PHILIPS TDA8714T/6

INTEGRATED CIRCUITS
DATA SHEET
TDA8714
8-bit high-speed analog-to-digital
converter
Product specification
Supersedes data of 1996 Jan 31
File under Integrated Circuits, IC02
1997 Oct 29
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
TDA8714
FEATURES
APPLICATIONS
• 8-bit resolution
High-speed analog-to-digital conversion for:
• Sampling rate up to 80 MHz
• video data digitizing
• No missing codes guaranteed
• radar pulse analysis
• High signal-to-noise ratio over a large analog input
frequency range (7.7 effective bits at 4.43 MHz
full-scale input at fclk = 80 MHz)
• transient signal analysis
• high energy physics research
• Σ∆ modulators
• Overflow/underflow 3-state TTL output
• medical imaging.
• TTL compatible digital inputs
• Low-level AC clock input signal allowed
GENERAL DESCRIPTION
• External reference voltage regulator
The TDA8714 is an 8-bit high-speed Analog-to-Digital
Converter (ADC) for professional video and other
applications. It converts the analog input signal into 8-bit
binary-coded digital words at a maximum sampling rate of
80 MHz. All digital inputs and outputs are TTL compatible,
although a low-level sine wave clock input signal is
allowed.
• Power dissipation only 340 mW (typical)
• Low analog input capacitance, no buffer amplifier
required
• No sample-and-hold circuit required.
QUICK REFERENCE DATA
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VCCA
analog supply voltage
4.75
5.0
5.25
V
VCCD
digital supply voltage
4.75
5.0
5.25
V
VCCO
output stages supply voltage
4.75
5.0
5.25
V
ICCA
analog supply current
−
25
30
mA
ICCD
digital supply current
−
27
33
mA
ICCO
output stages supply current
−
16
20
mA
INL
DC integral non-linearity
−
±0.4
±0.5
LSB
DNL
DC differential non-linearity
−
±0.2
±0.35
LSB
AINL
AC integral non-linearity
−
±0.5
±1.0
LSB
fclk(max)
maximum clock frequency
TDA8714/7
80
−
−
MHz
TDA8714/6
60
−
−
MHz
TDA8714/4
40
−
−
MHz
−
340
435
mW
Ptot
note 1
total power dissipation
Note
1. Full-scale sine wave (fi = 4.43 MHz; fclk = 80 MHz).
1997 Oct 29
2
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
TDA8714
ORDERING INFORMATION
PACKAGE
TYPE
NUMBER
NAME
TDA8714T/4
SO24
TDA8714T/6
SO24
DESCRIPTION
plastic small outline package; 24 leads;
body width 7.5 mm
TDA8714T/7
SO24
TDA8714M/4
SSOP24
TDA8714M/6
SSOP24
TDA8714M/7
SSOP24
plastic shrink small outline package; 24 leads;
body width 5.3 mm
VERSION
SAMPLING
FREQUENCY (MHz)
SOT137-1
40
SOT137-1
60
SOT137-1
80
SOT340-1
40
SOT340-1
60
SOT340-1
80
BLOCK DIAGRAM
handbook, full pagewidth
V CCA
CLK
VCCD
CE
7
16
18
22
CLOCK DRIVER
VRT
9
TDA8714
12 D7
13 D6
MSB
14 D5
analog
voltage input
VI
15 D4
8
ANALOG -TO-DIGITAL
CONVERTER
LATCHES
TTL OUTPUTS
data outputs
23 D3
24 D2
1 D1
2 D0
19
VRB 4
LSB
VCCO1
21 VCCO2
OVERFLOW / UNDERFLOW
LATCH
OGND 20
output ground
6
17
AGND
DGND
analog ground
11
MSA669
digital ground
Fig.1 Block diagram.
1997 Oct 29
TTL OUTPUT
3
overflow / underflow
output
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
TDA8714
PINNING
SYMBOL
PIN
DESCRIPTION
D1
1
data output; bit 1
D0
2
data output; bit 0 (LSB)
n.c.
3
not connected
VRB
4
reference voltage BOTTOM input
n.c.
5
not connected
AGND
6
analog ground
VCCA
7
analog supply voltage (+5 V)
VI
8
analog input voltage
VRT
9
reference voltage TOP input
n.c.
10
not connected
O/UF
11
overflow/underflow data output
D7
12
data output; bit 7 (MSB)
D6
13
data output; bit 6
D5
14
data output; bit 5
D4
15
data output; bit 4
CLK
16
clock input
DGND
17
digital ground
VCCD
18
digital supply voltage (+5 V)
VCCO1
19
supply voltage for output stages 1
(+5 V)
OGND
20
output ground
VCCO2
21
supply voltage for output stages 2
(+5 V)
CE
22
chip enable input (TTL level input,
active LOW)
D3
23
data output; bit 3
D2
24
data output; bit 2
1997 Oct 29
handbook, halfpage
D1 1
24 D2
D0 2
23 D3
n.c. 3
22 CE
VRB 4
21 VCCO2
n.c. 5
20 OGND
AGND
6
TDA8714
19 VCCO1
VCCA 7
18 VCCD
VI 8
17 DGND
VRT 9
16 CLK
n.c. 10
15 D4
O/UF 11
14 D5
D7 12
13 D6
MSA667
Fig.2 Pin configuration.
4
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
TDA8714
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VCCA
analog supply voltage
note 1
−0.3
+7.0
V
VCCD
digital supply voltage
note 1
−0.3
+7.0
V
VCCO
output stages supply voltage
note 1
−0.3
+7.0
V
∆VCC
supply voltage differences between
VCCA and VCCD
−1.0
+1.0
V
∆VCC
supply voltage differences between
VCCO and VCCD
−1.0
+1.0
V
∆VCC
supply voltage differences between
VCCA and VCCO
−1.0
+1.0
V
VI
input voltage
referenced to AGND
−0.3
+7.0
V
Vclk(p-p)
AC input voltage for switching
(peak-to-peak value)
referenced to DGND
−
VCCD
V
IO
output current
−
10
mA
Tstg
storage temperature
−55
+150
°C
Tamb
operating ambient temperature
0
+70
°C
Tj
junction temperature
−
+150
°C
Note
1. The supply voltages VCCA and VCCD may have any value between −0.3 V and +7.0 V provided the difference
between VCCA and VCCD is between −1 V and +1 V.
HANDLING
Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is
desirable to take normal precautions appropriate to handling integrated circuits.
THERMAL CHARACTERISTICS
SYMBOL
Rth j-a
1997 Oct 29
PARAMETER
VALUE
UNIT
SOT137-1
75
K/W
SOT340-1
119
K/W
thermal resistance from junction to ambient in free air
5
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
TDA8714
CHARACTERISTICS
VCCA = V7 to V6 = 4.75 to 5.25 V; VCCD = V18 to V17 = 4.75 to 5.25 V; VCCO = V19 and V21 to V20 = 4.75 to 5.25 V;
AGND and DGND shorted together; VCCA to VCCD = −0.25 to +0.25 V; VCCO to VCCD = −0.25 to +0.25 V;
VCCA to VCCO = −0.25 to +0.25 V; Vi(p-p) = 1.75 V; Tamb = 0 to +70 °C; typical values measured at
VCCA = VCCD = VCCO = 5 V and Tamb = 25 °C; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supply
VCCA
analog supply voltage
4.75
5.0
5.25
V
VCCD
digital supply voltage
4.75
5.0
5.25
V
VCCO
output stages supply voltage
4.75
5.0
5.25
V
ICCA
analog supply current
−
25
30
mA
ICCD
digital supply current
−
27
33
mA
ICCO
output stages supply current
−
16
20
mA
Inputs
CLOCK INPUT CLK (REFERENCED TO DGND); note 1
VIL
LOW level input voltage
0
−
0.8
V
VIH
HIGH level input voltage
2.0
−
VCCD
V
IIL
LOW level input current
Vclk = 0.4 V
−400
−
−
µA
IIH
HIGH level input current
Vclk = 2.7 V
−
−
300
µA
ZI
input impedance
fclk = 80 MHz
−
18
−
kΩ
CI
input capacitance
fclk = 80 MHz
−
1
−
pF
0
−
0.8
V
INPUT CE (REFERENCED TO DGND); see Table 2
VIL
LOW level input voltage
VIH
HIGH level input voltage
2.0
−
VCCD
V
IIL
LOW level input current
VIL = 0.4 V
−400
−
−
µA
IIH
HIGH level input current
VIH = 2.7 V
−
−
20
µA
VI (ANALOG INPUT VOLTAGE REFERENCED TO AGND)
IIL
LOW level input current
VI = 1.2 V
−
0
−
µA
IIH
HIGH level input current
VI = 3.5 V
60
130
280
µA
ZI
input impedance
fi = 4.43 MHz
−
10
−
kΩ
CI
input capacitance
fi = 4.43 MHz
−
14
−
pF
Reference voltages for the resistor ladder; see Table 1
VRB
reference voltage BOTTOM
1.2
1.3
1.6
V
VRT
reference voltage TOP
3.5
3.6
3.9
V
Vdiff
differential reference voltage VRT − VRB
1.9
2.3
2.7
V
Iref
reference current
−
11.5
−
mA
RLAD
resistor ladder
−
200
−
Ω
TCRLAD
temperature coefficient of the resistor ladder
−
0.24
−
ppm
VosB
offset voltage BOTTOM
note 2
275
285
295
mV
VosT
offset voltage TOP
note 2
Vi(p-p)
analog input voltage (peak-to-peak value)
1997 Oct 29
6
305
315
325
mV
1.45
1.75
2.15
V
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
SYMBOL
PARAMETER
CONDITIONS
TDA8714
MIN.
TYP.
MAX.
UNIT
Outputs
DIGITAL OUTPUTS D7 to D0 (REFERENCED TO DGND)
VOL
LOW level output voltage
IO = 1 mA
0
−
0.4
V
VOH
HIGH level output voltage
IO = −0.4 mA
2.7
−
VCCD
V
IOZ
output current in 3-state mode
IO = −1 mA
2.4
−
VCCD
V
0.4 V < VO < VCCD
−20
−
+20
µA
TDA8714/4
40
−
−
MHz
TDA8714/6
60
−
−
MHz
TDA8714/7
80
−
−
MHz
Switching characteristics
CLOCK INPUT CLK (note 1; see Fig.3)
fclk(max)
maximum clock frequency
tCPH
clock pulse width HIGH
6
−
−
ns
tCPL
clock pulse width LOW
6
−
−
ns
Analog signal processing
LINEARITY
INL
DC integral non-linearity
−
±0.4
±0.5
LSB
DNL
DC differential non-linearity
−
±0.2
±0.35
LSB
AINL
AC integral non-linearity
note 3
−
±0.5
±1.0
LSB
full-scale sine wave
−
13
−
MHz
75% full-scale sine
wave; small signal at
Vi = ±5 LSB, code 128
−
20
−
MHz
BANDWIDTH (fclk = 40 MHz); note 4
B
analog bandwidth
tSTLH
analog input settling time LOW-to-HIGH
full-scale square
wave; Fig.6; note 5
−
2.5
3.5
ns
tSTHL
analog input settling time HIGH-to-LOW
full-scale square
wave; Fig.6; note 5
−
3.0
4.0
ns
−
−
0
dB
second harmonics
−
−64
−60
dB
third harmonics
−
−58
−55
dB
fi = 4.43 MHz
−
−56
−
dB
without harmonics;
fclk = 40 MHz;
fi = 4.43 MHz
46
48
−
dB
HARMONICS (fclk = 40 MHz)
h1
fundamental harmonics (full scale)
fi = 4.43 MHz
hall
harmonics (full scale);
all components
fi = 4.43 MHz
THD
total harmonic distortion
SIGNAL-TO-NOISE RATIO (note 6; see Figs 7 and 13)
S/N
1997 Oct 29
signal-to-noise ratio (full scale)
7
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
SYMBOL
PARAMETER
CONDITIONS
TDA8714
MIN.
TYP.
MAX.
UNIT
EFFECTIVE BITS (note 6; see Figs 7 and 13)
EB
effective bits
TDA8714/4
fclk = 40 MHz
fi = 4.43 MHz
−
7.75
−
bits
fi = 7.5 MHz
−
7.6
−
bits
effective bits
TDA8714/6
fclk = 60 MHz
fi = 4.43 MHz
−
7.7
−
bits
fi = 7.5 MHz
−
7.55
−
bits
fi = 10 MHz
−
7.4
−
bits
fi = 4.43 MHz
−
7.7
−
bits
fi = 7.5 MHz
−
7.5
−
bits
fi = 10 MHz
−
7.2
−
bits
fi = 15 MHz
−
6.3
−
bits
fclk = 40 MHz
−
−56
−
dB
fclk = 40 MHz;
fi = 4.43 MHz;
VI = ±16 LSB at
code 128
−
10−11
−
times/
samples
fclk = 40 MHz;
fi = 4.43 MHz
−
0.6
−
%
fclk = 40 MHz;
fi = 4.43 MHz
−
0.8
−
deg
effective bits
TDA8714/7
fclk = 80 MHz
TWO-TONE (note 7)
TTIR
two-tone intermodulation rejection
BIT ERROR RATE
BER
bit error rate
DIFFERENTIAL GAIN (note 8)
Gdiff
differential gain
DIFFERENTIAL PHASE (note 8)
ϕdiff
differential phase
Timing (note 9; see Figs 3 and 5; fclk = 80 MHz)
tds
sampling delay time
−
−
2
ns
th
output hold time
5
−
−
ns
td
output delay time
−
10
11
ns
3-state output delay times (see Fig.4)
tdZH
enable HIGH
−
40
44
ns
tdZL
enable LOW
−
12
16
ns
tdHZ
disable HIGH
−
50
54
ns
tdLZ
disable LOW
−
10
14
ns
1997 Oct 29
8
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
TDA8714
Notes to the characteristics
1. In addition to a good layout of the digital and analog ground, it is recommended that the rise and fall times of the clock
must not be less than 1 ns.
2. Analog input voltages producing code 00 up to and including FF:
a) VosB (voltage offset BOTTOM) is the difference between the analog input which produces data equal to 00 and
the reference voltage BOTTOM (VRB) at Tamb = 25 °C.
b) VosT (voltage offset TOP) is the difference between VRT (reference voltage TOP) and the analog input which
produces data outputs equal to FF at Tamb = 25 °C.
3. Full-scale sine wave (fi = 4.43 MHz; fclk = 80 MHz).
4. The analog bandwidth is defined as the maximum input sine wave frequency which can be applied to the device.
No glitches greater than 2 LSBs, neither any significant attenuation are observed in the reconstructed signal.
5. The analog input settling time is the minimum time required for the input signal to be stabilized after a sharp full-scale
input (square-wave signal) in order to sample the signal and obtain correct output data.
6. Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking 8K acquisition points per equivalent
fundamental period. The calculation takes into account all harmonics and noise up to half of the clock frequency
(NYQUIST frequency). Conversion to signal-to-noise ratio: S/N = EB × 6.02 + 1.76 dB.
7. Intermodulation measured relative to either tone with analog input frequencies of 4.43 MHz and 4.53 MHz. The two
input signals have the same amplitude and the total amplitude of both signals provides full scale to the converter.
8. Measurement carried out using video analyser VM700A where the video analog signal is reconstructed through a
digital-to-analog converter.
9. Output data acquisition: the output data is available after the maximum delay time of td; in the event of 80 MHz clock
operation, the hardware design must take into account the td and th limits with respect to the input characteristics of
the acquisition circuit.
1997 Oct 29
9
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
Table 1
TDA8714
Output coding and input voltage (typical values; referenced to AGND)
BINARY OUTPUT BITS
VI(p-p)
O/UF
Underflow
<1.585
0
1
.
STEP
D7
D6
D5
D4
D3
D2
D1
D0
1
0
0
0
0
0
0
0
0
1.585
0
0
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
0
1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
254
.
0
1
1
1
1
1
1
1
0
255
3.28
0
1
1
1
1
1
1
1
1
Overflow
>3.28
1
1
1
1
1
1
1
1
1
Table 2
Mode selection
CE
D7 to D0
O/UF
1
high impedance
high impedance
0
active; binary
active
t CPL
handbook, full pagewidth
t CPH
50 %
CLK
sample N
sample N + 1
sample N + 2
V
l
t ds
DATA
D0 to D7
th
VDDO
DATA
N-2
DATA
N-1
DATA
N
DATA
N+1
50 %
0V
td
MSA670
Fig.3 Timing diagram.
1997 Oct 29
10
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
dbook, full pagewidth
TDA8714
V CCD
50 %
CE
t dHZ
t dZH
HIGH
90 %
output
data
50 %
t dLZ
LOW
t dZL
HIGH
output
data
50 %
LOW
TEST
10 %
V CCD
3.3 kΩ
S1
TDA8714
tdLZ
VCCD
tdZL
VCCD
tdHZ
DGND
tdZH
DGND
15 pF
MBD876
CE
fCE = 100 kHz.
Fig.4 Timing diagram and test conditions of 3-state output delay time.
handbook, halfpage
D0 to D7
15 pF
MBB956 - 1
Fig.5 Load circuit for timing measurement.
1997 Oct 29
11
S1
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
TDA8714
t STHL
t STLH
handbook, full pagewidth
code 255
VI
50 %
50 %
code 0
2 ns
CLK
MGD184
2 ns
50 %
50 %
0.5 ns
Fig.6 Analog input settling-time diagram.
1997 Oct 29
12
0.5 ns
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
TDA8714
MBD877
0
handbook, full pagewidth
amplitude
(dB)
20
40
60
80
100
120
0
2.50
5.00
7.50
10.0
12.5
15.0
17.5
f (MHz)
20.0
Effective bits: 7.80; THD = −57.82 dB.
Harmonic levels (dB): 2nd = −68.00; 3rd = −61.54; 4th = −72.46; 5th = −65.80; 6th = −68.88.
Fig.7 Fast Fourier Transform (fclk = 40 MHz; fi = 4.43 MHz).
MBD878
0
handbook, full pagewidth
amplitude
(dB)
20
40
60
80
100
120
0
4.69
9.39
14.1
18.8
23.5
28.2
Effective bits: 7.27; THD = −49.23 dB.
Harmonic levels (dB): 2nd = −56.16; 3rd = −51.01; 4th = −69.84; 5th = −59.10; 6th = −65.34.
Fig.8 Fast Fourier Transform (fclk = 80 MHz; fi = 10 MHz).
1997 Oct 29
13
32.9
f (MHz)
37.5
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
TDA8714
INTERNAL PIN CONFIGURATIONS
handbook, halfpage
VCCO1
handbook, halfpage
VCCO2
V CCA
(x 90)
D7 to D0
O/UF
VI
DGND
AGND
MLB036
MLB037
Fig.9 TTL data and overflow/underflow outputs.
Fig.10 Analog inputs.
book, halfpage
VCCO1
handbook, halfpage
VCCA
VRT
VRM
CE
R LAD
VRB
AGND
MEA050 - 1
DGND
MLB038
Fig.11 CE (3-state) input.
1997 Oct 29
Fig.12 VRB and VRT.
14
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
handbook, full pagewidth
TDA8714
VCCD
V ref
CLK
30 kΩ
DGND
MCD189 - 1
Fig.13 CLK input.
1997 Oct 29
30 kΩ
15
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
TDA8714
APPLICATION INFORMATION
handbook, halfpage
D1
D0
1
24
2
23
3
22
4
21
5
20
6
19
D2
D3
(2)
n.c.
(1)
VRB
100 nF
CE
VCCO2
(2)
n.c.
OGND
AGND
AGND
VCCO1
TDA8714
VCCA
VI
7
18
8
17
9
16
10
15
11
14
12
13
VCCD
DGND
(1)
VRT
100 nF
CLK
(2)
n.c.
D4
AGND
O/UF
D7
D5
D6
MSA668
The analog and digital supplies should be separated and decoupled.
The external voltage generator must be built such that a good supply voltage ripple rejection is achieved with respect to the LSB value.
(1) VRB and VRT are decoupled to AGND.
(2) Pin 5 should be connected to AGND; pins 3 and 10 to DGND in order to prevent noise influence.
Fig.14 Application diagram.
1997 Oct 29
16
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
TDA8714
PACKAGE OUTLINES
SO24: plastic small outline package; 24 leads; body width 7.5 mm
SOT137-1
D
E
A
X
c
HE
y
v M A
Z
13
24
Q
A2
A
(A 3)
A1
pin 1 index
θ
Lp
L
1
12
e
detail X
w M
bp
0
5
10 mm
scale
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
HE
L
Lp
Q
v
w
y
mm
2.65
0.30
0.10
2.45
2.25
0.25
0.49
0.36
0.32
0.23
15.6
15.2
7.6
7.4
1.27
10.65
10.00
1.4
1.1
0.4
1.1
1.0
0.25
0.25
0.1
0.9
0.4
inches
0.10
0.012 0.096
0.004 0.089
0.01
0.019 0.013
0.014 0.009
0.61
0.60
0.30
0.29
0.050
0.419
0.043
0.055
0.394
0.016
0.043
0.039
0.01
0.01
0.004
0.035
0.016
Z
(1)
θ
8o
0o
Note
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
SOT137-1
075E05
MS-013AD
1997 Oct 29
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
95-01-24
97-05-22
17
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
TDA8714
SSOP24: plastic shrink small outline package; 24 leads; body width 5.3 mm
D
SOT340-1
E
A
X
c
HE
y
v M A
Z
24
13
Q
A2
A
(A 3)
A1
pin 1 index
θ
Lp
L
1
12
bp
e
detail X
w M
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
HE
L
Lp
Q
v
w
y
Z (1)
θ
mm
2.0
0.21
0.05
1.80
1.65
0.25
0.38
0.25
0.20
0.09
8.4
8.0
5.4
5.2
0.65
7.9
7.6
1.25
1.03
0.63
0.9
0.7
0.2
0.13
0.1
0.8
0.4
8
0o
Note
1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.
OUTLINE
VERSION
SOT340-1
1997 Oct 29
REFERENCES
IEC
JEDEC
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
93-09-08
95-02-04
MO-150AG
18
o
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
TDA8714
SOLDERING
SSOP
Introduction
Wave soldering is not recommended for SSOP packages.
This is because of the likelihood of solder bridging due to
closely-spaced leads and the possibility of incomplete
solder penetration in multi-lead devices.
There is no soldering method that is ideal for all IC
packages. Wave soldering is often preferred when
through-hole and surface mounted components are mixed
on one printed-circuit board. However, wave soldering is
not always suitable for surface mounted ICs, or for
printed-circuits with high population densities. In these
situations reflow soldering is often used.
If wave soldering cannot be avoided, the following
conditions must be observed:
• A double-wave (a turbulent wave with high upward
pressure followed by a smooth laminar wave)
soldering technique should be used.
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “IC Package Databook” (order code 9398 652 90011).
• The longitudinal axis of the package footprint must
be parallel to the solder flow and must incorporate
solder thieves at the downstream end.
Reflow soldering
Even with these conditions, only consider wave
soldering SSOP packages that have a body width of
4.4 mm, that is SSOP16 (SOT369-1) or
SSOP20 (SOT266-1).
Reflow soldering techniques are suitable for all SO and
SSOP packages.
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
METHOD (SO AND SSOP)
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Several techniques exist for reflowing; for example,
thermal conduction by heated belt. Dwell times vary
between 50 and 300 seconds depending on heating
method. Typical reflow temperatures range from
215 to 250 °C.
Maximum permissible solder temperature is 260 °C, and
maximum duration of package immersion in solder is
10 seconds, if cooled to less than 150 °C within
6 seconds. Typical dwell time is 4 seconds at 250 °C.
Preheating is necessary to dry the paste and evaporate
the binding agent. Preheating duration: 45 minutes at
45 °C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
Wave soldering
SO
Repairing soldered joints
Wave soldering techniques can be used for all SO
packages if the following conditions are observed:
Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron
(less than 24 V) applied to the flat part of the lead. Contact
time must be limited to 10 seconds at up to 300 °C. When
using a dedicated tool, all other leads can be soldered in
one operation within 2 to 5 seconds between
270 and 320 °C.
• A double-wave (a turbulent wave with high upward
pressure followed by a smooth laminar wave) soldering
technique should be used.
• The longitudinal axis of the package footprint must be
parallel to the solder flow.
• The package footprint must incorporate solder thieves at
the downstream end.
1997 Oct 29
19
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
TDA8714
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
1997 Oct 29
20
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
NOTES
1997 Oct 29
21
TDA8714
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
NOTES
1997 Oct 29
22
TDA8714
Philips Semiconductors
Product specification
8-bit high-speed analog-to-digital converter
NOTES
1997 Oct 29
23
TDA8714
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,
Fax. +43 160 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 32 88 2636, Fax. +45 31 57 0044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615800, Fax. +358 9 61580920
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Rua do Rocio 220, 5th floor, Suite 51,
04552-903 São Paulo, SÃO PAULO - SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 829 1849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3 301 6312, Fax. +34 3 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 632 2000, Fax. +46 8 632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2686, Fax. +41 1 481 7730
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 625 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
© Philips Electronics N.V. 1997
SCA55
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
547047/1200/06/pp24
Date of release: 1997 Oct 29
Document order number:
9397 750 02956