCC 4.5 5 5.5 V 2. Current consumption in active mode IVCC 59 74 89 mA LOW band IVCC 59 74 89 mA MID band IVCC 57 71 85 mA HIGH band Current consumption in stand-by mode Istby mA P0, P1 = 1 3. 4. 5. 20 Digital Part PLL Crystal oscillator connections XTAL 6. Crystal frequency fXTAL 7. Crystal resistance RXTAL 8. Oscillation frequency fXTAL 9. Input impedance ZXTAL 3.2 4.0 4.8 MHz series resonance 30 300 Ω series resonance 3,9997 4,000 4,0002 MHz fXTAL = 4 MHz 5 5 -650 -500 Ω fXTAL = 4 MHz Charge pump output CP 10. Output current, 11. see Table 15 Charge pump 12. current on page 49 13. ICPDH ± 430 ± 650 ± 860 µA VCP = 1.8 V ICPH ± 180 ± 250 ± 360 µA VCP = 1.8 V ICPDL ± 90 ± 125 ± 180 µA VCP = 1.8 V ICPL ± 35 ± 50 VCP = 1.8 V 14. Tristate current ICPZ 15. Output voltage VCP ± 70 µA ±1 1.0 nA T2, T1, T0 = 0,1,0, VCP = 2 V 2.5 V loop locked 10 µA VTH = 33 V, OS = 1 Tuning voltage output VT (open collector) 16. Leakage current Specification ITH 33 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference # Parameter Symbol Limit Values min. 17. Output voltage VTL when the loop is closed, (test mode in normal operation) typ. Unit Test Conditions ■ max. 0.4 32.7 V OS = 0, RLoad = 33 kΩ, tuning supply = 33 V I2C-Bus Bus inputs SCL, SDA 18. High-level input voltage VIH 2.3 5.5 V 19. Low-level input voltage VIL 0 1.5 V 20. High-level input current IIH 10 µA Vbus = 5.5 V, VCC = 0 V 21. IIH 10 µA Vbus = 5.5 V, VCC = 5.5 V 22. Low-level input current IIL 10 µA Vbus = 1.5 V, VCC = 0 V 23. IIL µA Vbus = 0 V, VCC = 5.5 V -10 Bus output SDA (open collector) 24. Leakage current IOH 10 µA VOH = 5.5 V 25. Low-level output voltage VOL 0.4 V IOL = 3 mA 26. Rise time tr 300 ns 27. Fall time tf 300 ns 400 kHz Edge speed SCL,SDA Clock timing SCL 28. Frequency fSCL 0 100 29. High pulse width tH 0.6 µs 30. Low pulse width tL 1.3 µs tsusta 0.6 µs Start condition 31. Set-up time Specification 34 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference # Parameter Symbol Limit Values min. 32. Hold time typ. Unit Test Conditions ■ max. thsta 0.6 µs 33. Set up time tsusto 0.6 µs 34. Bus free tbuf 1.3 µs tsudat 0.1 µs 36. Hold time thdat 0 37. Input hysteresis SCL, SDA Vhys 38. Pulse width of spikes which are suppressed tsp Stop condition Data transfer 35. Set-up time µs 200 0 39. Capacitive load for CL each bus line mV 50 ns 400 pF PNP port outputs P0, P1, P2, P3 (open collector) 40. Port output voltage VPOH0to3 0.05 0.4 V IPOLH0to3 = 0 mA, port disabled 41. Output saturation voltage port 0 VPL0 = VCC VCESat0 0.25 0.4 V IPOL0 = 10 mA, port enabled 42. Output saturation voltage port 1 VPL1 = VCC VCESat1 0.25 0.4 V IPOL1 = 15 mA port enabled 43. Output saturation voltage ports 2, 3 VPL2 ,3 = VCC VCESat2,3 0.25 0.4 V IPOL2, 3 = 5 mA port enabled 10 µA VCC = 5.5, VPn4 = 6 V 0.4 V IPOL4 = 5 mA 5.5 V NPN port output P4 (open collector) 44. Output leakage current IPOH4 45. Output saturation voltage VPL04 0.25 ADC input 46. ADC input voltage VADC Specification 0 35 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference # Parameter Symbol Limit Values min. 47. High-level input current IADCH 48. Low-level input current IADCL typ. Unit Test Conditions ■ max. 10 -10 µA µA Address selection input AS 49. High-level input current IASH 50. Low-level input current IASL 50 -50 µA VASH = 5.5 V µA VASL = 0 V Analog Part LOW band mixer mode (P0 = 1, P1 = 0, including IF amplifier) 51. RF frequency fRF 44.25 52. Voltage gain GV 23.5 170.25 MHz picture carrier 1) 26 28.5 dB fRF = 44.25 MHz, see 4.5.1 on page 55 53. GV 23.5 26 28.5 dB fRF =170.25 MHz, see 4.5.1 on page 55 54. Noise figure NF 8 10 dB fRF = 50 MHz, see 4.5.4 on page 56 see 4.5.3 on page 56 55. NF 8 10 dB fRF =150 MHz, see 4.5.4 on page 56 see 4.5.3 on page 56 56. Output voltage Vo causing 0.8% of 57. crossmodulation in Vo channel 113 dBµV fRF = 48.25 MHz, 113 dBµV fRF = 154.25 MHz, 58. Input IP2 IIP2 160 dBµV fRF1 = 48.25 MHz fRF2 = 97.50 MHz, PRF1 = PRF2 59. IIP2 145 dBµV fRF1 = 154.25 MHz fRF2 = 309.50 MHz, PRF1 = PRF2 Specification see 4.5.6 on page 57 see 4.5.6 on page 57 36 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference # Parameter Symbol Limit Values min. typ. Unit Test Conditions 60. Input IP3 IIP3 118 dBµV fRF1 = 48.25 MHz fRF2 = 49.25 MHz PRF1 = PRF2 61. IIP3 117 dBµV fRF1 = 154.25 MHz fRF2 = 155.25 MHz, PRF1 = PRF2 124 dBµV fRF = 48.25 MHz 124 dBµV fRF = 154.25 MHz 62. Output voltage Vo causing 63. Vo 1 dB compression 64. Output voltage 65. causing 1.1 kHz incidental FM Vo 108 111 dBµV fRF = 48.25 MHz 2) Vo 108 111 dBµV fRF = 154.25 MHz 2.) 66. Local oscillator FM FMI2C caused by I2C communication 67. 750 Hz Pulling Vi 2.12 kHz fRF = 154.25 MHz 3) dBµV fRF = 154.25 MHz 4) 88 68. Channel S02 beat INTS02 57 60 dBc PRF = 115 dBµV at IF output 5) 69. Channel A-5 beat 57 60 dBc PRF = 115 dBµV at IF output 6) 63 66 dBc PRF1 = PRF2 = 80 dBµV7) dBµV 8) mS fRF = 48.25 to 154.25 MHz, INTA-5 70. Channel CH6 color INTCH6 beat 71. RF input level without lock-out Vi 120 72. Input conductance gp Yi = (gp + jωCp) ■ max. 0.15 see 4.4.1 on page 52 73. Input capacitance Cp 1 pF fRF = 48.25 to 154.25 MHz, see 4.4.1 on page 52 Mid band mixer mode (P0 = 0, P1 =1, including IF amplifier) 74. RF frequency Specification fRF 454.25 MHz picture carrier 1.) 154.25 37 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference # Parameter 75. Voltage gain Symbol GV Limit Values Unit Test Conditions min. typ. max. 33 36 39 dB ■ fRF = 161.25 MHz, see 4.5.2 on page 55 76. GV 33 36 39 dB fRF = 439.25 MHz, see 4.5.2 on page 55 77. Noise figure (not corrected for 78. image) NF 6 8 dB NF 6 8 dB fRF = 161.25 MHz, see 4.5.5 on page 57 fRF = 300 MHz, see 4.5.5 on page 57 79. Output voltage Vo causing 0.8% of 80. crossmodulation in Vo channel 112 81. Input IP2 IIP2 146 dBµV fRF1 = 161.25 MHz fRF2 = 323.50 MHz, PRF1 = PRF2 82. IIP2 140 dBµV fRF1 = 440.25 MHz fRF2 = 818.50 MHz, PRF1 = PRF2 83. Input IP3 IIP3 105 dBµV fRF1 = 161.25 MHz fRF2 = 162.25 MHz PRF1 = PRF2 84. IIP3 106 dBµV fRF1 = 439.25 MHz fRF2 = 440.25 MHz PRF1 = PRF2 124 dBµV fRF = 161.25 MHz 124 dBµV fRF = 439.25 MHz 111 dBµV fRF = 161.25 MHz see 4.5.7 on page 58 112 Vo 108 Vo 108 2.) 111 dBµV fRF = 439.25 MHz 2.) 89. Local oscillator FM FMI2C caused by I2C communication Specification dBµV fRF = 439.25 MHz, see 4.5.7 on page 58 85. Output voltage Vo causing 86. Vo 1 dB compression 87. Output voltage causing 1.1 kHz 88. incidental FM dBµV fRF = 161.25 MHz, 2.12 kHz 38 fRF 3.) = 439.25 MHz V 2.5, 2004-04-28 TUA6034, TUA6036 Reference # Parameter Symbol 90. N+5 - 1 MHz pulling N+5 - 1 MHz Limit Values min. typ. 77 80 Unit Test Conditions ■ max. dBµV fRFw = 359.25 MHz, fOSC = 398.15 MHz, fRFu = 399.25 MHz 9) 91. 750 Hz Pulling Vi 92. RF input level without lock-out Vi 93. Input impedance Zi = (Rs + jωLs) Rs 94. Rs 78 dBµV fRF = 439.25 MHz 4.) 120 35 dBµV 8.) Ω fRF = 161.25 MHz, see 4.4.2 on page 52 Ω 35 fRF = 439.25 MHz, see 4.4.2 on page 52 95. Ls 8 nH fRF = 161.25 MHz, see 4.4.2 on page 52 96. Ls 8 nH fRF = 439.25 MHz, see 4.4.2 on page 52 HIGH band mixer mode (P0 = 0, P1 = 0, including IF amplifier) 97. RF frequency fRF 399.25 98. Voltage gain GV 33 863.25 MHz picture carrier 1.) 36 39 dB fRF = 447.25 MHz, see 4.5.2 on page 55 99. GV 33 36 39 dB fRF = 863.25 MHz, see 4.5.2 on page 55 100. Noise figure (not corrected for 101. image) NF 6 8 dB fRF = 447.25 MHz, NF 7 9 dB fRF = 863.25 MHz, see 4.5.5 on page 57 see 4.5.5 on page 57 102. Output voltage Vo causing 0.8% of 103. crossmodulation in Vo channel 112 dBµV fRF = 447.25 MHz, 112 dBµV fRF = 863.25 MHz, 104. Input IP2 136 dBµV fRF1 = 447.25 MHz fRF2 = 895.50 MHz PRF1 = PRF2 Specification IIP2 see 4.5.7 on page 58 see 4.5.7 on page 58 39 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference # Parameter Symbol Limit Values min. typ. Unit Test Conditions 105. Input IP3 IIP3 106 dBµV fRF1 = 447.25 MHz fRF2 = 448.25 MHz PRF1 = PRF2 106. IIP3 106 dBµV fRF1 = 863.25 MHz fRF2 = 864.25 MHz PRF1 = PRF2 124 dBµV fRF = 447.25 MHz 124 dBµV fRF = 863.25 MHz 111 dBµV fRF = 447.25 MHz 107. Output voltage Vo causing 108. Vo 1 dB compression 109. Output voltage causing 1.1 kHz 110. incidental FM Vo 108 Vo 108 2.) 111 dBµV fRF = 454.25 MHz 2.) 111. Local oscillator FM FMI2C caused by I2C communication 112. N+5 - 1 MHz pulling N+5 - 1 MHz ■ max. 2.12 kHz 77 80 fRF 3.) = 863.25 MHz dBµV fRFw = 823.25 MHz, fOSC = 862.15 MHz, fRFu = 862.25 MHz 9.) 113. 750 Hz Pulling Vi 78 dBµV fRF = 855.25 MHz 4.) 120 dBµV 8.) Ω fRF = 407.25 MHz, 114. RF input level without lock-out Vi 115. Input impedance Zi = (Rs + jωLs) 116. Rs Rs 35 Ω 117. Ls 8 nH 118. Ls 8 nH 35 see 4.4.3 on page 53 fRF = 863.25 MHz, see 4.4.3 on page 53 fRF = 407.25 MHz, see 4.4.3 on page 53 fRF = 863.25 MHz, see 4.4.3 on page 53 LOW band oscillator, (see Chapter 3 on page 27) 119. Oscillator frequency Specification fOSC 80 210 40 MHz 10) V 2.5, 2004-04-28 TUA6034, TUA6036 Reference # Parameter Symbol Limit Values min. 120. Oscillator 121. frequency shift 122. Oscillator frequency drift typ. max. ∆fOSC(V) 20 70 ∆fOSC(V) 110 ∆fOSC(T) 300 500 Unit Test Conditions kHz ∆VCC = 5% 11) kHz ∆VCC = 10% 11.) kHz ∆T = 25 °C, with compensation ■ 12) 123. Oscillator frequency drift ∆fOSC(t) 124. Phase noise, carrier to noise sideband ΦOSC 125. 126. 150 250 5 s to 15 min after switch on 13) 77 14) 85 dBc/ ±1 kHz frequency Hz offset, worst case in frequency range 88 15) 92 dBc/ ±10 kHz frequency Hz offset, worst case in frequency range 108 112 dBc/ ±100 kHz Hz frequency offset, worst case in frequency range 20 mV 4.75 < VP < 5.25 V, worst case in frequency range, ripple frequency 500 kHz 16) 493 MHz 10.) 70 kHz ∆VCC = 5% 11.) kHz ∆VCC = 10% 11.) 14), 15) 127. Ripple RSC susceptibility of VP kHz 15 MID band oscillator, (see Chapter 3 on page 27) 201 128. Oscillator frequency fOSC 129. Oscillator 130. frequency shift ∆fOSC(V) 20 ∆fOSC(V) 110 131. Oscillator frequency drift ∆fOSC(T) 500 750 kHz ∆T = 25 °C; with compensation 12.) 132. Oscillator frequency drift ∆fOSC(t) 250 500 kHz 5 s to 15 min after switch on 13.) Specification 41 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference # Parameter 133. Phase noise, carrier to noise sideband Symbol ΦOSC 134. 135. Limit Values typ. 73 14) 80 dBc/ ±1 kHz frequency Hz offset, worst case in frequency range 88 15) 92 dBc/ ±10 kHz frequency Hz offset, worst case in frequency range 106 112 dBc/ ±100 kHz Hz frequency offset, worst case in frequency range 20 mV 4.75 < VP < 5.25 V, worst case in frequency range, ripple frequency 500 kHz 14.) 905 MHz 10.) 70 kHz ∆VCC = 5% 11.) ∆VCC = 10% 11.) 15 ■ max. 14), 15) 136. Ripple RSC susceptibility of VP Unit Test Conditions min. HIGH band oscillator, (see Chapter 3 on page 27) 137. Oscillator frequency fOSC 138. Oscillator 139. frequency shift ∆fOSC(V) 20 ∆fOSC(V) 300 kHz 140. Oscillator frequency drift ∆fOSC(T) 600 1000 kHz ∆T = 25 °C; with compensation 12.) 141. Oscillator frequency drift ∆fOSC(t) 250 500 5 s to 15 min after switch on 13). 142. Phase noise, carrier to noise sideband ΦOSC 143. 144. 435 70 14) 77 dBc/ ±1 kHz frequency Hz offset, worst case in frequency range 86 15) 90 dBc/ ±10 kHz frequency Hz offset, worst case in frequency range 106 109 dBc/ ±100 kHz Hz frequency offset, worst case in frequency range 14), 15) Specification kHz 42 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference # Parameter Symbol 145. Ripple RSC susceptibility of VP Limit Values Unit Test Conditions min. typ. 15 20 mV 4.75 < VP < 5.25 V, worst case in frequency range, ripple frequency 500 kHz 14.) ■ max. IF amplifier 146. Input impedance Zi = (Rs + jωLs) 147. RS 460 Ω at 36 MHz, LS 10 nH at 36 MHz, 148. Output reflection coefficient 149. S22 10 dB see 4.4.4 on page 53 see 4.4.4 on page 53 magnitude, see 4.4.4 on page 53 S22 0.85 ° phase, see 4.4.4 on page 53 150. Output impedance RS Zo = (Rs + jωLs) 65 151. 20 Ω at 36 MHz, see 4.4.6 on page 54 LS nH at 36 MHz, see 4.4.6 on page 54 Rejection at the IF outputs 152. Level of divider INTDIV interferences in the IF signal 153. Crystal oscillator interferences rejection INTXTAL 154. Reference INTREF frequency rejection 20 dBµV 17) , worst case 60 66 dBc VIF = 100 dBµV, worst case in frequency range18) 60 66 dBc VIF = 100 dBµV, worst case in frequency range 19) 112 dBµV AL2, AL1, AL0 = 0, 1, 0 AGC output 155. AGC take-over point AGCTOP 156. Source current 1 IAGCfast 7.2 9.0 10.8 µA 157. Source current 2 IAGCslow 210 300 390 nA 158. Peak sink to ground IAGCpeak 80 100 120 µA Specification 43 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference # Parameter Symbol Limit Values min. typ. max. 159. AGC output voltage VAGCmax 3.6 3.8 4.0 160. AGC output voltage VAGCmin 0 0 163. AGC output voltage AGCRMH 3.3 164. AGC leakage current -50 AGCLEAK 165. AGC output voltage AGCOFF V 0.25 V 161. RF voltage range to AGCSLIP switch the AGC from active to inactive mode 162. AGC output voltage AGCRML Unit Test Conditions 3.8 0.5 dB 2.9 V VCC- V 0.5 or 4 50 3.3 3.8 nA VCC- V 0.5 or 4 ■ maximum level, IAGC = 9 µA minimum level AGC bit high or AGC active AGC bit low or AGC inactive AL2, AL1, AL0 = 1,1,0 0 < VAGC < VCC AL2, AL1, AL0 = 1,1,1 AGC is disabled ■ This value is only guaranteed in lab. 1) The RF frequency range is defined by the oscillator frequency range and the intermediate frequency (IF). 2) This is the level of the RF unwanted signal (50% amplitude modulated with 1kHz) that causes a 1.1 kHz FM modulation of the local oscillator and thus of the wanted signal; Vwanted = 100 dBµV; funwanted = fwanted + 5.5 MHz. 3) Local oscillator FM modulation resulting from I2C communication is measured at the IF output using a modulation analyser with a peak to peak detector ((P+ +P-)/2) and a post detection filter 30 Hz - 200 kHz. The I2C messages are sent to the tuner in such a way that the tuner is addressed but the content of the PLL registers are not altered. The refresh interval between each data set shall be 20 ms to 1s. 4) This is the level of the RF signal (100% amplitude modulated with 11.89 kHz) that causes a 750 Hz frequency deviation on the oscillator signal producing sidebands 30 dB below the level of the oscillator signal. 5) Channel S02 beat is the interfering product of fRFpix, fIF and fOSC of channel S02, fBEAT = 37.35 MHz. The possible mechanisms are fOSC - 2 x fIF or 2 x fRFpix - fOSC. 6) Channel A-5 beat is the interfering product of fRFpix, fIF and fOSC of channel A-5; fBEAT= 45.5 MHz. The possible mechanisms are: fOSC - 2 x fIF or 2 x fRFpix - fOSC. 7) Channel 6 beat is the interfering product of fRFpix + fRFsnd - fOSC of channel 6 at 42 MHz. 8) The IF output signal stays stable within the range of the fref step for a low level RF input up to 120 dBµV. 9) N+5 -1 MHz is defined as the input level of channel N+5, at frequency 1 MHz lower, causing FM sidebands 30 dB below the wanted carrier. Specification 44 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference 10) Limits are related to the tank circuit used in the application board (see Chapter 3 on page 27). Frequency bands may be adjusted by the choice of external components. 11) The frequency shift is defined as a change in oscillator frequency when the supply voltage varies from VCC = 5 to 4.75 V (4.5 V) or from VCC = 5 to 5.25 V (5.5 V). The oscillator is free running during this measurement. 12) The frequency drift is defined as a change in oscillator frequency if the ambient temperature varies from TA = 25 to 50 °C or from TA = 25 to 0 °C. The oscillator is free running during this measurement. 13) The switch-on drift is defined as a change in oscillator frequency between 5 s and 15 min after switch-on. The oscillator is free running during this measurement. 14) see Figure 8 Application Circuit for DVB-T on page 28. 15) see Figure 7 Application Circuit for ATSC on page 27. 16) The supply ripple susceptibility is measured in the application board (see Chapter 3 on page 27), using a spectrum analyser connected to the IF output. An unmodulated RF signal is applied to the test board RF input. A sinewave signal with a frequency of 500 kHz is superposed onto the supply voltage (see 4.5.8 on page 58). The amplitude of this ripple is adjusted to bring the 500 kHz sidebands around the IF carrier to a level of 53.5 dBc referred to the carrier. 17) This is the level of divider interferences close to the IF frequency. For example channel S3: fOSC = 158.15 MHz, 1/4 fOSC = 39.5375 MHz. Divider interference is measured with the application board (see Chapter 3 on page 27). All ground pins are connected to a single ground plane under the IC. The LOWIN input must be left open (i.e. not connected to any load or cable). The MIDIN and HIGHIN inputs are connected to a hybrid. The measured level of divider interference are influenced by layout, grounding and port decoupling. The measurement results between various applications and the reference board could vary as much as 10 dB. 18) Crystal oscillator interference means the 4 MHz sidebands caused by the crystal oscillator. The rejection has to be greater than 60 dB for an IF output of 100 dBµV. 19) The reference frequency rejection is the level of reference frequency sidebands (e.g. 62.5 kHz) related to the carrier. The rejection has to be greater than 60 dB for an IF output of 100 dBµV. Specification 45 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference 4.2 Programming Table 8 Bit Allocation Read/Write Name Byte Bits MSB bit6 bit5 bit4 bit3 Ack bit2 bit1 LSB Write Data Address Byte ADB 1 1 0 0 0 Divider Byte 1 DB1 0 N14 N13 N12 N11 Divider Byte 2 DB2 N7 N6 N5 N4 N3 Control byte CB 1 CP T2 T1 T0 P4 P3 P2 ATC AL2 AL1 AL0 0 0 1 1 0 0 0 POR FL 1 1 AGC Bandswitch byte BB Auxiliary byte 1) AB MA1 MA0 R/W=0 A N10 N9 A N2 N1 N8 N0 A OS A P1 P0 A 0 0 A RSA RSB Read data Address byte ADB Status byte SB MA1 MA0 R/W=1 A2 A1 A0 A A 1) AB replaces BB when T2, T1, T0 = 0, 1, 1, see Table 11 Test modes on page 47. Table 9 Symbol A Description of Symbols Description Acknowledge MA0, MA1 Address selection bits, see Table 10 Address selection on page 47 N14 to N0 programmable divider bits: N = 214 x N14 + 213 x N13 + ... + 23 x N3 + 22 x N2 + 21 xN1 + N0 CP charge pump current bit: bit = 0: charge pump current = 50 µA or 125 µA bit = 1: charge pump current = 250 µA (default) or 650 µA, see Table 15 Charge pump current on page 49 T0, T1, T2 test bits, see Table 11 Test modes on page 47 RSA, RSB reference divider bits, see Table 12 Reference divider ratios on page 48 OS tuning amplifier control bit: bit = 0: enable VT; bit = 1: disable VT (default) P0, P1, P2, PNP ports control bits P3 bit = 0: Port is inactive, high impedance state (default) bit = 1: Port is active, VOUT= VCC-VCESAT Specification 46 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference P4 NPN port control bit bit = 0: Port is inactive, high impedance state (default) bit = 1: Port is active, VOUT= VCESAT ATC AGC time constant bit bit = 0: IAGC=300 nA; ∆t=2s with C=160 nF (default) bit = 1: IAGC=9 µA; ∆t=50ms with C=160 nF AL0, AL1, AL2 AGC take-over point bits, see Table 13 AGC take-over point on page 48 POR Power-on reset flag; POR =1 at power-on FL PLL lock flag; bit = 1: loop is locked AGC internal AGC flag. AGC=1 when internal AGC is active (level below 3V) A0, A1, A2 digital output of the 5-level ADC Table 10 Address selection Voltage at AS MA1 MA0 (0 to 0.1) x VCC 0 0 open circuit or (0.2 to 0.3) x VCC 0 1 (0.4 to 0.6) x VCC 1 0 (0.9 to 1) x VCC 1 1 Table 11 Test modes Mode T2 T1 T0 Normal mode, charge pump currents 50 and 250 µA selectable 0 0 0 Normal mode, charge pump currents 50 and 250 µA selectable(default) 0 0 1 CP is in high-impedance state 0 1 0 byte AB will follow (otherwise byte BB will follow) 0 1 1 P0 = fdiv output, P1 = fref output 1 0 0 not in use 1 0 1 Extended mode, charge pump currents 50 and 250 µA selectable 1 1 0 Extended mode, charge pump currents 125 and 650 µA selectable 1 1 1 Specification 47 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference Table 12 Reference divider ratios fref1) Mode T2 T1 RSA RSB 80 50 kHz normal 0 0 0 0 128 31.25 kHz normal 0 0 0 1 24 166.67 kHz x x x 1 0 64 62.5 kHz x x x 1 1 32 125 kHz extended 1 1 0 0 28 142.86 kHz extended 1 1 0 1 Reference divider ratio 1) With a 4 MHz quartz. Table 13 AGC take-over point IF output level, Remark symmetrical mode AL2 AL1 AL0 115 dBµV 0 0 0 115 dBµV 0 0 1 112 dBµV 0 1 0 109 dBµV default mode at POR 0 1 1 106 dBµV 1 0 0 103 dBµV IAGC = 0 3.8 V 1 0 1 External AGC 1) 1 1 0 Disabled 2) 1 1 1 1) The AGC detector is disabled. Both the sinking and sourcing current from the IC is disabled. The AGC output goes into a high impedance state and an external AGC source can be connected in parallel and will not be influenced. 2) The AGC detector is disabled and IAGC = 9 µA. Specification 48 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference Table 14 A to D converter levels Voltage at ADC A2 A1 A0 (0 to 0.15) * VCC 0 0 0 (0.15 to 0.3) * VCC 0 0 1 (0.3 to 0.45) * VCC 0 1 0 (0.45 to 0.6) * VCC 0 1 1 (0.6 to 1) * VCC 1 0 0 1) No erratic codes in the transition. Table 15 Charge pump current Charge pump current Mode 50 µA CP T2 T1 x1) 0 250 µA (default) normal 50 µA 1 0 0 0 125 µA extended 250 µA 650 µA 0 1 T0 x 0 1 1 1 1 0 1 1) x = don‘t care. Table 16 Internal band selection Band Mixer Oscillator LOW P0.P1 1) P0.P1 MID P1.P0 P1.P0 HIGH (default) P0.P1 P0.P1 Stand-by mode P0, P1 P0, P1 1) Means: (P0 AND NOT P1); that is: LOW mixer is switched on if (P0=1 and P1=0). Specification 49 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference Table 17 Defaults at power-on reset Name Byte Bits MSB bit6 bit5 bit4 bit3 bit2 bit1 LSB 1 1 Write Data Address Byte ADB 0 0 0 MA1 MA0 R/W=0 1) Divider byte 1 DB1 0 x x x x x x x Divider byte 2 DB2 x x x x x x x x Control byte CB 1 1 0 0 1 x x 1 Bandswitch byte BB 0 0 0 0 0 0 0 0 Auxiliary byte AB 0 0 1 0 1) x = don‘t care. Table 18 Mode Description of modes Description normal Reference divider ratios 24, 64, 80, 128 selectable. Charge pump currents 50, 250 µA selectable. Auxiliary byte to follow Control byte (T2=0, T1=1, T0=1), otherwise Bandswitch byte to follow Control byte. extended Reference divider ratios 24, 28, 32, 64 selectable. Charge pump currents 50, 125, 250, 650 µA selectable. Auxiliary byte to follow Control byte (T2=0, T1=1, T0=1), otherwise Bandswitch byte to follow Control byte. Specification 50 V 2.5, 2004-04-28 1 1 Specification 51 ADB= address byte DB1= prog. divider byte 1 DB2= prog. divider byte 2 CB= Control byte BB= Bandswitch byte AB= Auxiliary byte Start-ADB-DB1-DB2-CB-AB-Stop Start-ADB-CB-BB-DB1-DB2-Stop Start-ADB-CB-AB-DB1-DB2-Stop Start-ADB-DB1-DB2-Stop Start-ADB-CB-BB-Stop Start-ADB-CB-AB-Stop Stop= stop condition Start= start condition Ack. 3rd Start-ADB-DB1-DB2-CB-BB-Stop Ack. 2nd Abbreviations: Ack. 1st Telegram examples: SCL M MA R/ Addressing Ack. 4th Ack. Stop 4.3 Note: Start TUA6034, TUA6036 Reference I2C Bus Timing Diagram V 2.5, 2004-04-28 TUA6034, TUA6036 Reference 4.4 Electrical Diagrams 4.4.1 Input admittance (S11) of the LOW band mixer (40 to 150 MHz) 0.8 2 0.5 0.6 0.7 1 1.5 0.9 Y0 = 20mS 0.4 3 0.3 4 0.2 5 0.1 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.9 0.8 1.5 2 3 4 5 10 20 20 150MHz 0 20 10 0.1 5 0.2 4 0.3 3 0.7 0.8 0.9 1 1.5 0.6 2 0.5 0.4 4.4.2 Input impedance (S11) of the MID band mixer (150 to 455 MHz) 1.5 1 0.9 0.8 0.5 2 0.6 0.7 Z0 = 50 Ω 0.4 3 0.3 4 5 0.2 10 455 MHz 20 10 5 4 3 2 1.5 20 0.8 0.9 1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0 150 MHz 20 0.1 10 0.2 5 4 0.3 3 Specification 1.5 1 0.9 0.8 0.7 0.6 2 0.5 0.4 52 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference 4.4.3 Input impedance (S11) of the HIGH band mixer (450 to 865 MHz) 1.5 1 0.9 0.8 0.5 2 0.6 0.7 Z0 = 50 Ω 0.4 3 0.3 4 5 0.2 865 MHz 10 450 MHz 0.1 20 10 5 4 3 2 1.5 0.8 0.9 1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 20 0 20 0.1 10 0.2 5 4 0.3 3 4.4.4 1.5 1 0.9 0.8 0.7 0.6 2 0.5 0.4 Output admittance (S22) of the of the mixers (30 to 50 MHz) 0.8 2 0.5 0.6 0.7 0.9 1.5 1 Y0 = 20ms 0.4 3 0.3 4 0.2 5 0.1 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.9 0.8 1.5 2 3 4 5 10 20 20 0 38.9 MHz 20 10 0.1 5 0.2 4 0.3 3 53 0.7 0.8 0.9 1 1.5 0.6 2 0.5 0.4 Specification V 2.5, 2004-04-28 TUA6034, TUA6036 Reference 4.4.5 Input impedance (S11) of the IF amplifier (30 to 50 MHz) 1 0.9 0.5 2 0.6 1.5 0.7 0.8 Z0 = 50 Ω 0.4 3 0.3 4 5 0.2 10 0.1 10 5 4 3 2 1.5 0.8 0.9 1 0.7 0.6 0.5 0.4 0.3 0.2 20 20 0.1 20 0 38.9 MHz 0.1 10 0.2 5 4 0.3 3 4.4.6 1 0.9 0.8 0.7 1.5 0.6 2 0.5 0.4 Output impedance (S22) of the IF amplifier (30 to 50 MHz) 1.5 1 0.9 0.8 0.5 2 0.6 0.7 Z0 = 50 Ω 0.4 3 0.3 4 5 0.2 10 0.1 20 20 10 5 4 3 2 1.5 0.8 0.9 1 0.7 0.6 0.5 0.4 0.3 0 0.2 0.1 38.9 MHz 20 0.1 10 0.2 5 4 0.3 3 Specification 1.5 1 0.9 0.8 0.7 0.6 2 0.5 0.4 54 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference 4.5 Measurement Circuits 4.5.1 Gain (GV) measurement in LOW band LOWIN IFOUT 50 Ω Vmeas 50 Ω V RMS Voltmeter Vi Device under Test Transformer N1 V0 N2 C 50 Ω spectrum analyser V'meas IFOUT N1 : N2 = 10 : 2 turns Figure 10 • • • • Gain (GV) measurement in LOW band Zi >> 50 Ω => Vi = 2 x Vmeas = 80 dBµV Vi = Vmeas + 6dB = 80 dBµV V0 = V’meas + 16 dB (transformer ratio N1:N2 and transformer loss) Gv = 20 log(V0 / Vi) 4.5.2 Gain (GV) measurement in MID and HIGH bands MIDIN IFOUT HIGHIN 50 Ω Vmeas RMS Voltmeter V 50 Ω Vi Balun 1:1 Device under Test Transformer N1 N2 V0 C MIDIN IFOUT HIGHIN V'meas 50 Ω spectrum analyser N1 : N2 = 10 : 2 turns Figure 11 • • • Gain (GV) measurement in MID and HIGH bands Vi = Vmeas = 70 dBµV V0 = V’meas + 16 dB (transformer ratio N1:N2 and transformer loss Gv = 20 log(V0 / Vi) + 1 dB (1 dB = insertion loss of balun) Specification 55 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference 4.5.3 Matching circuit for optimum noise figure in LOW band 15p 22p 1n 1n In In Out Out 7 turns wire Ε 0.5 mm coil Ε 5.5 mm 22p 50 Ω semi rigid cable 300 mm long 96 pF/m 33dB/100m 22p Figure 12 Matching circuit for optimum noise figure in LOW band For fRF = 50 MHz For fRF = 150 MHz loss = 0 dB loss = 1.3 dB image suppression = 16 dB image suppression = 13 dB 4.5.4 Noise figure (NF) measurement in LOW band Noise Source IN OUT Matching Circuit LOWIN IFOUT Transformer Device under Test N1 N2 Noise Figure Meter C IFOUT N1 : N2 = 10 : 2 turns NF = NFmeas - loss of matching circuit (dB) Figure 13 Specification Noise figure (NF) measurement in LOW band 56 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference 4.5.5 Noise figure (NF) measurement in MID and HIGH bands MIDIN IFOUT HIGHIN Noise Source Balun 1:1 Noise Figure Meter Transformer Device under Test N1 N2 C MIDIN IFOUT HIGHIN N1 : N2 = 10 : 2 turns loss of balun = 1 dB NF = NFmeas - loss of balun (dB) Figure 14 4.5.6 Noise figure (NF) measurement in MID and HIGH bands Cross modulation measurement in LOW band Vmeas V 50 Ω RMS Voltmeter unwanted signal source AM = 80 %, 1 kHz A LOWIN IFOUT C 50 Ω Hybrid 50 Ω B wanted signal source Figure 15 • • • • D Vi Device under Test N1 N2 38.9 MHz V0 C V V'meas IFOUT N1 : N2 = 10 : 2 turns 50 Ω 18 dB attenuator Transformer 50 Ω modulation analyser RMS Votmeter Cross modulation measurement in LOW band Zi >> 50 Ω => Vi = 2 x Vmeas V’meas = V0 - 16 dB (transformer ratio N1:N2 and transformer loss) wanted output signal at fpix, Vo = 100 dBµV unwanted output signal at fsnd Specification 57 V 2.5, 2004-04-28 TUA6034, TUA6036 Reference 4.5.7 Cross modulation measurement in MID and HIGH bands Vmeas 50 Ω V RMS Voltmeter unwanted signal source AM = 80 %, 1 kHz A MIDIN IFOUT HIGHIN C 50 Ω Hybrid Vi 50 Ω B wanted signal source Figure 16 • • • Device under Test Balun 1:1 Transformer N1 18 dB attenuator N2 38.9 MHz V0 C V V'meas MIDIN HIGHIN IFOUT D N1 : N2 = 10 : 2 turns 50 Ω 50 Ω modulation analyser RMS Votmeter Cross modulation measurement in MID and HIGH bands V’meas = V0 - 16 dB (transformer ratio N1:N2 and transformer loss) wanted output signal at fpix, Vo = 100 dBµV unwanted output signal at fsnd 4.5.8 Ripple susceptibility measurement Vsupply 10 µF 6k8 50 Ω BC847B to application board 10 µF 500 kHz sine Vripple 50 Ω VCC + V ripple Circuit to superimpose a 500 kHz ripple on VCC Figure 17 Specification Ripple susceptibility measurement 58 V 2.5, 2004-04-28 TUA6034, TUA6036 Package Outlines 5 Package Outlines 5.1 TSSOP-38 Figure 18 TSSOP-38 Vignette Figure 19 TSSOP-38 Outline Drawing Specification 59 V 2.5, 2004-04-28 TUA6034, TUA6036 Package Outlines 5.2 VQFN-48 Figure 20 VQFN-48 Vignette Figure 21 VQFN-48 Outline Drawing You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”: http://www.infineon.com/products. Dimensions in mm SMD = Surface Mounted Device Specification 60 V 2.5, 2004-04-28 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG