IRF IRLIB4343

PD - 95857A
DIGITAL AUDIO MOSFET
IRLIB4343
Features
l
l
l
l
l
l
l
Advanced Process Technology
Key Parameters Optimized for Class-D Audio
Amplifier Applications
Low RDSON for Improved Efficiency
Low Qg and Qsw for Better THD and Improved
Efficiency
Low Qrr for Better THD and Lower EMI
175°C Operating Junction Temperature for
Ruggedness
Repetitive Avalanche Capability for Robustness and
Reliability
Key Parameters
VDS
RDS(ON) typ. @ VGS = 10V
RDS(ON) typ. @ VGS = 4.5V
Qg typ.
TJ max
55
42
57
28
175
V
m:
m:
nC
°C
D
G
TO-220 Full-Pak
S
Description
This Digital Audio HEXFET® is specifically designed for Class-D audio amplifier applications. This MosFET utilizes the latest
processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery
and internal Gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD
and EMI. Additional features of this MosFET are 175°C operating junction temperature and repetitive avalanche capability.
These features combine to make this MosFET a highly efficient, robust and reliable device for Class-D audio amplifier
applications.
Absolute Maximum Ratings
Parameter
Max.
Units
V
VDS
Drain-to-Source Voltage
55
VGS
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
±20
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
13
IDM
Pulsed Drain Current
80
PD @TC = 25°C
Power Dissipation
39
PD @TC = 100°C
Power Dissipation
20
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
ID @ TC = 25°C
19
c
Mounting torque, 6-32 or M3 screw
A
W
0.26
-40 to + 175
x
W/°C
°C
x
10lb in (1.1N m)
Thermal Resistance
f
RθJC
Junction-to-Case
RθJA
Junction-to-Ambient
Parameter
f
Typ.
Max.
Units
–––
3.84
°C/W
–––
65
Notes  through … are on page 7
www.irf.com
1
3/31/04
IRLIB4343
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Conditions
Typ. Max. Units
VGS = 0V, ID = 250µA
BVDSS
Drain-to-Source Breakdown Voltage
55
–––
–––
∆ΒVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
–––
15
–––
Static Drain-to-Source On-Resistance
–––
42
50
–––
57
65
VGS(th)
Gate Threshold Voltage
1.0
–––
–––
V
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage Coefficient
–––
-4.4
–––
mV/°C
–––
–––
2.0
µA
VDS = 55V, VGS = 0V
–––
–––
25
VDS = 55V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
IGSS
Drain-to-Source Leakage Current
V
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 4.7A e
VGS = 4.5V, ID = 3.8A e
VDS = VGS, ID = 250µA
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
gfs
Forward Transconductance
8.8
–––
–––
Qg
Total Gate Charge
–––
28
42
VDS = 44V
Qgs
Pre-Vth Gate-to-Source Charge
–––
3.5
–––
VGS = 10V
Qgd
Gate-to-Drain Charge
–––
9.5
–––
ID = 19A
Qgodr
Gate Charge Overdrive
–––
15
–––
td(on)
Turn-On Delay Time
–––
5.7
–––
See Fig. 6 and 19
VDD = 28V, VGS = 10Ve
tr
Rise Time
–––
19
–––
td(off)
Turn-Off Delay Time
–––
23
–––
tf
Fall Time
–––
5.3
–––
Ciss
Input Capacitance
–––
740
–––
Coss
Output Capacitance
–––
150
–––
Crss
Reverse Transfer Capacitance
–––
59
–––
Coss
Effective Output Capacitance
–––
250
–––
LD
Internal Drain Inductance
–––
4.5
–––
VGS = -20V
S
ID = 19A
ns
Internal Source Inductance
–––
7.5
RG = 2.5Ω
VGS = 0V
pF
VDS = 50V
ƒ = 1.0MHz,
See Fig.5
VGS = 0V, VDS = 0V to -44V
Between lead,
nH
LS
VDS = 25V, ID = 19A
–––
D
6mm (0.25in.)
from package
and center of die contact
G
S
Avalanche Characteristics
Typ.
Max.
Units
EAS
Single Pulse Avalanche Energyd
–––
130
mJ
IAR
Avalanche Currentg
See Fig. 14, 15, 17a, 17b
EAR
Repetitive Avalanche Energy g
Parameter
A
mJ
Diode Characteristics
Parameter
IS @ TC = 25°C Continuous Source Current
Min.
Typ. Max. Units
–––
–––
19
–––
–––
110
integral reverse
(Body Diode)
ISM
Pulsed Source Current
Conditions
MOSFET symbol
A
D
showing the
G
S
VSD
Diode Forward Voltage
–––
–––
1.2
V
p-n junction diode.
TJ = 25°C, IS = 19A, VGS = 0V e
trr
Reverse Recovery Time
–––
52
78
ns
TJ = 25°C, IF = 19A
Qrr
Reverse Recovery Charge
–––
100
150
nC
di/dt = 100A/µs e
(Body Diode)c
2
www.irf.com
IRLIB4343
1000
1000
VGS
15V
10V
8.0V
4.5V
3.5V
3.0V
2.5V
2.3V
100
BOTTOM
10
2.3V
1
≤ 60µs PULSE WIDTH
Tj = 25°C
100
BOTTOM
10
2.3V
1
≤ 60µs PULSE WIDTH
Tj = 175°C
0.1
0.1
0.1
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
1000.0
ID, Drain-to-Source Current (Α)
1
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
T J = 25°C
100.0
T J = 175°C
10.0
1.0
VDS = 30V
≤ 60µs PULSE WIDTH
0.1
0
2
4
6
8
10
ID = 19A
VGS = 10V
2.0
1.5
1.0
0.5
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
10000
20
VGS, Gate-to-Source Voltage (V)
C oss = C ds + C gd
Ciss
Coss
Crss
100
20 40 60 80 100 120 140 160 180
Fig 4. Normalized On-Resistance vs. Temperature
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
1000
0
T J , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
VGS
15V
10V
8.0V
4.5V
3.5V
3.0V
2.5V
2.3V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
ID= 19A
VDS= 44V
VDS= 28V
VDS= 11V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 19
0
10
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
www.irf.com
0
10
20
30
40
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
3
IRLIB4343
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000.0
100.0
100
T J = 175°C
10.0
1.0
OPERATION IN THIS AREA
LIMITED BY R DS(on)
T J = 25°C
100µsec
10
1msec
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.1
1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
1
10
VSD, Source-to-Drain Voltage (V)
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
20
VGS(th) Gate threshold Voltage (V)
2.0
15
ID, Drain Current (A)
10msec
10
5
1.5
ID = 250µA
1.0
0.5
0
25
50
75
100
125
150
-75
175
-50
-25
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs. Case Temperature
Thermal Response ( Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
τJ
0.02
0.01
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ2
R3
R3
τ3
τC
τ
τ3
Ci= τi/Ri
Ci= τi/Ri
0.01
SINGLE PULSE
( THERMAL RESPONSE )
Ri (°C/W)
1.0096
τi (sec)
0.001090
0.9019
0.038534
1.9296
2.473000
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
600
200
EAS , Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance ( mΩ)
IRLIB4343
ID = 19A
150
100
T J = 125°C
50
T J = 25°C
0
2.0
4.0
6.0
8.0
ID
TOP
2.7A
3.3A
BOTTOM 13A
500
400
300
200
100
0
10.0
25
VGS, Gate-to-Source Voltage (V)
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. On-Resistance Vs. Gate Voltage
Fig 13. Maximum Avalanche Energy Vs. Drain Current
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
100
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
10
0.05
0.10
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
tav (sec)
Fig 14. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
200
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 13A
150
100
50
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 15. Maximum Avalanche Energy Vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 17a, 17b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
5
IRLIB4343
Driver Gate Drive
D.U.T
ƒ
+
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
• dv/dt controlled by RG
• Driver same type as D.U.T.
• ISD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
V DD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Inductor Current
Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
15V
LD
VDS
DRIVER
L
VDS
+
VDD -
D.U.T
RG
+
V
- DD
IAS
VGS
20V
tp
D.U.T
A
VGS
0.01Ω
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 17a. Unclamped Inductive Test Circuit
V(BR)DSS
Fig 18a. Switching Time Test Circuit
VDS
tp
90%
10%
VGS
td(on)
I AS
Fig 17b. Unclamped Inductive Waveforms
tr
td(off)
tf
Fig 18b. Switching Time Waveforms
Id
Vds
Vgs
L
VCC
DUT
0
Vgs(th)
1K
Qgs1 Qgs2
Fig 19a. Gate Charge Test Circuit
6
Qgd
Qgodr
Fig 19b Gate Charge Waveform
www.irf.com
IRLIB4343
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
Notes : This part marking information applies to all devices produced before 02/26/2001
and currently for parts manufactured in GB.
Notes : This part marking information applies to devices produced after 02/26/2001 in
location other than GB.
EXAMPLE:
EXAMPLE:
THIS IS ANIRFI840G
WITH ASSEMBLY
LOT CODE E401
PART NUMBER
INTERNATIONAL
RECTIFIER
LOGO
IRFI840G
E401
THIS IS AN IRFI840G
WITH ASSEMBLY
LOT CODE 3432
ASSEMBLED ON WW24 1999
IN THE ASSEMBLYLINE "K"
9245
ASSEMBLY
LOT CODE
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 1.5mH, RG = 25Ω, IAS = 13A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
DATE CODE
(YYWW)
YY= YEAR
WW= WEEK
Note: "P" in assembly line
position indicates "Lead-Free"
PART NUMBER
INTERNATIONAL
RECTIFIER
LOGO
IRFI840G
924K
34
ASSEMBLY
LOT CODE
32
DATE CODE
YEAR 9 = 1999
WEEK24
LINE K
„ Rθ is measured at TJ of approximately 90°C.
… Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive
avalanche information.
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.03/04
www.irf.com
7