PD -94903 IRG4BC10KDPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Short Circuit Rated UltraFast IGBT C Features • High short circuit rating optimized for motor control, tsc =10µs, @360V VCE (start), TJ = 125°C, VGE = 15V • Combines low conduction losses with high switching speed • Tighter parameter distribution and higher efficiency than previous generations • IGBT co-packaged with HEXFREDTM ultrafast, ultrasoft recovery antiparallel diodes • Lead-Free VCES = 600V VCE(on) typ. = 2.39V G @VGE = 15V, IC = 5.0A E n-channel Benefits • Latest generation 4 IGBTs offer highest power density motor controls possible • HEXFREDTM diodes optimized for performance with IGBTs. Minimized recovery characteristics reduce noise, EMI and switching losses TO-220AB Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM tsc VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Short Circuit Withstand Time Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Max. Units 600 9.0 5.0 18 18 4.0 16 10 ± 20 38 15 -55 to +150 V A µs V W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m) Min. Typ. Max. ––– ––– ––– ––– ––– ––– ––– 0.50 ––– 2 (0.07) 3.3 7.0 ––– 80 ––– Units °C/W g (oz) 1 12/23/03 IRG4BC10KDPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Max. Units Conditions Collector-to-Emitter Breakdown Voltageƒ 600 — — V VGE = 0V, IC = 250µA Temperature Coeff. of Breakdown Voltage — 0.58 — V/°C VGE = 0V, IC = 1.0mA Collector-to-Emitter Saturation Voltage — 2.39 2.62 IC = 5.0A VGE = 15V See Fig. 2, 5 — 3.25 — V IC = 9.0A — 2.63 — IC = 5.0A, TJ = 150°C Gate Threshold Voltage 3.0 — 6.5 VCE = VGE, IC = 250µA Temperature Coeff. of Threshold Voltage — -11 — mV/°C VCE = VGE, IC = 250µA Forward Transconductance „ 1.2 1.8 — S VCE = 50V, IC = 5.0A Zero Gate Voltage Collector Current — — 250 µA VGE = 0V, VCE = 600V — — 1000 VGE = 0V, VCE = 600V, TJ = 150°C Diode Forward Voltage Drop — 1.5 1.8 V IC = 4.0A See Fig. 13 — 1.4 1.7 IC = 4.0A, TJ = 150°C Gate-to-Emitter Leakage Current — — ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time td(on) tr td(off) tf Ets LE Cies Coes Cres trr Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M /dt Diode Peak Rate of Fall of Recovery During tb 2 Min. — — — — — — — — — — 10 Typ. 19 2.9 9.8 49 28 97 140 0.25 0.14 0.39 — — — — — — — — — — — — — — — — — — 46 32 100 310 0.56 7.5 220 29 7.5 28 38 2.9 3.7 40 70 280 235 Max. Units Conditions 29 IC = 5.0A 4.3 nC VCC = 400V See Fig.8 15 VGE = 15V — — TJ = 25°C ns 150 IC = 5.0A, VCC = 480V 210 VGE = 15V, RG = 100Ω — Energy losses include "tail" — mJ and diode reverse recovery 0.48 See Fig. 9,10,14 — µs VCC = 360V, TJ = 125°C VGE = 15V, RG = 100Ω , VCPK < 500V — TJ = 150°C, See Fig. 10,11,14 — IC = 5.0A, VCC = 480V ns — VGE = 15V, RG = 100Ω — Energy losses include "tail" — mJ and diode reverse recovery — nH Measured 5mm from package — VGE = 0V — pF VCC = 30V See Fig. 7 — ƒ = 1.0MHz 42 ns TJ = 25°C See Fig. 57 TJ = 125°C 14 IF = 4.0A 5.2 A TJ = 25°C See Fig. 6.7 TJ = 125°C 15 VR = 200V 60 nC TJ = 25°C See Fig. 105 TJ = 125°C 16 di/dt = 200A/µs — A/µs TJ = 25°C See Fig. — TJ = 125°C 17 www.irf.com IRG4BC10KDPbF 6.0 For both: Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate drive as specified LOAD CURRENT (A) 5.0 4.0 Power Dissipation = 9.2 W Square wave: 60% of rated voltage 3.0 I 2.0 Ideal diodes 1.0 0.0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 TJ = 25 °C 10 1 1.0 TJ = 150 °C V GE = 15V 20µs PULSE WIDTH 2.0 3.0 4.0 5.0 6.0 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com 7.0 I C , Collector-to-Emitter Current (A) I C, Collector Current (A) 100 10 TJ = 150 °C TJ = 25 °C 1 5 10 V CC = 50V 5µs PULSE WIDTH 15 20 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4BC10KDPbF 5.0 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 10 8 6 4 2 0 25 50 75 100 125 150 VGE = 15V 80 us PULSE WIDTH 4.0 3.0 IC = 5A IC = 2.5 A 2.0 1.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) TC , Case Temperature ( °C) Fig. 4 - Maximum Collector Current vs. Case Temperature IC = 10 A Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01 PDM SINGLE PULSE (THERMAL RESPONSE) t1 t2 0.01 0.00001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4BC10KDPbF VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc 300 Cies 200 100 Coes 0 20 VGE , Gate-to-Emitter Voltage (V) C, Capacitance (pF) 400 16 12 8 4 Cres 1 10 0 100 VCE , Collector-to-Emitter Voltage (V) 10 Total Switching Losses (mJ) Total Switching Losses (mJ) V CC = 480V V GE = 15V TJ = 25 °C 0.38 I C = 5.0A 0.36 0.34 0.32 20 40 60 RG , Gate Resistance 80 (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 4 8 12 16 20 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 0.40 0 0 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 0.30 VCC = 400V I C = 5.0A 100 50 Ω RG = Ohm VGE = 15V VCC = 480V IC = 10 A 1 IC = 5A IC = 2.5 A 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4BC10KDPbF RG TJ VCC VGE = Ohm 50 Ω = 150° C = 480V = 15V 100 I C , Collector-to-Emitter Current (A) Total Switching Losses (mJ) 2.0 1.5 1.0 0.5 0.0 0 2 4 6 8 10 1 10 VGE = 20V T J = 125 o C SAFE OPERATING AREA 1 I C , Collector Current (A) 10 100 1000 VCE, Collector-to-Emitter Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA 100 TJ = 150°C 10 T = 125°C J T = 25°C J 1 0.1 0.0 1.0 2.0 3.0 4.0 5.0 6.0 Forward Voltage Drop - V FM(V) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4BC10KDPbF 50 14 I F = 8.0A 45 12 I F = 4.0A 10 I F = 8.0A I F = 4.0A Irr- ( A) trr- (ns) 40 VR = 200V TJ = 125°C TJ = 25°C 35 8 6 30 4 25 2 VR = 200V TJ = 125°C TJ = 25°C 20 100 di f /dt - (A/µs) 0 100 1000 di f /dt - (A/µs) 1000 Fig. 15 - Typical Recovery Current vs. dif/dt Fig. 14 - Typical Reverse Recovery vs. dif/dt 200 1000 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C 160 I F = 8.0A di (rec) M/dt- (A /µs) I F = 4.0A Qrr- (nC) 120 I F = 8.0A 80 I F = 4.0A 40 0 100 di f /dt - (A/µs) 1000 Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 100 100 A di f /dt - (A/µs) 1000 Fig. 17 - Typical di(rec)M/dt vs. dif/dt, 7 IRG4BC10KDPbF Same type device as D.U.T. 430µF 80% of Vce 90% D.U.T. 10% Vge VC 90% td(off) 10% IC 5% Fig. 18a - Test Circuit for Measurement of tf tr ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t d(on) t=5µs Eon Eoff Ets= (Eon +Eoff ) Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf GATE VOLTAGE D.U.T. 10% +Vg trr Ic Qrr = tx DUT VOLTAGE AND CURRENT Vce 10% Ic 90% Ic tr td(on) 10% Irr Ipk Vpk Vcc Irr Ic DIODE RECOVERY WAVEFORMS 5% Vce t1 ∫ t2 VceieIcdtdt Eon = Vce t1 t2 DIODE REVERSE RECOVERY ENERGY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ +Vg 10% Vcc Vcc trr id Ic dtdt tx ∫ t4 Erec = Vd VdidIcdt dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4BC10KDPbF Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 1000V Vc* RL= 0 - 480V 480V 4 X IC @25°C 50V 6000µF 100V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4BC10KDPbF Notes: Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10µH, RG= 100Ω (figure 19) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. TO-220AB Package Outline 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) LEAD ASSIGNMENTS 1.15 (.045) MIN 1 2 3 4- DRAIN 14.09 (.555) 13.47 (.530) 4- COLLECTOR 4.06 (.160) 3.55 (.140) 3X 3X LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 2 - DRAIN 1- GATE 1- GATE 3 SOURCE 2- DRAIN 2- COLLECTOR 3- SOURCE 3- EMITTER 4 - DRAIN HEXFET 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E XAMP L E : T HIS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" Note: "P" in assembly line position indicates "Lead-Free" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE PAR T NUMB E R DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.12/03 10 www.irf.com