PD - 95852 DIGITAL AUDIO MOSFET IRLIB9343 Features Advanced Process Technology l Key Parameters Optimized for Class-D Audio Amplifier Applications l Low RDSON for Improved Efficiency l Low Qg and Qsw for Better THD and Improved Efficiency l Low Qrr for Better THD and Lower EMI l 175°C Operating Junction Temperature for Ruggedness l Repetitive Avalanche Capability for Robustness and Reliability l Key Parameters VDS RDS(ON) typ. @ VGS = -10V RDS(ON) typ. @ VGS = -4.5V Qg typ. TJ max -55 93 150 31 175 V m: m: nC °C D G S TO-220 Full-Pak Description This Digital Audio HEXFET® is specifically designed for Class-D audio amplifier applications. This MosFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery and internal Gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD and EMI. Additional features of this MosFET are 175°C operating junction temperature and repetitive avalanche capability. These features combine to make this MosFET a highly efficient, robust and reliable device for Class-D audio amplifier applications. Absolute Maximum Ratings Parameter Max. Units V VDS Drain-to-Source Voltage -55 VGS Gate-to-Source Voltage Continuous Drain Current, VGS @ -10V ±20 ID @ TC = 25°C ID @ TC = 100°C -14 Continuous Drain Current, VGS @ -10V Pulsed Drain Current -10 IDM PD @TC = 25°C Power Dissipation 33 PD @TC = 100°C Power Dissipation 20 TJ Linear Derating Factor Operating Junction and TSTG Storage Temperature Range c A -60 W 0.26 -40 to + 175 W/°C °C 10 (1.1) lbf in (N m) Mounting Torque, 6-32 or M3 screw y y Thermal Resistance f RθJC Junction-to-Case RθJA Junction-to-Ambient Parameter f Typ. Max. Units ––– 3.84 °C/W ––– 65 Notes through are on page 7 www.irf.com 1 4/1/04 IRLIB9343 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage -55 ––– ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– -52 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 93 105 ––– 150 170 VGS(th) Gate Threshold Voltage -1.0 ––– ––– V ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -3.7 ––– mV/°C IDSS Drain-to-Source Leakage Current µA ––– V Conditions VGS = 0V, ID = -250µA mV/°C Reference to 25°C, ID = -1mA mΩ VGS = -10V, ID = -3.4A e VGS = -4.5V, ID = -2.7A e VDS = VGS, ID = -250µA ––– ––– -2.0 ––– ––– -25 Gate-to-Source Forward Leakage ––– ––– -100 Gate-to-Source Reverse Leakage ––– ––– 100 gfs Forward Transconductance 5.3 ––– ––– Qg Total Gate Charge ––– 31 47 Qgs Pre-Vth Gate-to-Source Charge ––– 7.1 ––– VDS = -44V VGS = -10V Qgd Gate-to-Drain Charge ––– 8.5 ––– ID = -14A Qgodr Gate Charge Overdrive ––– 15 ––– See Fig. 6 and 19 td(on) Turn-On Delay Time ––– 9.5 ––– VDD = -28V, VGS = -10Ve tr Rise Time ––– 24 ––– td(off) Turn-Off Delay Time ––– 21 ––– tf Fall Time ––– 9.5 ––– Ciss Input Capacitance ––– 660 ––– Coss Output Capacitance ––– 160 ––– Crss Coss Reverse Transfer Capacitance Effective Output Capacitance ––– ––– 72 280 ––– ––– ƒ = 1.0MHz, See Fig.5 VGS = 0V, VDS = 0V to -44V LD Internal Drain Inductance ––– 4.5 ––– Between lead, LS Internal Source Inductance ––– 7.5 ––– IGSS VDS = -55V, VGS = 0V VDS = -55V, VGS = 0V, TJ = 125°C nA VGS = -20V S VDS = -25V, ID = -14A VGS = 20V ID = -14A ns RG = 2.5Ω VGS = 0V pF nH VDS = -50V 6mm (0.25in.) from package and center of die contact Avalanche Characteristics Typ. Max. Units EAS Single Pulse Avalanche Energyd Parameter ––– 190 mJ IAR Avalanche Currentg See Fig. 14, 15, 17a, 17b EAR Repetitive Avalanche Energy g A mJ Diode Characteristics Parameter IS @ TC = 25°C Continuous Source Current Min. Typ. Max. Units ––– ––– -14 MOSFET symbol ISM (Body Diode) Pulsed Source Current ––– ––– -60 VSD (Body Diode)c Diode Forward Voltage ––– ––– -1.2 trr Reverse Recovery Time ––– 57 86 ns Qrr Reverse Recovery Charge ––– 120 180 nC 2 Conditions A V showing the integral reverse D G p-n junction diode. TJ = 25°C, IS = -14A, VGS = 0V e S TJ = 25°C, IF = -14A di/dt = 100A/µs e www.irf.com IRLIB9343 100 100 10 BOTTOM TOP -I D, Drain-to-Source Current (A) -I D, Drain-to-Source Current (A) TOP VGS -15V -12V -10V -8.0V -5.5V -4.5V -3.0V -2.5V 1 -2.5V ≤ 60µs PULSE WIDTH Tj = 25°C 10 BOTTOM 1 -2.5V ≤ 60µs PULSE WIDTH Tj = 175°C 0.1 0.1 0.1 1 10 0.1 100 Fig 1. Typical Output Characteristics 10 100 Fig 2. Typical Output Characteristics 100.0 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) -I D, Drain-to-Source Current (Α) 1 -VDS, Drain-to-Source Voltage (V) -VDS, Drain-to-Source Voltage (V) T J = 25°C T J = 175°C 10.0 1.0 VDS = -25V ≤ 60µs PULSE WIDTH 0.1 0.0 5.0 10.0 15.0 ID = -14A VGS = -10V 1.5 1.0 0.5 -60 -40 -20 -V GS, Gate-to-Source Voltage (V) 10000 20 40 60 80 100 120 140 160 180 Fig 4. Normalized On-Resistance vs. Temperature 20 -VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd 1000 Ciss Coss Crss 100 0 T J , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics C, Capacitance (pF) VGS -15V -12V -10V -8.0V -5.5V -4.5V -3.0V -2.5V ID= -14A 16 VDS= -44V VDS= -28V VDS= -11V 12 8 4 FOR TEST CIRCUIT SEE FIGURE 19 0 10 1 10 100 -V DS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 10 20 30 40 50 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 IRLIB9343 1000 -I D, Drain-to-Source Current (A) -I SD, Reverse Drain Current (A) 100.0 T J = 175°C 10.0 T J = 25°C 1.0 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100µsec 10 VGS = 0V 10msec 1 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 1 2.0 10 100 1000 -V DS , Drain-toSource Voltage (V) -V SD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 16 -VGS(th) Gate threshold Voltage (V) 2.5 12 -I D , Drain Current (A) 1msec Tc = 25°C Tj = 175°C Single Pulse 8 4 2.0 ID = -250µA 1.5 0 25 50 75 100 125 150 1.0 175 -75 -50 -25 T J , Junction Temperature (°C) 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature Thermal Response ( Z thJC ) 10 D = 0.50 1 0.20 0.10 R1 R1 0.05 0.1 τJ 0.02 0.01 τJ τ1 R2 R2 τ2 τ1 τ2 R3 R3 τ3 τC τ τ3 Ci= τi/Ri Ci τi/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Ri (°C/W) τi (sec) 0.8737 0.000799 0.877 0.068578 2.089 2.593 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com 1000 600 EAS, Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance ( mΩ) IRLIB9343 ID = -14A 500 400 300 200 T J = 125°C 100 T J = 25°C 0 ID -5.0A -5.6A BOTTOM -10A TOP 800 600 400 200 0 4.0 6.0 8.0 10.0 25 -V GS, Gate-to-Source Voltage (V) 50 75 100 125 150 175 Starting T J, Junction Temperature (°C) Fig 12. On-Resistance Vs. Gate Voltage Fig 13. Maximum Avalanche Energy Vs. Drain Current -Avalanche Current (A) 1000 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax Duty Cycle = Single Pulse 100 0.01 10 0.05 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 200 TOP Single Pulse BOTTOM 1% Duty Cycle ID = -10A 160 120 80 40 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 17a, 17b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 5 IRLIB9343 D.U.T Driver Gate Drive + - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop InductorInductor Curent Current ISD Ripple ≤ 5% * Reverse Polarity of D.U.T for P-Channel * VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for P-Channel HEXFET® Power MOSFETs L VDS VDS D.U.T RG -V -20V GS VDD A IAS tp VGS DRIVER D.U.T. RG 0.01Ω RD - VDD + -10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 15V Fig 17a. Unclamped Inductive Test Circuit Fig 18a. Switching Time Test Circuit I AS td(on) tr t d(off) tf VGS 10% 90% tp VDS V(BR)DSS Fig 17b. Unclamped Inductive Waveforms Fig 18b. Switching Time Waveforms Id Vds Vgs L DUT 0 1K VCC Vgs(th) Qgs1 Qgs2 Fig 19a. Gate Charge Test Circuit 6 Qgd Qgodr Fig 19b Gate Charge Waveform www.irf.com IRLIB9343 TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) 10.60 (.417) 10.40 (.409) 3.40 (.133) 3.10 (.123) ø 4.80 (.189) 4.60 (.181) 2.80 (.110) 2.60 (.102) -A3.70 (.145) 3.20 (.126) 16.00 (.630) 15.80 (.622) LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 7.10 (.280) 6.70 (.263) 1.15 (.045) MIN. NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982 1 2 3 2 CONTROLLING DIMENSION: INCH. 3.30 (.130) 3.10 (.122) -B- 13.70 (.540) 13.50 (.530) C A 3X 1.40 (.055) 1.05 (.042) 3X 0.90 (.035) 0.70 (.028) 0.25 (.010) 3X M A M 0.48 (.019) 0.44 (.017) 2.85 (.112) 2.65 (.104) B 2.54 (.100) 2X D B MINIMUM CREEPAGE DISTANCE BETWEEN A-B-C-D = 4.80 (.189) TO-220 Full-Pak Part Marking Information Notes : T his part marking information applies to all devices produced before 02/26/2001 and currently for parts manufactured in GB. EXAMPLE: T HIS IS AN IRFI840G WIT H AS S EMBLY LOT CODE E401 INT ERNAT IONAL RECT IFIER LOGO PART NUMBER IRFI840G E401 9245 DAT E CODE (YYWW) YY = YEAR WW = WEEK AS S EMBLY LOT CODE Notes : This part marking information applies to devices produced after 02/26/2001 in location other than GB. EXAMPLE: T HIS IS AN IRFI840G WIT H ASS EMBLY LOT CODE 3432 AS S EMBLED ON WW 24 1999 IN T HE AS SEMBLY LINE "K" INT ERNAT IONAL RECT IFIER LOGO AS SEMBLY LOT CODE PART NUMBER IRFI840G 924K 34 32 DAT E CODE YEAR 9 = 1999 WEEK 24 LINE K TO-220 FullPak packages are not recommended for Surface Mount Application. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 3.89mH, RG = 25Ω, IAS = -10A. Pulse width ≤ 400µs; duty cycle ≤ 2%. Rθ is measured at TJ of approximately 90°C. Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive avalanche information Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.4/04 www.irf.com 7