APT100GT120JRDQ4 1200V, 100A, VCE(ON) = 3.2V Typical Thunderbolt IGBT® C G Features • Low Forward Voltage Drop E E The Thunderbolt IGBT® is a new generation of high voltage power IGBTs. Using Non-Punch-Through Technology, the Thunderbolt IGBT® offers superior ruggedness and ultrafast switching speed. 7 22 TO S • RBSOA and SCSOA Rated • Low Tail Current • High Frequency Switching to 50KHz • Integrated Gate Resistor • Ultra Low Leakage Current "UL Recognized" ISOTOP ® file # E145592 Low EMI, High Reliability • RoHS Compliant Unless stated otherwise, Microsemi discrete IGBTs contain a single IGBT die. This device is made with two parallel IGBT die. It is intended for switch-mode operation. It is not suitable for linear mode operation. Maximum Ratings All Ratings: TC = 25°C unless otherwise specified. Symbol Parameter Ratings VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±20 IC1 Continuous Collector Current @ TC = 25°C 123 IC2 Continuous Collector Current @ TC = 100°C 67 SSOA PD TJ, TSTG TL Pulsed Collector Current Volts Amps 200 200A @ 1200V Switching Safe Operating Area @ TJ = 150°C Total Power Dissipation 570 Operating and Storage Junction Temperature Range Watts -55 to 150 Max. Lead Temp. for Soldering: 0.063” from Case for 10 Sec. Static Electrical Characteristics °C 300 Symbol Characteristic / Test Conditions Min Typ Max 1200 - - Unit V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 5mA) VGE(TH) Gate Threshold Voltage (VCE = VGE, IC = 4mA, Tj = 25°C) 4.5 5.5 6.5 Collector Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 25°C) 2.7 3.2 3.7 Collector Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 125°C) - 4.0 - - - 200 Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) 2 - - TBD Gate-Emitter Leakage Current (VGE = ±20V) - - 600 nA Integrated Gate Resistor - 5 - Ω VCE(ON) ICES IGES RG(int) Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) 2 Volts CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com μA 052-6290 Rev C 6-2008 ICM 1 Unit Dynamic Characteristic Symbol Cies APT100GT120JRDQ4 Characteristic Test Conditions Min Typ Max - 7850 - - 650 - - 275 - Gate Charge - 10.0 - Input Capacitance VGE = 0V, VCE = 25V Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage f = 1MHz Qg Total Gate Charge VGE = 15V - 685 - Qge Gate-Emitter Charge VCE= 600V - 75 - Gate-Collector Charge IC = 100A - 400 - Qgc TJ = 150°C, RG = 1.0Ω , VGE = 15V, Unit pF V nC 7 SSOA td(on) tr td(off) tf Switching Safe Operating Area L = 100μH, VCE= 1200V Turn-On Delay Time 150 A - 50 - Inductive Switching (25°C) - 100 - Turn-Off Delay Time VCC = 800V - 630 - Current Fall Time VGE = 15V - 36 - RG = 4.7Ω - TBD - TJ = +25°C - 17600 - Current Rise Time ns IC = 100A Turn-On Switching Energy 4 Eon2 Turn-On Switching Energy 5 Eoff Turn-Off Switching Energy 6 - 7240 - td(on) Turn-On Delay Time - 50 - Inductive Switching (125°C) - 100 - Turn-Off Delay Time VCC = 800V - 710 - Current Fall Time VGE = 15V - 37 - Turn-On Switching Energy 4 IC = 100A TBD - Turn-On Switching Energy RG = 4.7Ω - 5 - 22380 - Turn-Off Switching Energy 6 - 10950 - Eon1 tr td(off) tf Eon1 Eon2 Eoff Current Rise Time TJ = 125°C Thermal and Mechanical Characteristics µJ ns µJ Symbol Characteristic / Test Conditions Min Typ Max Junction to Case (IGBT) - - 0.22 Junction to Case (DIODE) - - 0.56 Package Weight - 29.2 - g 2500 - - Volts R R θJC θJC WT VIsolation Unit °C/W RMS Voltage (50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.) 052-6290 Rev C 6-2008 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages. 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to z a the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 RG is external gate resistance not including gate driver impedance. Microsemi reserves the right to change, without notice, the specifications and information contained herein. Typical Performance Curves V GE APT100GT120JRDQ4 250 = 15V 15V 13V 12V 125 TJ= 25°C 100 TJ= 125°C 75 TJ= 150°C 50 25 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 150 200 11V 150 10V 100 9V 50 8V 7V VGE, GATE-TO-EMITTER VOLTAGE (V) 100 75 50 TJ= -55°C TJ= 25°C 25 TJ= 125°C 0 8 6 IC = 200A 5 4 IC = 100A 3 IC = 50A 2 1 8 9 10 11 12 13 14 15 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage 6 4 2 0.80 0.75 -.50 -.25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE FIGURE 7, Threshold Voltage vs Junction Temperature 0 100 7 200 300 400 500 600 GATE CHARGE (nC) FIGURE 4, Gate charge 700 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 6 IC = 200A 5 4 IC = 100A IC = 50A 3 2 1 0 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 100 0.85 VCE = 960V 8 1.05 0.90 VCE = 600V 10 120 0.95 VCE = 240V J 12 1.10 1.00 I = 100A C T = 25°C 14 0 10 12 14 4 6 8 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 2 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 7 0 16 0 80 60 40 20 0 25 50 75 100 125 150 TC, Case Temperature (°C) FIGURE 8, DC Collector Current vs Case Temperature 052-6290 Rev C 6-2008 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) 250µs PULSE TEST<0.5 % DUTY CYCLE 125 0 0 5 10 15 20 25 30 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 25°C) 0 1 2 3 4 5 6 7 8 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics (TJ = 25°C) IC, DC COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 150 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 APT100GT120JRDQ4 80 900 70 800 td(OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) Typical Performance Curves 60 VGE = 15V 50 40 30 20 VCE = 800V TJ = 25°C, or 125°C RG = 4.7Ω L = 100µH 10 0 700 600 300 200 0 0 40 80 120 160 200 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 120 RG = 4.7Ω, L = 100µH, VCE = 800V 300 tr, FALL TIME (ns) tr, RISE TIME (ns) 200 150 100 50 G 60000 50000 TJ = 125°C 40000 30000 20000 TJ = 25°C 10000 40 TJ = 125°C, VGE = 15V 0 40 80 120 160 200 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 18000 EOFF, TURN OFF ENERGY LOSS (μJ) Eon2, TURN ON ENERGY LOSS (μJ) 70000 TJ = 25°C, VGE = 15V 60 0 0 40 80 120 160 200 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 80000 V = 800V CE V = +15V GE R = 4.7Ω 80 20 TJ = 25 or 125°C,VGE = 15V 0 V = 800V CE V = +15V GE R = 4.7Ω 16000 G 14000 12000 10000 8000 TJ = 25°C 6000 4000 2000 0 40 80 120 160 200 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 14, Turn-Off Energy Loss vs Collector Current 0 40 80 120 160 200 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 80000 140000 Eon2,200A J 120000 100000 80000 60000 40000 Eoff,200A 20000 Eon2,100A 0 Eoff,100A Eon2,50A Eoff,50A 4 8 12 16 20 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs Gate Resistance SWITCHING ENERGY LOSSES (μJ) 160000 V = 800V CE V = +15V GE T = 125°C TJ = 125°C 0 0 SWITCHING ENERGY LOSSES (μJ) RG = 4.7Ω, L = 100µH, VCE = 800V 100 250 052-6290 Rev C 6-2008 VCE = 800V RG = 4.7Ω L = 100µH 100 40 80 120 160 200 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 0 VGE =15V,TJ=25°C 400 0 350 VGE =15V,TJ=125°C 500 V = 800V CE V = +15V GE R = 4.7Ω 70000 Eon2,200A G 60000 50000 40000 30000 Eoff,200A 20000 Eon2,100A 10000 0 Eoff,100A Eon2,50A Eoff,50A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature Typical Performance Curves APT100GT120JRDQ4 250 10000 IC, COLLECTOR CURRENT (A) C, CAPACITANCE (pF) Cies 1000 Coes 100 Cres 10 200 150 100 50 0 0 200 400 600 800 1000 1200 1400 VCE, COLLECTOR-TO-EMITTER VOLTAGE FIGURE 18, Minimum Switching Safe Operating Area 0 100 200 300 400 500 600 700 800 900 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) FIGURE 17, Capacitance vs Collector-To-Emitter Voltage D = 0.9 0. 2 0.7 0.15 0.5 Note: 0. 1 PDM 0.3 t1 t2 0.05 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.1 SINGLE PULSE 0.05 0 10-4 10-3 10-2 10-1 0.1 1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration TC (°C) .045 Dissipated Power (Watts) .034 .0135 .0618 .039 ZEXT TJ (°C) 17.42 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL FMAX, OPERATING FREQUENCY (kHz) 40 T = 125°C J T = 75°C C D = 50 % V = 800V CE R = 4.7Ω 30 G 75°C 10 F = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf max 20 10 fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC 100°C 0 0 10 20 30 40 50 60 70 80 90 100 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 052-6290 Rev C 6-2008 ZθJC, THERMAL IMPEDANCE (°C/W) 0.25 APT100GT120JRDQ4 Gate Voltage 10% a -46.0ns 780.4V b 422ns 34.13V ∆468ns ∆746.3V TJ = 125°C td(on) APT100DQ120 Collector Current tr 90% V CE IC V CC 5% 10% 5% Collector Voltage Switching Energy A D.U.T. Figure 21, Inductive Switching Test Circuit 90% TJ = 125°C a -226ns 97.34V b 928ns 0.000V ∆1.15μs ∆97.34V Gate Voltage Collector Voltage 90% td(off) tf 10% 0 Collector Current Switching Energy 052-6290 Rev C 6-2008 Figure 23, Turn-off Switching Waveforms and Definitions Figure 22, Turn-on Switching Waveforms and Definitions Typical Performance Curves APT100GT120JRDQ4 ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE MAXIMUM RATINGS All Ratings: TC = 25°C unless otherwise specified. Symbol Characteristic / Test Conditions IF(AV) IF(RMS) IFSM APT100GT120JRDQ4 Maximum Average Forward Current (TC = 88°C, Duty Cycle = 0.5) 60 RMS Forward Current (Square wave, 50% duty) 73 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms) 540 Unit Amps STATIC ELECTRICAL CHARACTERISTICS Symbol Characteristic / Test Conditions VF Min Type IF = 75A 2.8 IF = 150A 3.48 IF = 75A, TJ = 125°C 2.17 Forward Voltage Max Unit Volts DYNAMIC CHARACTERISTICS Symbol Characteristic trr Reverse Recovery Time trr Reverse Recovery Time Qrr Reverse Recovery Charge Reverse Recovery Time Qrr Reverse Recovery Charge Max IF = 1A, diF/dt = -100A/µs, VR = 30V, TJ = 25°C - 60 - - 265 - - 560 - nC - 5 - Amps - 350 - ns - 2890 - nC - 13 - Amps - 150 - ns - 4720 - nC - 40 - Amps VR = 800V, TC = 25°C IF = 60A, diF/dt = -200A/µs VR = 800V, TC = 125°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Maximum Reverse Recovery Current IF = 60A, diF/dt = -1000A/µs VR = 800V, TC = 125°C Unit ns D = 0.9 0.50 0.40 0.7 0.30 0.5 0.20 0.3 Note: PDM Z JC, THERMAL IMPEDANCE (°C/W) θ 0.60 t1 t2 0.10 0 t 0.1 0.05 10-5 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION TJ (°C) TC (°C) 0.148 0.238 0.174 Dissipated Power (Watts) 0.006 0.0910 0.524 FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. 052-6290 Rev C 6-2008 IRRM Typ IF = 60A, diF/dt = -200A/µs Maximum Reverse Recovery Current trr Min ZEXT IRRM Test Conditions Typical Perfromance Curves APT100GT120JRDQ4 200 400 TJ = 175°C 120 100 TJ = 125°C 80 60 TJ = 25°C TJ = -55°C 20 0 120A 5000 60A 3000 30A 2000 1000 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 27. Reverse Recovery Charge vs. Current Rate of Change 50 T = 125°C J V = 800V 45 120A R 40 35 30 25 60A 20 15 30A 10 5 Duty cycle = 0.5 T = 175°C 80 J 70 IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) 0.6 100 90 trr 0.8 150 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 28. Reverse Recovery Current vs. Current Rate of Change Qrr trr 1.0 30A 200 0 IRRM 0.4 60 50 40 30 Qrr 20 0.2 10 0.0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 29. Dynamic Parameters vs. Junction Temperature 0 0 75 100 125 150 175 Case Temperature (°C) Figure 30. Maximum Average Forward Current vs. CaseTemperature 300 250 200 150 100 50 0 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 31. Junction Capacitance vs. Reverse Voltage CJ, JUNCTION CAPACITANCE (pF) 350 052-6290 Rev C 6-2008 IRRM, REVERSE RECOVERY CURRENT (A) Qrr, REVERSE RECOVERY CHARGE (nC) R 4000 60A 250 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 26. Reverse Recovery Time vs. Current Rate of Change T = 125°C J V = 800V 6000 300 0 1 2 3 4 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 25. Forward Current vs. Forward Voltage 7000 R 350 50 0 1.2 trr, REVERSE RECOVERY TIME (ns) 140 40 160 T = 125°C J V = 800V 120A IF, FORWARD CURRENT (A) 180 25 50 APT100GT120JRDQ2 Vr diF /dt Adjust +18V APT10035LLL 0V D.U.T. 30µH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 32, Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 3 0.25 IRRM 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 33, Diode Reverse Recovery Waveform and Definitions SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) r = 4.0 (.157) (2 places) 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 3.3 (.129) 3.6 (.143) 14.9 (.587) 15.1 (.594) 1.95 (.077) 2.14 (.084) * Emitter/Anode 30.1 (1.185) 30.3 (1.193) Collector/Cathode * Emitter/Anode terminals are shorted internally. Current handling capability is equal for either Emitter/Anode terminal. 38.0 (1.496) 38.2 (1.504) * Emitter/Anode Gate ) Dimensions in Millimeters and (Inches Microsemi’s prod 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743 and foreign patents. US and Foreign patents pending. All Rights Reserved. 052-6290 Rev C 6-2008 7.8 (.307) 8.2 (.322)