PHILIPS TDA8779

INTEGRATED CIRCUITS
DATA SHEET
TDA8779
10-bit converter interface
(ADC/DAC) for quadrature
transceiver
Objective specification
Supersedes data of 1996 Sep 05
File under Integrated Circuits, IC02
1996 Sep 18
Philips Semiconductors
Objective specification
10-bit converter interface (ADC/DAC) for
quadrature transceiver
TDA8779
FEATURES
GENERAL DESCRIPTION
• Two 10-bit ADCs with multiplexed outputs
The TDA8779 contains two 10-bit high speed ADCs and
two 10-bit DACs for wireless communication (for use in
transceiver modules). This device converts two analog
input signals (channels I and Q) and digital inputs
(D0 to D9) at a maximum sampling rate of 20 MHz.
The input bias voltages for the analog input voltages are
provided internally at the middle code. The analog input
and output voltages are AC coupled.
• Two 10-bit DACs with multiplexed inputs
• Sampling rate for the ADCs and DACs up to 20 MHz
• Digital outputs (for the ADC) and inputs (for the DAC)
are TTL/CMOS compatible (2.7 to 5.5 V)
• Internal reference voltage regulator
• Power dissipation 520 mW
• Standby mode.
The data sampling is performed on the rising edge of the
clock for ADCs and DACs.
APPLICATIONS
All reference voltages are generated internally.
Wireless communication.
QUICK REFERENCE DATA
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VCCA1
analog supply voltage for the
ADC part
4.75
5.0
5.5
V
VCCD1
digital supply voltage for the
ADC part
4.75
5.0
5.5
V
VCCA2
analog supply voltage for the
DAC part
4.75
5.0
5.5
V
VCCD2
digital supply voltage for the
DAC part
4.75
5.0
5.5
V
VCCO
output stage supply voltage
2.7
3.0
5.5
V
ICCA
analog supply current
−
71
−
mA
ICCD
digital supply current
−
31
−
mA
ICCO
output stage supply current
−
2
−
mA
fCLK(ADC)max
maximum clock frequency for
the ADC part
20
−
−
MHz
INLA
integral non linearity for the
ADC part
full-scale; ramp input;
fCLK = 20 MHz
−
±2
−
LSB
DNLA
differential non linearity for
the ADC part
50% full-scale; ramp input;
fCLK = 20 MHz
−
±0.3
−
LSB
fCLK(DAC)max
maximum clock frequency for
the DAC part
20
−
−
MHz
INLD
integral non linearity for the
DAC part
full-scale; ramp input;
fCLK = 20 MHz
−
±2
−
LSB
DNLD
differential non linearity for
the DAC part
full-scale; ramp input;
fCLK = 20 MHz
−
±0.75
−
LSB
Ptot
total power dissipation
−
520
−
mW
1996 Sep 18
ramp input; fCLK = 20 MHz
2
Philips Semiconductors
Objective specification
10-bit converter interface (ADC/DAC) for
quadrature transceiver
TDA8779
ORDERING INFORMATION
PACKAGE
TYPE
NUMBER
NAME
TDA8779H
QFP44
DESCRIPTION
VERSION
SOT307-2
plastic quad flat package; 44 leads (lead length 1.3 mm);
body 10 × 10 × 1.75 mm
BLOCK DIAGRAM
VCCA1
handbook, full pagewidth
7
INPUT
BIAS
DEC1
DEC2
2
DEC3
3
VCCD1
DGND1
31
28
5
REFERENCE
REGULATOR
STDBYA
29
TDA8779
32
INI
4
10
10-BIT
ADC
MUX
INQ 6
10
10-BIT
ADC
10
BUFFER
10
LATCHES
34-43
44
30
AGND1
1
26
BUFFER
OUTI
9
10
10-BIT
DAC
10
AGND2
10-BIT
DAC
13
REFERENCE
REGULATOR
VCCA2
10
DEC4
12
DEC5
14
VCCD2
Fig.1 Block diagram.
1996 Sep 18
VCCO
CLKA
CLKD
BUFFER
10
15-24
D0D to D9D
10
11
8
D0A to D9A
33 OGND
LATCHES
BUFFER
OUTQ
OE
3
25
DGND2
27
STDBYD
MGG075
Philips Semiconductors
Objective specification
10-bit converter interface (ADC/DAC) for
quadrature transceiver
TDA8779
PINNING
SYMBOL
PIN
DESCRIPTION
SYMBOL
PIN
DESCRIPTION
AGND1
1
analog ground 1
D9D
24
multiplexed input for the DACs; bit 9
DEC1
2
decoupling input 1
DGND2
25
digital ground 2
DEC2
3
decoupling input 2
CLKD
26
transmission block clock
INI
4
I channel ADC input
STDBYD
27
DEC3
5
decoupling input 3
power standby for the DAC part
(active HIGH)
INQ
6
Q channel ADC input
DGND1
28
digital ground 1
VCCA1
7
analog supply voltage 1 for ADC part
(+5 V)
STDBYA
29
power standby for the ADC part
(active HIGH)
VCCA2
8
analog supply voltage 2 for DAC part
(+5 V)
CLKA
30
reception block clock
VCCD1
31
digital supply voltage 1 for ADC part
(+5 V)
OE
32
ADCs digital output enable
(3-state output); (active LOW)
OGND
33
input/output ground
D0A
34
I and Q digital outputs; bit 0
D1A
35
I and Q digital outputs; bit 1
D2A
36
I and Q digital outputs; bit 2
37
I and Q digital outputs; bit 3
OUTI
9
I channel DAC analog output
DEC4
10
decoupling input 4
OUTQ
11
Q channel DAC analog output
DEC5
12
decoupling input 5
AGND2
13
analog ground 2
VCCD2
14
digital supply voltage 2 for DAC part
(+5 V)
D0D
15
multiplexed input for the DACs; bit 0
D3A
D1D
16
multiplexed input for the DACs; bit 1
D4A
38
I and Q digital outputs; bit 4
D2D
17
multiplexed input for the DACs; bit 2
D5A
39
I and Q digital outputs; bit 5
D3D
18
multiplexed input for the DACs; bit 3
D6A
40
I and Q digital outputs; bit 6
41
I and Q digital outputs; bit 7
D4D
19
multiplexed input for the DACs; bit 4
D7A
D5D
20
multiplexed input for the DACs; bit 5
D8A
42
I and Q digital outputs; bit 8
D6D
21
multiplexed input for the DACs; bit 6
D9A
43
I and Q digital outputs; bit 9
VCCO
44
output supply voltage (2.7 to 5.5 V)
D7D
22
multiplexed input for the DACs; bit 7
D8D
23
multiplexed input for the DACs; bit 8
1996 Sep 18
4
Philips Semiconductors
Objective specification
34 D0A
AGND1
1
33 OGND
DEC1
2
32 OE
DEC2
3
31 VCCD1
INI
4
30 CLKA
DEC3
5
29 STDBYA
INQ
6
VCCA1
7
27 STDBYD
VCCA2
8
26 CLKD
OUTI
9
25 DGND2
28 DGND1
TDA8779H
5
D7D 22
D6D 21
D5D 20
D4D 19
D3D 18
D2D 17
D1D 16
AGND2
D0D 15
23 D8D
VCCD2 14
OUTQ 11
13
24 D9D
DEC5 12
DEC4 10
Fig.2 Pin configuration.
1996 Sep 18
35 D1A
36 D2A
TDA8779
37 D3A
38 D4A
39 D5A
40 D6A
41 D7A
42 D8A
handbook, full pagewidth
43 D9A
44 VCCO
10-bit converter interface (ADC/DAC) for
quadrature transceiver
MGG074
Philips Semiconductors
Objective specification
10-bit converter interface (ADC/DAC) for
quadrature transceiver
TDA8779
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VCCA1
analog supply voltage for ADC part
−0.3
+7.0
V
VCCA2
analog supply voltage for DAC part
−0.3
+7.0
V
VCCD1
digital supply voltage for ADC part
−0.3
+7.0
V
VCCD2
digital supply voltage for DAC part
−0.3
+7.0
V
VCCO
output stage supply voltage
−0.3
+7.0
V
∆VCC
voltage difference between:
VCCA − VCCD
−1.0
+1.0
V
VCCA − VCCO
−1.0
+4.0
V
VCCD − VCCO
−1.0
+4.0
V
−
10
mA
Io
output current
Vi
input voltage
−0.3
+7.0
V
Vclk(p-p)
AC input switching voltage (peak-to-peak value) referenced to DGND
−
VCCD
V
Tstg
storage temperature
−55
+150
°C
Tamb
operating ambient temperature
−20
+75
°C
Tj
junction temperature
−
150
°C
referenced to AGND
THERMAL CHARACTERISTICS
SYMBOL
Rth j-a
PARAMETER
CONDITIONS
thermal resistance from junction to ambient
in free air
VALUE
UNIT
75
K/W
CHARACTERISTICS
VCCA = V7 and V8 to V1 and V13 = 4.75 to 5.5 V; VCCD = V31 and V14 to V28 and V25 = 4.75 to 5.5 V;
VCCO = V44 to V33 = 2.7 to 5.5 ; AGND1, AGND2, OGND, DGND1 and DGND2 are shorted together;
Tamb = −20 to +70 °C; measured typically at VCCA = VCCD = 5 V and VCCO = 3 V; CL = 15 pF; Tamb = 25°C; unless
otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supplies
VCCA1
analog supply voltage for ADC part
4.75
5.0
5.5
V
VCCD1
digital supply voltage for ADC part
4.75
5.0
5.5
V
VCCA2
analog supply voltage for DAC part
4.75
5.0
5.5
V
VCCD2
digital supply voltage for DAC part
4.75
5.0
5.5
V
VCCO
output stage supply voltage
2.7
3.0
5.5
V
∆VCC
voltage difference between
VCCA − VCCD
−0.2
−
+0.2
V
VCCA − VCCO
−0.2
−
+2.5
V
−0.2
−
+2.5
V
ICCA
analog supply current
VCCD − VCCO
−
71
−
mA
ICCD
digital supply current
−
31
−
mA
1996 Sep 18
6
Philips Semiconductors
Objective specification
10-bit converter interface (ADC/DAC) for
quadrature transceiver
SYMBOL
PARAMETER
TDA8779
CONDITIONS
MIN.
TYP.
MAX.
UNIT
−
2
−
mA
analog standby current for ADC part
−
5
−
mA
analog standby current for DAC part
−
5
−
mA
V
ICCO
output stage supply current
ICCA1(stb)
ICCA2(stb)
ramp input; fCLK = 20 MHz
ADC PART
CLOCK INPUT
VIL
LOW level input voltage
0
−
0.6
VIH
HIGH level input voltage
2.2
−
VCCD1 V
IIL
LOW level input current
−10
−
+10
µA
IIH
HIGH level input current
−10
−
+10
µA
V
DIGITAL INPUTS: PINS OE AND STDBYA
VIL
LOW level input voltage
0
−
0.6
VIH
HIGH level input voltage
2.2
−
VCCD1 V
IIL
LOW level input current
−1
0
+1
µA
IIH
HIGH level input current
−
−
1
µA
ANALOG INPUTS
IIL
LOW level input current
for code 0
−
tbf
−
µA
IIH
HIGH level input current
for code 1023
−
tbf
−
µA
Vi(p-p)
analog input voltage
(peak-to-peak value)
full-scale
tbf
1.5
tbf
V
Vi(p-p)over
maximum analog input over voltage
(peak-to-peak value)
overvoltage
−
−
4.5
V
ZI
input impedance
−
10
−
kΩ
CI
input capacitance
−
3
−
pF
−
0.5
V
DIGITAL OUTPUTS: D0A TO D9A
VOL
LOW level output voltage
Io = 1 mA
0
VOH
HIGH level output voltage
Io = −1 mA
VCCO − 0.5 −
VCCO
V
IoZ
output current in 3-state mode
0.5 V < Vo < VCCO − 0.5 V
−20
−
+20
µA
SWITCHING CHARACTERISTICS (see Fig.3)
fCLKmax
maximum clock frequency
20
−
−
MHz
tCH
clock pulse width HIGH
20
−
−
ns
tCL
clock pulse width LOW
20
−
−
ns
tr
clock rise time
−
4
−
ns
tf
clock fall time
−
4
−
ns
1996 Sep 18
7
Philips Semiconductors
Objective specification
10-bit converter interface (ADC/DAC) for
quadrature transceiver
SYMBOL
PARAMETER
TDA8779
CONDITIONS
MIN.
TYP.
MAX.
UNIT
ANALOG SIGNAL PROCESSING
Linearity
INLA
integral non linearity
ramp input; fCLK = 20 MHz
−
±2
−
LSB
DNLA
differential non linearity
full-scale; ramp input;
fCLK = 20 MHz
−
±0.5
−
LSB
50% full-scale; ramp input;
fCLK = 20 MHz
−
±0.3
−
LSB
fin = 5.1 MHz; 20 Msps
−
−60
−
dB
fi = 5.1 MHz; 20 Msps
−
−54
−
dB
fi = 5.1 MHz; 20 Msps
45
56
−
dB
Noise floor; note 2
NF
noise floor
Harmonics; note 3
THD
total harmonic distortion
Spurious free dynamic range
SFDR
spurious free dynamic range
Matching between the I and Q channels
∆V
amplitude matching
fin = 5.1 MHz;
fCLK = 20 MHz;
Tamb = 25°C
−
−
6
%
∆ϕ
phase matching
fin = 5.1 MHz;
fCLK = 20 MHz;
Tamb = 25°C
−
−
2
Deg
bandwidth maximum attenuation of
−0.3 dB
full-scale sine wave;
Tamb = 25°C;
5.5
−
−
MHz
50% full-scale sine wave;
Tamb = 25°C;
tbf
−
−
MHz
Bandwidth
B
TIMING: (THE OUTPUT DATA IS AVAILABLE AFTER THE MAXIMUM DELAY TIME td); CL = 15 pF; see Fig.3
tds
sampling delay time
−
−
5
ns
th
output hold time
5
−
−
ns
td
output delay time
VCCO = 4.75 V
−
12
15
ns
VCCO = 3.15 V
−
17
20
ns
VCCO = 2.7 V
−
21
24
ns
3-STATE OUTPUT DELAY TIMES; see Fig.4
tdZH
output delay enable HIGH
−
14
18
ns
tdZL
output delay enable LOW
−
16
20
ns
tdHZ
output delay disable HIGH
−
16
20
ns
tdLZ
output delay disable LOW
−
14
18
ns
1996 Sep 18
8
Philips Semiconductors
Objective specification
10-bit converter interface (ADC/DAC) for
quadrature transceiver
SYMBOL
PARAMETER
TDA8779
CONDITIONS
MIN.
TYP.
MAX.
UNIT
STANDBY MODE OUTPUT DELAY TIMES; STDBYA
td(stb)LH
standby (LOW-to-HIGH transition)
−
−
100
µs
td(stb)HL
start-up (HIGH-to-LOW transition)
−
−
100
µs
fCLK(DAC) = 16.384 MHz;
−
fCLK(ADC) = 8.192 MHz;
Tamb = 25°C; both DACs
switching between input
codes 0 and 1023; one
ADC 1 V (p-p) sine wave at
4 MHz and the other ADC
set at the middle code
−
−55
dB
−
0.6
V
CROSSTALK ON THE ADC
αct
crosstalk into the ADC
DAC PART
DIGITAL INPUTS: D0D TO D9D AND CLKD
VIL
LOW level input voltage
0
VIH
HIGH level input voltage
2.2
−
VCCD2 V
IIL
LOW level input current
−200
−120
0
µA
IIH
HIGH level input current
−10
−
+10
µA
−
0.6
V
DIGITAL INPUT; STDBYD
VIL
LOW level input voltage
0
VIH
HIGH level input voltage
2.2
−
VCCD2 V
IIL
LOW level input current
−1
0
+1
µA
IIH
HIGH level input current
−
−
1
µA
TIMING: see Fig.5
fCLK(max)
maximum clock frequency
20
−
−
MHz
tCH
clock pulse width HIGH
20
−
−
ns
tCL
clock pulse width LOW
20
−
−
ns
tr
clock rise time
−
4
−
ns
tf
clock fall time
−
4
−
ns
ts
input data set-up time
10
tbf
−
ns
th
input data hold time
0
tbf
−
ns
ANALOG OUTPUTS; note 1
Vo(p-p)
output voltage (peak-to-peak value)
full-scale
tbf
1
tbf
V
ZoL
output load impedance
see Fig.6
−
15
−
pF
−
0.3
−
kΩ
TRANSFER FUNCTION
INLD
integral non linearity
ramp input; fCLK = 20 MHz
−
±3
−
LSB
DNLD
differential non linearity
ramp input; fCLK = 20 MHz;
−
±0.75
−
LSB
B
maximum bandwidth
full scale; Tamb = 25°C
5.5
−
−
MHz
1996 Sep 18
9
Philips Semiconductors
Objective specification
10-bit converter interface (ADC/DAC) for
quadrature transceiver
SYMBOL
PARAMETER
TDA8779
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Matching between channel I and Q
∆V
amplitude matching
fo = 5.1 MHz;
fCLK = 20 MHz;
Tamb = 25°C
−
−
6
%
∆ϕ
phase matching
fo = 5.1 MHz;
fCLK = 20 MHz;
Tamb = 25°C
−
−
2
Deg
fo = 5.1 MHz;
fCLK = 20 MHz
−
−60
−
dB
fo = 5.1 MHz;
fCLK = 20 MHz
−
50
−
dB
DYNAMIC RANGE;
NF
note 2
noise floor
SPURIOUS FREE DYNAMIC RANGE
SFDR
spurious free dynamic range
STANDBY MODE OUTPUT DELAY; STDBYD
td(stb)LH
standby (LOW-to-HIGH transition)
−
−
100
µs
td(stb)HL
start-up (HIGH-to-LOW transition)
−
−
100
µs
fCLK(DAC) = 16.384 MHz;
−
fCLK(ADC) = 8.192 MHz;
Tamb = 25°C; one DAC
switching between input
codes 0 and 1023 the other
DAC set at the middle
code; both ADCs 1 V (p-p)
sine wave at 4 MHz;
incoherent
−
−55
dB
CROSSTALK ON THE DAC
αct
crosstalk into the DAC
Notes
1. It is recommended that the DAC output voltage is AC coupled in order to achieve optimum performance.
2. The noise floor is the maximum value of the output spectrum without taking into account fundamental and harmonics
of the input signal.
3. Harmonics are obtained via a Fast Fourier Transformer (FFT) treatment taking 8K acquisition points per period.
1996 Sep 18
10
Philips Semiconductors
Objective specification
10-bit converter interface (ADC/DAC) for
quadrature transceiver
Table 1
TDA8779
Output coding and input voltage (typical value, referenced to AGND)
BINARY OUTPUT BITS
Vi − V512
(V)
D9A
D8A
D7A
D6A
D5A
D4A
D3A
D2A
D1A
D0A
underflow
<−0.75
0
0
0
0
0
0
0
0
0
0
STEP
0
−0.75
0
0
0
0
0
0
0
0
0
0
...
...
...
...
...
...
...
...
...
...
...
...
512
0
1
0
0
0
0
0
0
0
0
0
...
...
...
...
...
...
...
...
...
...
...
...
1023
0.75
1
1
1
1
1
1
1
1
1
0
overflow
>0.75
1
1
1
1
1
1
1
1
1
1
Table 2
Input coding and output voltage (typical value, referenced to DGND)
BINARY INPUT BITS
D0D
Vo − V512
(V)
STEP
D9D
D8D
D7D
D6D
D5D
D4D
D3D
D2D
D1D
0
0
0
0
0
0
0
0
0
0
0
−0.5
...
...
...
...
...
...
...
...
...
...
...
...
512
1
0
0
0
0
0
0
0
0
0
0
...
...
...
...
...
...
...
...
...
...
...
...
1023
1
1
1
1
1
1
1
1
1
0
0.5
Table 3
Table 4
Mode selection
OE
D0A TO D9A
1
high impedance
0
active; binary
Standby selection
STDBYA
D0 TO D9
ICCA + ICCD (typ.)
1
−
5 mA
0
active
64 mA
STDBYD
OUTI AND OUTQ
ICCA + ICCD (typ.)
1
−
5 mA
0
active
38 mA
Table 5
Standby selection
1996 Sep 18
11
Philips Semiconductors
Objective specification
10-bit converter interface (ADC/DAC) for
quadrature transceiver
handbook, full pagewidth
TDA8779
tCL
tCH
n
CLKA
50%
I CHANNEL
ADC OUTPUT
In − 2
In − 1
In
In + 1
Q CHANNEL
ADC OUTPUT
Qn − 2
Qn − 1
Qn
Qn + 1
Q CHANNEL
LATCHED DATA
MULTIPLEXED
OUTPUTS
Qn − 2
In − 2
Qn − 1
Qn − 2
In − 1
Qn
Qn − 1
Qn + 1
Qn
In
In + 1
td
tds
ViI or ViQ
th
sample N
MGG078
Fig.3 Timing diagram for the ADC.
1996 Sep 18
12
Philips Semiconductors
Objective specification
10-bit converter interface (ADC/DAC) for
quadrature transceiver
TDA8779
VCCD
handbook, full pagewidth
50%
OE
tdHZ
tdZH
HIGH
90%
output
data
50%
tdLZ
LOW
tdZL
HIGH
VCCD
output
data
50%
LOW
3.3 kΩ
10%
S1
TDA8779
10 pF
OE
tOE = 100 kHz.
Fig.4 Timing diagram and test conditions of 3-state output delay time.
Table 6
Test conditions for Fig.4
TEST
SWITCH S1
tdLZ
VCCD
tdZL
VCCD
tdHZ
DGND
tdZH
DGND
1996 Sep 18
13
MGG077
Philips Semiconductors
Objective specification
10-bit converter interface (ADC/DAC) for
quadrature transceiver
th
handbook, full pagewidth
TDA8779
tCL
tCH
50%
CLKD
n
ts
MULTIPLEXED
INPUTS
I CHANNEL
LATCHED DATA
In
Qn
In + 1
In
In + 2
Qn + 1
Qn + 2
In + 1
In + 2
In + 3
In + 3
I CHANNEL
DAC OUTPUT
In − 1
In
In + 1
In + 2
Q CHANNEL
DAC OUTPUT
Qn − 1
Qn
Qn + 1
Qn + 2
MGG079
Fig.5 DACs multiplexed inputs timing diagram.
handbook, halfpage
TDA8779
9,11 I, Q
1 µF
300 Ω
15 pF
MGG076
Fig.6 Equivalent DACs output load.
1996 Sep 18
14
Philips Semiconductors
Objective specification
10-bit converter interface (ADC/DAC) for
quadrature transceiver
TDA8779
APPLICATION INFORMATION
handbook, full pagewidth
100
nF
VCCA1
7
INPUT
BIAS
10
nF
DEC1 DEC2
47
VCCD1
nF
DEC3
2
5
3
STDBYA
DGND1
31
29
28
REFERENCE
REGULATOR
TDA8779H
32
100 nF
INI
4
10-BIT
ADC
10
MUX
100 nF
INQ 6
10-BIT
ADC
10
10
BUFFER
10
LATCHES
34-43
44
30
AGND1
1 µF
15
pF
26
BUFFER
OUTI
9
10-BIT
DAC
10
10
BUFFER
11
10-BIT
DAC
13
REFERENCE
REGULATOR
OUTQ
300 Ω
AGND2
8
VCCA2
10 nF
VCCO
CLKA
CLKD
BUFFER
10
15-24
D0D to D9D
10
12
10
DEC4 DEC5
22 nF
14
VCCD2
Fig.7 Application diagram.
1996 Sep 18
D0A to D9A
33 OGND
LATCHES
300 Ω
1 µF
15
pF
1
OE
15
25
DGND2
27
STDBYD
MBH581
Philips Semiconductors
Objective specification
10-bit converter interface (ADC/DAC) for
quadrature transceiver
TDA8779
PACKAGE OUTLINE
QFP44: plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 x 10 x 1.75 mm
SOT307-2
c
y
X
A
33
23
34
22
ZE
e
Q
E HE
A A2
wM
(A 3)
A1
θ
bp
Lp
pin 1 index
L
12
44
1
detail X
11
wM
bp
e
ZD
v M A
D
B
HD
v M B
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
HD
HE
L
Lp
Q
v
w
y
mm
2.10
0.25
0.05
1.85
1.65
0.25
0.40
0.20
0.25
0.14
10.1
9.9
10.1
9.9
0.8
12.9
12.3
12.9
12.3
1.3
0.95
0.55
0.85
0.75
0.15
0.15
0.1
Z D (1) Z E (1)
1.2
0.8
1.2
0.8
θ
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
OUTLINE
VERSION
REFERENCES
IEC
JEDEC
EIAJ
ISSUE DATE
92-11-17
95-02-04
SOT307-2
1996 Sep 18
EUROPEAN
PROJECTION
16
o
10
0o
Philips Semiconductors
Objective specification
10-bit converter interface (ADC/DAC) for
quadrature transceiver
TDA8779
SOLDERING
Wave soldering
Introduction
Wave soldering is not recommended for QFP packages.
This is because of the likelihood of solder bridging due to
closely-spaced leads and the possibility of incomplete
solder penetration in multi-lead devices.
There is no soldering method that is ideal for all IC
packages. Wave soldering is often preferred when
through-hole and surface mounted components are mixed
on one printed-circuit board. However, wave soldering is
not always suitable for surface mounted ICs, or for
printed-circuits with high population densities. In these
situations reflow soldering is often used.
If wave soldering cannot be avoided, the following
conditions must be observed:
• A double-wave (a turbulent wave with high upward
pressure followed by a smooth laminar wave)
soldering technique should be used.
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “IC Package Databook” (order code 9398 652 90011).
• The footprint must be at an angle of 45° to the board
direction and must incorporate solder thieves
downstream and at the side corners.
Reflow soldering
Even with these conditions, do not consider wave
soldering the following packages: QFP52 (SOT379-1),
QFP100 (SOT317-1), QFP100 (SOT317-2),
QFP100 (SOT382-1) or QFP160 (SOT322-1).
Reflow soldering techniques are suitable for all QFP
packages.
The choice of heating method may be influenced by larger
plastic QFP packages (44 leads, or more). If infrared or
vapour phase heating is used and the large packages are
not absolutely dry (less than 0.1% moisture content by
weight), vaporization of the small amount of moisture in
them can cause cracking of the plastic body. For more
information, refer to the Drypack chapter in our “Quality
Reference Handbook” (order code 9397 750 00192).
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Maximum permissible solder temperature is 260 °C, and
maximum duration of package immersion in solder is
10 seconds, if cooled to less than 150 °C within
6 seconds. Typical dwell time is 4 seconds at 250 °C.
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
Several techniques exist for reflowing; for example,
thermal conduction by heated belt. Dwell times vary
between 50 and 300 seconds depending on heating
method. Typical reflow temperatures range from
215 to 250 °C.
Repairing soldered joints
Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron
(less than 24 V) applied to the flat part of the lead. Contact
time must be limited to 10 seconds at up to 300 °C. When
using a dedicated tool, all other leads can be soldered in
one operation within 2 to 5 seconds between
270 and 320 °C.
Preheating is necessary to dry the paste and evaporate
the binding agent. Preheating duration: 45 minutes at
45 °C.
1996 Sep 18
17
Philips Semiconductors
Objective specification
10-bit converter interface (ADC/DAC) for
quadrature transceiver
TDA8779
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
1996 Sep 18
18
Philips Semiconductors
Objective specification
10-bit converter interface (ADC/DAC) for
quadrature transceiver
NOTES
1996 Sep 18
19
TDA8779
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 32 88 2636, Fax. +45 31 57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 615 800, Fax. +358 615 80920
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. +30 1 4894 339/911, Fax. +30 1 4814 240
Hungary: see Austria
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,
Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 926 5361, Fax. +7 095 564 8323
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Rua do Rocio 220, 5th floor, Suite 51,
04552-903 São Paulo, SÃO PAULO - SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 829 1849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3 301 6312, Fax. +34 3 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 632 2000, Fax. +46 8 632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2686, Fax. +41 1 481 7730
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66,
Chung Hsiao West Road, Sec. 1, P.O. Box 22978,
TAIPEI 100, Tel. +886 2 382 4443, Fax. +886 2 382 4444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 825 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
© Philips Electronics N.V. 1996
SCA51
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
537021/1200/02/pp20
Date of release: 1996 Sep 18
Document order number:
9397 750 01181