IRF IRG4PC40FDPBF

PD - 94911
IRG4PC40FDPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
• Fast: Optimized for medium operating
frequencies ( 1-5 kHz in hard switching, >20
kHz in resonant mode).
• Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
Generation 3
• IGBT co-packaged with HEXFREDTM ultrafast,
ultra-soft-recovery anti-parallel diodes for use
in bridge configurations
• Industry standard TO-247AC package
• Lead-Free
Fast CoPack IGBT
C
VCES = 600V
VCE(on) typ. = 1.50V
G
@VGE = 15V, IC = 27A
E
n-channel
Benefits
• Generation -4 IGBT's offer highest efficiencies
available
• IGBT's optimized for specific application conditions
• HEXFRED diodes optimized for performance with
IGBT's . Minimized recovery characteristics require
less/no snubbing
• Designed to be a "drop-in" replacement for equivalent
industry-standard Generation 3 IR IGBT's
TO-247AC
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Max.
Units
600
49
27
200
200
15
200
± 20
160
65
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1 N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Min.
Typ.
Max.
-------------------------
----------0.24
----6 (0.21)
0.77
1.7
-----40
------
Units
°C/W
g (oz)
1
12/29/03
IRG4PC40FDPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Collector-to-Emitter Breakdown Voltageƒ 600
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage ---VCE(on)
Collector-to-Emitter Saturation Voltage
---------VGE(th)
Gate Threshold Voltage
3.0
∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage ---gfe
Forward Transconductance „
9.2
ICES
Zero Gate Voltage Collector Current
------V FM
Diode Forward Voltage Drop
------IGES
Gate-to-Emitter Leakage Current
---V(BR)CES
Typ. Max. Units
------V
0.70 ---- V/°C
1.50 1.7
1.85 ---V
1.56 ------- 6.0
-12 ---- mV/°C
12
---S
---- 250
µA
---- 3500
1.3 1.7
V
1.2 1.6
---- ±100 n A
Conditions
VGE = 0V, IC = 250µA
VGE = 0V, IC = 1.0mA
IC = 27A
VGE = 15V
IC = 49A
See Fig. 2, 5
IC = 27A, TJ = 150°C
VCE = VGE, IC = 250µA
VCE = VGE, IC = 250µA
VCE = 100V, IC = 27A
VGE = 0V, VCE = 600V
VGE = 0V, VCE = 600V, TJ = 150°C
IC = 15A
See Fig. 13
IC = 15A, TJ = 150°C
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
t rr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
2
Min.
----------------------------------------------------------------------------------
Typ.
100
15
35
63
32
230
170
0.95
2.01
2.96
63
33
350
310
4.7
13
2200
140
29
42
74
4.0
6.5
80
220
188
160
Max. Units
Conditions
150
IC = 27A
23
nC
VCC = 400V
See Fig. 8
53
VGE = 15V
---TJ = 25°C
---ns
IC = 27A, VCC = 480V
350
VGE = 15V, RG = 10Ω
250
Energy losses include "tail" and
---diode reverse recovery.
---mJ
See Fig. 9, 10, 11, 18
4.0
---TJ = 150°C, See Fig. 9, 10, 11, 18
---ns
IC = 27A, VCC = 480V
---VGE = 15V, RG = 10Ω
---Energy losses include "tail" and
---mJ
diode reverse recovery.
---nH
Measured 5mm from package
---VGE = 0V
---pF
VCC = 30V
See Fig. 7
---ƒ = 1.0MHz
60
ns
TJ = 25°C See Fig.
120
TJ = 125°C
14
IF = 15A
6.0
A
TJ = 25°C See Fig.
10
TJ = 125°C
15
VR = 200V
180
nC
TJ = 25°C See Fig.
600
TJ = 125°C
16
di/dt 200A/µs
---- A/µs TJ = 25°C See Fig.
---TJ = 125°C
17
www.irf.com
IRG4PC40FDPbF
40
Duty cycle: 50%
TJ = 125°C
Tsink = 90°C
Gate drive as specified
Turn-on losses include
effects of reverse recovery
Load Current (A)
30
Power Dissipation = 35W
60% of rated
voltage
20
10
A
0
0.1
1
10
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
(A)
IC , Collector-to-Emitter Current
TJ = 25°C
100
TJ = 150°C
10
VGE = 15V
20µs PULSE WIDTH A
1
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
IC , Collector-to-Emitter Current (A)
1000
1000
100
TJ = 150°C
TJ = 25°C
10
V CC = 50V
5µs PULSE WIDTH A
1
5
6
7
8
9
10
11
12
VGE, Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4PC40FDPbF
2.5
V GE = 15V
VCE , Collector-to-Emitter Voltage (V)
Maximum DC Collector Current (A)
50
40
30
20
10
0
25
50
75
100
125
I C = 54A
2.0
I C = 27A
1.5
I C = 14A
A
1.0
150
-60
TC , Case Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
VGE = 15V
80µs PULSE WIDTH
-40
-20
0
20
40
60
80
100 120 140 160
TJ , Junction Temperature (°C)
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
1
D = 0.50
0.20
0.1
0.10
PDM
0.05
0.02
t
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D = t / t
1 2
0.01
0.01
0.00001
1
t2
2. Peak TJ = PDM x Z thJC + T C
0.0001
0.001
0.01
0.1
1
10
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PC40FDPbF
4000
VGE = 0V
Coes = Cce + Cgc
3000
Cies
2000
Coes
1000
Cres
A
0
1
VCE = 400V
IC = 27A
SHORTED
VGE , Gate-to-Emitter Voltage (V)
Cies = Cge + Cgc + Cce
Cres = Cce
C , Capacitance ( pF)
20
f = 1 MHz
10
16
12
8
4
A
0
0
100
20
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
100
= 480V
= 15V
= 25°C
= 27A
3.2
3.1
A
3.0
0
10
20
30
40
50
R G, Gate Resistance ( Ω )
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
80
100
120
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Total Switchig Losses (mJ)
Total Switchig Losses (mJ)
VCC
VGE
TJ
IC
60
Qg , Total Gate Charge (nC)
VCE, Collector-to-Emitter Voltage (V)
3.3
40
60
RG = 10Ω
VGE = 15V
VCC = 480V
10
I C = 54A
I C = 27A
I C = 14A
1
A
0.1
-60
-40
-20
0
20
40
60
80
100 120 140 160
TJ , Junction Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4PC40FDPbF
RG
TJ
VCC
VGE
10
1000
= 10 Ω
= 150°C
= 480V
= 15V
I C , Collector-to-Emitter Current (A)
Total Switchig Losses (mJ)
12
8
6
4
2
A
0
0
10
20
30
40
50
VGE
= 20V
GE
TJ = 125°C
100
SAFE OPERATING AREA
10
1
1
60
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
I C , Collector-to-Emitter Current (A)
Fig. 12 - Turn-Off SOA
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Instantaneous Forward Current - I F (A)
100
10
TJ = 150°C
TJ = 125°C
TJ = 25°C
1
0.8
1.2
1.6
2.0
2.4
Forward Voltage Drop - V FM (V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4PC40FDPbF
100
100
VR = 200V
TJ = 125°C
TJ = 25°C
VR= 200V
T J = 125°C
T J = 25°C
80
I IRRM - (A)
t rr - (ns)
I F = 30A
I F = 30A
60
I F = 15A
IF = 15A
10
I F = 5.0A
40
I F = 5.0A
20
100
di f /dt - (A/µs)
1
100
1000
Fig. 14 - Typical Reverse Recovery vs. dif/dt
di f /dt - (A/µs)
1000
Fig. 15 - Typical Recovery Current vs. dif/dt
1000
800
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
di(rec)M/dt - (A/µs)
600
Q RR - (nC)
IF = 30A
400
I F = 15A
IF = 5.0A
I F = 5.0A
I F = 15A
I F = 30A
200
0
100
di f /dt - (A/µs)
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
1000
100
100
di f /dt - (A/µs)
1000
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
IRG4PC40FDPbF
90% Vge
+Vge
Same type
device as
D.U.T.
Vce
Ic
90% Ic
10% Vce
Ic
5% Ic
430µF
80%
of Vce
D.U.T.
td(off)
tf
Eoff =
∫
t1+5µS
Vce ic dt
t1
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T.
10% +Vg
trr
Ic
Qrr =
tx
DUT VOLTAGE
AND CURRENT
Vce
10% Ic
90% Ic
tr
td(on)
10% Irr
Ipk
Vpk
Vcc
Irr
Ic
DIODE RECOVERY
WAVEFORMS
5% Vce
t1
∫
t2
Eon = Vce ie dt
t1
t2
DIODE REVERSE
RECOVERY ENERGY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫
+Vg
10% Vcc
Vcc
trr
id dt
tx
∫
t4
Erec = Vd id dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4PC40FDPbF
Vg GATE SIGNAL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
RL=
0 - 480V
480V
4 X IC @25°C
50V
6000µF
100V
Figure 19. Clamped Inductive Load Test Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4PC40FDPbF
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
‚VCC=80%(VCES), VGE=20V, L=10µH, RG = 10Ω (figure 19)
ƒPulse width ≤ 80µs; duty factor ≤ 0.1%.
„Pulse width 5.0µs, single shot.
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
-D-
3.65 (.143)
3.55 (.140)
15.90 (.626)
15.30 (.602)
-B-
-A-
0.25 (.010) M D B M
2.50 (.089)
1.50 (.059)
4
5.50 (.217)
20.30 (.800)
19.70 (.775)
2X
1
2
5.30 (.209)
4.70 (.185)
NOTES:
5.50 (.217)
4.50 (.177)
1 DIMENSIONING & TOLERANCING
PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH.
3 CONFORMS TO JEDEC OUTLINE
TO-247-AC.
3
-C-
14.80 (.583)
14.20 (.559)
2.40 (.094)
2.00 (.079)
2X
5.45 (.215)
2X
4.30 (.170)
3.70 (.145)
0.80 (.031)
3X 0.40 (.016)
1.40 (.056)
3X 1.00 (.039)
0.25 (.010) M
2.60 (.102)
2.20 (.087)
C A S
3.40 (.133)
3.00 (.118)
LEAD ASSIGNMENTS
Hexfet
IGBT
1 -LEAD
GateASSIGNMENTS
1 - Gate
1
GATE
2 - Drain
2 - Collector
2 - DRAIN
3 - Source
3 - Emitter
3 - SOURCE
4 - Drain
4 - DRAIN4 - Collector
TO-247AC Part Marking Information
EXAMPLE: T HIS IS AN IRFPE30
WIT H ASSEMBLY
LOT CODE 5657
ASSEMBLED ON WW 35, 2000
IN THE AS SEMBLY LINE "H"
Note: "P" in assembly line
position indicates "Lead-Free"
INT ERNATIONAL
RECT IFIER
LOGO
ASSEMBLY
LOT CODE
PART NUMBER
IRFPE30
56
035H
57
DAT E CODE
YEAR 0 = 2000
WEEK 35
LINE H
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.12/03
10
www.irf.com
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/