IRF IRFI4229PBF

PD - 97201
IRFI4229PbF
PDP SWITCH
Features
l Advanced Process Technology
l Key Parameters Optimized for PDP Sustain,
Energy Recovery and Pass Switch Applications
l Low EPULSE Rating to Reduce Power
Dissipation in PDP Sustain, Energy Recovery
and Pass Switch Applications
l Low QG for Fast Response
l High Repetitive Peak Current Capability for
Reliable Operation
l Short Fall & Rise Times for Fast Switching
l150°C Operating Junction Temperature for
Improved Ruggedness
l Repetitive Avalanche Capability for Robustness
and Reliability
Key Parameters
VDS max
VDS (Avalanche) typ.
RDS(ON) typ. @ 10V
IRP max @ TC= 100°C
TJ max
250
300
38
32
150
V
V
m:
A
°C
D
D
G
G
S
D
S
TO-220AB Full-Pak
G
D
S
Gate
Drain
Source
Description
This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch
applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve
low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 150°C
operating junction temperature and high repetitive peak current capability. These features combine to
make this MOSFET a highly efficient, robust and reliable device for PDP driving applications.
Absolute Maximum Ratings
Max.
Units
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
±30
V
19
A
Parameter
VGS
ID @ TC = 25°C
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
12
IDM
Pulsed Drain Current c
72
IRP @ TC = 100°C
Repetitive Peak Current g
32
PD @TC = 25°C
Power Dissipation
46
PD @TC = 100°C
Power Dissipation
18
Linear Derating Factor
0.37
W/°C
TJ
Operating Junction and
-40 to + 150
°C
TSTG
Storage Temperature Range
300
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
W
10lbxin (1.1Nxm)
N
Thermal Resistance
Parameter
RθJC
RθJA
Junction-to-Case f
Junction-to-Ambient f
Typ.
–––
–––
Max.
2.73
65
Units
°C/W
Notes  through … are on page 8
www.irf.com
1
04/07/06
IRFI4229PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ. Max. Units
BVDSS
Drain-to-Source Breakdown Voltage
Parameter
250
–––
–––
∆ΒVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
–––
340
–––
Static Drain-to-Source On-Resistance
–––
38
46
VGS(th)
Gate Threshold Voltage
3.0
–––
5.0
V
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage Coefficient
–––
-12
–––
mV/°C
Drain-to-Source Leakage Current
–––
–––
20
µA
–––
–––
250
IGSS
V
Conditions
VGS = 0V, ID = 250µA
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 11A e
VDS = VGS, ID = 250µA
VDS = 250V, VGS = 0V
VDS = 250V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
gfs
Forward Transconductance
26
–––
–––
S
Qg
Total Gate Charge
–––
73
110
nC
VDD = 125V, ID = 11A, VGS = 10Ve
Qgd
Gate-to-Drain Charge
–––
24
–––
tst
Shoot Through Blocking Time
100
–––
–––
ns
EPULSE
Energy per Pulse
–––
770
–––
VDD = 200V, VGS = 15V, RG= 5.1Ω
L = 220nH, C= 0.3µF, VGS = 15V
µJ
–––
1380
–––
VDS = 200V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.3µF, VGS = 15V
–––
VGS = -20V
VDS = 25V, ID = 11A
VDS = 200V, RG= 5.1Ω, TJ = 100°C
VGS = 0V
Ciss
Input Capacitance
–––
4480
Coss
Output Capacitance
–––
400
–––
Crss
Reverse Transfer Capacitance
–––
100
–––
Coss eff.
Effective Output Capacitance
–––
270
–––
ƒ = 1.0MHz,
VGS = 0V, VDS = 0V to 200V
LD
Internal Drain Inductance
–––
4.5
–––
Between lead,
pF
nH
LS
Internal Source Inductance
–––
7.5
–––
VDS = 25V
D
6mm (0.25in.)
from package
and center of die contact
G
S
Avalanche Characteristics
Typ.
Max.
Units
–––
110
mJ
–––
4.6
mJ
Repetitive Avalanche Voltagec
300
–––
V
Avalanche Currentd
–––
11
A
Parameter
EAS
EAR
Single Pulse Avalanche Energyd
Repetitive Avalanche Energy c
VDS(Avalanche)
IAS
Diode Characteristics
Parameter
IS @ TC = 25°C Continuous Source Current
Min.
Typ. Max. Units
–––
–––
ISM
Pulsed Source Current
MOSFET symbol
18
(Body Diode)
A
–––
–––
Conditions
showing the
72
integral reverse
p-n junction diode.
TJ = 25°C, IS = 11A, VGS = 0V e
(Body Diode)c
VSD
Diode Forward Voltage
–––
–––
1.3
V
trr
Reverse Recovery Time
–––
120
180
ns
TJ = 25°C, IF = 11A, VDD = 50V
Qrr
Reverse Recovery Charge
–––
540
810
nC
di/dt = 100A/µs e
2
www.irf.com
IRFI4229PbF
1000
1000
ID, Drain-to-Source Current (A)
100
BOTTOM
10
100
1
0.1
VGS
15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
5.0V
TOP
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
5.0V
5.0V
BOTTOM
10
5.0V
1
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
0.1
0.01
0.1
1
10
0.1
100
V DS, Drain-to-Source Voltage (V)
100
100
3.0
VDS = 25V
≤60µs PULSE WIDTH
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
10
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
10
T J = 150°C
1
T J = 25°C
0.1
ID = 11A
2.5
VGS = 10V
2.0
1.5
1.0
0.5
0.0
3
4
5
6
7
-60 -40 -20 0
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
1400
1400
L = 220nH
C = 0.3µF
100°C
25°C
1200
Energy per Pulse (µJ)
1200
Energy per Pulse (µJ)
1
V DS, Drain-to-Source Voltage (V)
1000
800
600
400
1000
L = 220nH
C = variable
100°C
25°C
800
600
400
200
200
0
140
150
160
170
180
190
200
210
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical EPULSE vs. Drain-to-Source Voltage
www.irf.com
100
110
120
130
140
150
160
170
ID, Peak Drain Current (A)
Fig 6. Typical EPULSE vs. Drain Current
3
IRFI4229PbF
100
1800
1600
C = 0.3µF
1400
Energy per Pulse (µJ)
ISD, Reverse Drain Current (A)
L = 220nH
1200
1000
C = 0.2µF
800
600
C = 0.1µF
400
T J = 150°C
10
T J = 25°C
1
200
VGS = 0V
0.1
0
20
40
60
80
100
120
140
0.2
160
Fig 7. Typical EPULSE vs.Temperature
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
ID= 11A
Ciss
4000
3000
Coss
2000
1000
VDS= 200V
VDS= 125V
10.0
VDS= 50V
8.0
6.0
4.0
2.0
Crss
0
0.0
1
10
100
1000
0
VDS, Drain-to-Source Voltage (V)
20
30
40
50
60
70
80
Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage
20
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
ID, Drain-to-Source Current (A)
18
16
ID, Drain Current (A)
10
QG, Total Gate Charge (nC)
Fig 9. Typical Capacitance vs.Drain-to-Source Voltage
14
12
10
8
6
4
100
100µsec
10
1msec
1
10msec
0.1
Tc = 25°C
Tj = 150°C
Single Pulse
2
0
0.01
25
50
75
100
125
150
T C , Case Temperature (°C)
Fig 11. Maximum Drain Current vs. Case Temperature
4
1.0
12.0
C oss = C ds + C gd
5000
0.8
Fig 8. Typical Source-Drain Diode Forward Voltage
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
6000
0.6
VSD, Source-to-Drain Voltage (V)
Temperature (°C)
7000
0.4
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 12. Maximum Safe Operating Area
www.irf.com
200
450
ID = 11A
180
EAS , Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance (m Ω)
IRFI4229PbF
160
140
120
T J = 125°C
100
80
60
T J = 25°C
40
20
350
300
250
200
150
100
50
0
0
5
6
7
8
9
10
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
VGS, Gate -to -Source Voltage (V)
Fig 13. On-Resistance vs. Gate Voltage
Fig 14. Maximum Avalanche Energy vs. Temperature
60
5.0
ton= 1µs
Duty cycle = 0.25
Half Sine Wave
Square Pulse
50
Repetitive Peak Current (A)
VGS(th) , Gate Threshold Voltage (V)
ID
TOP
2.3A
2.7A
BOTTOM 11A
400
4.0
ID = 250µA
3.0
40
30
20
10
0
2.0
-75 -50 -25
0
25
50
25
75 100 125 150
50
75
100
125
150
Case Temperature (°C)
T J , Temperature ( °C )
Fig 15. Threshold Voltage vs. Temperature
Fig 16. Typical Repetitive peak Current vs.
Case temperature
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.1
0.02
0.01
τJ
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ2
R3
R3
τ3
τC
τ
τ3
Ci= τi/Ri
Ci τi/Ri
Ri (°C/W) τi (sec)
0.3671 0.000287
1.0580
0.162897
1.3076
2.426
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFI4229PbF
D.U.T
Driver Gate Drive
ƒ
-
‚
-
-
„
D.U.T. ISD Waveform
Reverse
Recovery
Current

RG
P.W.
Period
*
+
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
•
•
•
•
Period
P.W.
+
VDD
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
+
V
- DD
IAS
VGS
20V
tp
A
0.01Ω
I AS
Fig 19a. Unclamped Inductive Test Circuit
Fig 19b. Unclamped Inductive Waveforms
Id
Vds
Vgs
L
DUT
0
VCC
Vgs(th)
1K
Qgs1 Qgs2
Fig 20a. Gate Charge Test Circuit
6
Qgd
Qgodr
Fig 20b. Gate Charge Waveform
www.irf.com
IRFI4229PbF
A
RG
C
DRIVER
L
VCC
B
RG
Ipulse
DUT
Fig 21a. tst and EPULSE Test Circuit
Fig 21b. tst Test Waveforms
Fig 21c. EPULSE Test Waveforms
www.irf.com
7
IRFI4229PbF
TO-220AB Full-Pak Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Full-Pak Part Marking Information
(;$03/( 7+,6,6$1,5),*
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(.
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5),*
.
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(.
TO-220AB Full-Pak packages are not recommended for Surface Mount Application.
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 1.9mH, RG = 25Ω, IAS = 11A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Rθ is measured at TJ of approximately 90°C.
… Half sine wave with duty cycle = 0.25, ton=1µsec.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 03/06
8
www.irf.com