PD - 97201 IRFI4229PbF PDP SWITCH Features l Advanced Process Technology l Key Parameters Optimized for PDP Sustain, Energy Recovery and Pass Switch Applications l Low EPULSE Rating to Reduce Power Dissipation in PDP Sustain, Energy Recovery and Pass Switch Applications l Low QG for Fast Response l High Repetitive Peak Current Capability for Reliable Operation l Short Fall & Rise Times for Fast Switching l150°C Operating Junction Temperature for Improved Ruggedness l Repetitive Avalanche Capability for Robustness and Reliability Key Parameters VDS max VDS (Avalanche) typ. RDS(ON) typ. @ 10V IRP max @ TC= 100°C TJ max 250 300 38 32 150 V V m: A °C D D G G S D S TO-220AB Full-Pak G D S Gate Drain Source Description This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for PDP driving applications. Absolute Maximum Ratings Max. Units Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V ±30 V 19 A Parameter VGS ID @ TC = 25°C ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 12 IDM Pulsed Drain Current c 72 IRP @ TC = 100°C Repetitive Peak Current g 32 PD @TC = 25°C Power Dissipation 46 PD @TC = 100°C Power Dissipation 18 Linear Derating Factor 0.37 W/°C TJ Operating Junction and -40 to + 150 °C TSTG Storage Temperature Range 300 Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw W 10lbxin (1.1Nxm) N Thermal Resistance Parameter RθJC RθJA Junction-to-Case f Junction-to-Ambient f Typ. ––– ––– Max. 2.73 65 Units °C/W Notes through are on page 8 www.irf.com 1 04/07/06 IRFI4229PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage Parameter 250 ––– ––– ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient ––– 340 ––– Static Drain-to-Source On-Resistance ––– 38 46 VGS(th) Gate Threshold Voltage 3.0 ––– 5.0 V ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient ––– -12 ––– mV/°C Drain-to-Source Leakage Current ––– ––– 20 µA ––– ––– 250 IGSS V Conditions VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 11A e VDS = VGS, ID = 250µA VDS = 250V, VGS = 0V VDS = 250V, VGS = 0V, TJ = 125°C nA VGS = 20V Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 gfs Forward Transconductance 26 ––– ––– S Qg Total Gate Charge ––– 73 110 nC VDD = 125V, ID = 11A, VGS = 10Ve Qgd Gate-to-Drain Charge ––– 24 ––– tst Shoot Through Blocking Time 100 ––– ––– ns EPULSE Energy per Pulse ––– 770 ––– VDD = 200V, VGS = 15V, RG= 5.1Ω L = 220nH, C= 0.3µF, VGS = 15V µJ ––– 1380 ––– VDS = 200V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.3µF, VGS = 15V ––– VGS = -20V VDS = 25V, ID = 11A VDS = 200V, RG= 5.1Ω, TJ = 100°C VGS = 0V Ciss Input Capacitance ––– 4480 Coss Output Capacitance ––– 400 ––– Crss Reverse Transfer Capacitance ––– 100 ––– Coss eff. Effective Output Capacitance ––– 270 ––– ƒ = 1.0MHz, VGS = 0V, VDS = 0V to 200V LD Internal Drain Inductance ––– 4.5 ––– Between lead, pF nH LS Internal Source Inductance ––– 7.5 ––– VDS = 25V D 6mm (0.25in.) from package and center of die contact G S Avalanche Characteristics Typ. Max. Units ––– 110 mJ ––– 4.6 mJ Repetitive Avalanche Voltagec 300 ––– V Avalanche Currentd ––– 11 A Parameter EAS EAR Single Pulse Avalanche Energyd Repetitive Avalanche Energy c VDS(Avalanche) IAS Diode Characteristics Parameter IS @ TC = 25°C Continuous Source Current Min. Typ. Max. Units ––– ––– ISM Pulsed Source Current MOSFET symbol 18 (Body Diode) A ––– ––– Conditions showing the 72 integral reverse p-n junction diode. TJ = 25°C, IS = 11A, VGS = 0V e (Body Diode)c VSD Diode Forward Voltage ––– ––– 1.3 V trr Reverse Recovery Time ––– 120 180 ns TJ = 25°C, IF = 11A, VDD = 50V Qrr Reverse Recovery Charge ––– 540 810 nC di/dt = 100A/µs e 2 www.irf.com IRFI4229PbF 1000 1000 ID, Drain-to-Source Current (A) 100 BOTTOM 10 100 1 0.1 VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.0V TOP ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.0V 5.0V BOTTOM 10 5.0V 1 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 0.1 0.01 0.1 1 10 0.1 100 V DS, Drain-to-Source Voltage (V) 100 100 3.0 VDS = 25V ≤60µs PULSE WIDTH RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 10 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 10 T J = 150°C 1 T J = 25°C 0.1 ID = 11A 2.5 VGS = 10V 2.0 1.5 1.0 0.5 0.0 3 4 5 6 7 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature 1400 1400 L = 220nH C = 0.3µF 100°C 25°C 1200 Energy per Pulse (µJ) 1200 Energy per Pulse (µJ) 1 V DS, Drain-to-Source Voltage (V) 1000 800 600 400 1000 L = 220nH C = variable 100°C 25°C 800 600 400 200 200 0 140 150 160 170 180 190 200 210 VDS, Drain-to-Source Voltage (V) Fig 5. Typical EPULSE vs. Drain-to-Source Voltage www.irf.com 100 110 120 130 140 150 160 170 ID, Peak Drain Current (A) Fig 6. Typical EPULSE vs. Drain Current 3 IRFI4229PbF 100 1800 1600 C = 0.3µF 1400 Energy per Pulse (µJ) ISD, Reverse Drain Current (A) L = 220nH 1200 1000 C = 0.2µF 800 600 C = 0.1µF 400 T J = 150°C 10 T J = 25°C 1 200 VGS = 0V 0.1 0 20 40 60 80 100 120 140 0.2 160 Fig 7. Typical EPULSE vs.Temperature VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) ID= 11A Ciss 4000 3000 Coss 2000 1000 VDS= 200V VDS= 125V 10.0 VDS= 50V 8.0 6.0 4.0 2.0 Crss 0 0.0 1 10 100 1000 0 VDS, Drain-to-Source Voltage (V) 20 30 40 50 60 70 80 Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage 20 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) ID, Drain-to-Source Current (A) 18 16 ID, Drain Current (A) 10 QG, Total Gate Charge (nC) Fig 9. Typical Capacitance vs.Drain-to-Source Voltage 14 12 10 8 6 4 100 100µsec 10 1msec 1 10msec 0.1 Tc = 25°C Tj = 150°C Single Pulse 2 0 0.01 25 50 75 100 125 150 T C , Case Temperature (°C) Fig 11. Maximum Drain Current vs. Case Temperature 4 1.0 12.0 C oss = C ds + C gd 5000 0.8 Fig 8. Typical Source-Drain Diode Forward Voltage VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd 6000 0.6 VSD, Source-to-Drain Voltage (V) Temperature (°C) 7000 0.4 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 12. Maximum Safe Operating Area www.irf.com 200 450 ID = 11A 180 EAS , Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance (m Ω) IRFI4229PbF 160 140 120 T J = 125°C 100 80 60 T J = 25°C 40 20 350 300 250 200 150 100 50 0 0 5 6 7 8 9 10 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) VGS, Gate -to -Source Voltage (V) Fig 13. On-Resistance vs. Gate Voltage Fig 14. Maximum Avalanche Energy vs. Temperature 60 5.0 ton= 1µs Duty cycle = 0.25 Half Sine Wave Square Pulse 50 Repetitive Peak Current (A) VGS(th) , Gate Threshold Voltage (V) ID TOP 2.3A 2.7A BOTTOM 11A 400 4.0 ID = 250µA 3.0 40 30 20 10 0 2.0 -75 -50 -25 0 25 50 25 75 100 125 150 50 75 100 125 150 Case Temperature (°C) T J , Temperature ( °C ) Fig 15. Threshold Voltage vs. Temperature Fig 16. Typical Repetitive peak Current vs. Case temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.1 0.02 0.01 τJ 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 R1 R1 τJ τ1 τ1 R2 R2 τ2 τ2 R3 R3 τ3 τC τ τ3 Ci= τi/Ri Ci τi/Ri Ri (°C/W) τi (sec) 0.3671 0.000287 1.0580 0.162897 1.3076 2.426 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFI4229PbF D.U.T Driver Gate Drive - - - D.U.T. ISD Waveform Reverse Recovery Current RG P.W. Period * + di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + • • • • Period P.W. + VDD + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS VGS 20V tp A 0.01Ω I AS Fig 19a. Unclamped Inductive Test Circuit Fig 19b. Unclamped Inductive Waveforms Id Vds Vgs L DUT 0 VCC Vgs(th) 1K Qgs1 Qgs2 Fig 20a. Gate Charge Test Circuit 6 Qgd Qgodr Fig 20b. Gate Charge Waveform www.irf.com IRFI4229PbF A RG C DRIVER L VCC B RG Ipulse DUT Fig 21a. tst and EPULSE Test Circuit Fig 21b. tst Test Waveforms Fig 21c. EPULSE Test Waveforms www.irf.com 7 IRFI4229PbF TO-220AB Full-Pak Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Full-Pak Part Marking Information (;$03/( 7+,6,6$1,5),* :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(. 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5),* . $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(. TO-220AB Full-Pak packages are not recommended for Surface Mount Application. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 1.9mH, RG = 25Ω, IAS = 11A. Pulse width ≤ 400µs; duty cycle ≤ 2%. Rθ is measured at TJ of approximately 90°C. Half sine wave with duty cycle = 0.25, ton=1µsec. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 03/06 8 www.irf.com