MICROSEMI APT100GT120JRDQ4

APT100GT120JRDQ4
1200V, 100A, VCE(ON) = 3.2V Typical
Thunderbolt IGBT®
C
G
Features
• Low Forward Voltage Drop
E
E
The Thunderbolt IGBT® is a new generation of high voltage power IGBTs. Using
Non-Punch-Through Technology, the Thunderbolt IGBT® offers superior ruggedness and ultrafast switching speed.
7
22
TO S
• RBSOA and SCSOA Rated • Low Tail Current • High Frequency Switching to 50KHz
• Integrated Gate Resistor • Ultra Low Leakage Current
"UL Recognized"
ISOTOP ®
file # E145592
Low EMI, High Reliability
• RoHS Compliant
Unless stated otherwise, Microsemi discrete IGBTs contain a single IGBT die. This device is made with two parallel
IGBT die. It is intended for switch-mode operation. It is not suitable for linear mode operation.
Maximum Ratings All Ratings: TC = 25°C unless otherwise specified.
Symbol Parameter
Ratings
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±20
IC1
Continuous Collector Current @ TC = 25°C
123
IC2
Continuous Collector Current @ TC = 100°C
67
SSOA
PD
TJ, TSTG
TL
Pulsed Collector Current
Volts
Amps
200
200A @ 1200V
Switching Safe Operating Area @ TJ = 150°C
Total Power Dissipation
570
Operating and Storage Junction Temperature Range
Watts
-55 to 150
Max. Lead Temp. for Soldering: 0.063” from Case for 10 Sec.
Static Electrical Characteristics °C
300
Symbol Characteristic / Test Conditions
Min
Typ
Max
1200
-
-
Unit
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 5mA)
VGE(TH)
Gate Threshold Voltage (VCE = VGE, IC = 4mA, Tj = 25°C)
4.5
5.5
6.5
Collector Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 25°C)
2.7
3.2
3.7
Collector Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 125°C)
-
4.0
-
-
-
200
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) 2
-
-
TBD
Gate-Emitter Leakage Current (VGE = ±20V)
-
-
600
nA
Integrated Gate Resistor
-
5
-
Ω
VCE(ON)
ICES
IGES
RG(int)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
2
Volts
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
μA
052-6290 Rev C 6-2008
ICM
1
Unit
Dynamic Characteristic
Symbol
Cies
APT100GT120JRDQ4
Characteristic
Test Conditions
Min
Typ
Max
-
7850
-
-
650
-
-
275
-
Gate Charge
-
10.0
-
Input Capacitance
VGE = 0V, VCE = 25V
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
f = 1MHz
Qg
Total Gate Charge
VGE = 15V
-
685
-
Qge
Gate-Emitter Charge
VCE= 600V
-
75
-
Gate-Collector Charge
IC = 100A
-
400
-
Qgc
TJ = 150°C, RG = 1.0Ω , VGE = 15V,
Unit
pF
V
nC
7
SSOA
td(on)
tr
td(off)
tf
Switching Safe Operating Area
L = 100μH, VCE= 1200V
Turn-On Delay Time
150
A
-
50
-
Inductive Switching (25°C)
-
100
-
Turn-Off Delay Time
VCC = 800V
-
630
-
Current Fall Time
VGE = 15V
-
36
-
RG = 4.7Ω
-
TBD
-
TJ = +25°C
-
17600
-
Current Rise Time
ns
IC = 100A
Turn-On Switching Energy
4
Eon2
Turn-On Switching Energy
5
Eoff
Turn-Off Switching Energy 6
-
7240
-
td(on)
Turn-On Delay Time
-
50
-
Inductive Switching (125°C)
-
100
-
Turn-Off Delay Time
VCC = 800V
-
710
-
Current Fall Time
VGE = 15V
-
37
-
Turn-On Switching Energy
4
IC = 100A
TBD
-
Turn-On Switching Energy
RG = 4.7Ω
-
5
-
22380
-
Turn-Off Switching Energy
6
-
10950
-
Eon1
tr
td(off)
tf
Eon1
Eon2
Eoff
Current Rise Time
TJ = 125°C
Thermal and Mechanical Characteristics
µJ
ns
µJ
Symbol Characteristic / Test Conditions
Min
Typ
Max
Junction to Case (IGBT)
-
-
0.22
Junction to Case (DIODE)
-
-
0.56
Package Weight
-
29.2
-
g
2500
-
-
Volts
R
R
θJC
θJC
WT
VIsolation
Unit
°C/W
RMS Voltage (50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)
052-6290 Rev C 6-2008
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages.
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to
z a the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance not including gate driver impedance.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
V
GE
APT100GT120JRDQ4
250
= 15V
15V
13V
12V
125
TJ= 25°C
100
TJ= 125°C
75
TJ= 150°C
50
25
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
150
200
11V
150
10V
100
9V
50
8V
7V
VGE, GATE-TO-EMITTER VOLTAGE (V)
100
75
50
TJ= -55°C
TJ= 25°C
25
TJ= 125°C
0
8
6
IC = 200A
5
4
IC = 100A
3
IC = 50A
2
1
8
9
10
11 12
13 14 15 16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage
6
4
2
0.80
0.75
-.50 -.25
0
25
50 75 100 125 150
TJ, JUNCTION TEMPERATURE
FIGURE 7, Threshold Voltage vs Junction Temperature
0
100
7
200 300 400 500 600
GATE CHARGE (nC)
FIGURE 4, Gate charge
700
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
6
IC = 200A
5
4
IC = 100A
IC = 50A
3
2
1
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
100
0.85
VCE = 960V
8
1.05
0.90
VCE = 600V
10
120
0.95
VCE = 240V
J
12
1.10
1.00
I = 100A
C
T = 25°C
14
0
10
12
14
4
6
8
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
2
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
7
0
16
0
80
60
40
20
0
25
50
75
100
125
150
TC, Case Temperature (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6290 Rev C 6-2008
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
125
0
0
5
10
15
20
25
30
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 25°C)
0
1
2
3
4
5
6
7
8
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics (TJ = 25°C)
IC, DC COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
150
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
APT100GT120JRDQ4
80
900
70
800
td(OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
Typical Performance Curves
60
VGE = 15V
50
40
30
20
VCE = 800V
TJ = 25°C, or 125°C
RG = 4.7Ω
L = 100µH
10
0
700
600
300
200
0
0
40
80
120
160
200
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
120
RG = 4.7Ω, L = 100µH, VCE = 800V
300
tr, FALL TIME (ns)
tr, RISE TIME (ns)
200
150
100
50
G
60000
50000
TJ = 125°C
40000
30000
20000
TJ = 25°C
10000
40
TJ = 125°C, VGE = 15V
0
40
80
120
160
200
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
18000
EOFF, TURN OFF ENERGY LOSS (μJ)
Eon2, TURN ON ENERGY LOSS (μJ)
70000
TJ = 25°C, VGE = 15V
60
0
0
40
80
120
160
200
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
80000
V
= 800V
CE
V
= +15V
GE
R = 4.7Ω
80
20
TJ = 25 or 125°C,VGE = 15V
0
V
= 800V
CE
V
= +15V
GE
R = 4.7Ω
16000
G
14000
12000
10000
8000
TJ = 25°C
6000
4000
2000
0
40
80
120
160
200
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 14, Turn-Off Energy Loss vs Collector Current
0
40
80
120
160
200
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
80000
140000
Eon2,200A
J
120000
100000
80000
60000
40000
Eoff,200A
20000
Eon2,100A
0
Eoff,100A
Eon2,50A
Eoff,50A
4
8
12
16
20
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs Gate Resistance
SWITCHING ENERGY LOSSES (μJ)
160000
V
= 800V
CE
V
= +15V
GE
T = 125°C
TJ = 125°C
0
0
SWITCHING ENERGY LOSSES (μJ)
RG = 4.7Ω, L = 100µH, VCE = 800V
100
250
052-6290 Rev C 6-2008
VCE = 800V
RG = 4.7Ω
L = 100µH
100
40
80
120
160
200
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
0
VGE =15V,TJ=25°C
400
0
350
VGE =15V,TJ=125°C
500
V
= 800V
CE
V
= +15V
GE
R = 4.7Ω
70000
Eon2,200A
G
60000
50000
40000
30000
Eoff,200A
20000
Eon2,100A
10000
0
Eoff,100A
Eon2,50A
Eoff,50A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT100GT120JRDQ4
250
10000
IC, COLLECTOR CURRENT (A)
C, CAPACITANCE (pF)
Cies
1000
Coes
100
Cres
10
200
150
100
50
0
0 200 400 600 800 1000 1200 1400
VCE, COLLECTOR-TO-EMITTER VOLTAGE
FIGURE 18, Minimum Switching Safe Operating Area
0 100 200 300 400 500 600 700 800 900
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
D = 0.9
0. 2
0.7
0.15
0.5
Note:
0. 1
PDM
0.3
t1
t2
0.05
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.1
SINGLE PULSE
0.05
0
10-4
10-3
10-2
10-1
0.1
1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
TC (°C)
.045
Dissipated Power
(Watts)
.034
.0135
.0618
.039
ZEXT
TJ (°C)
17.42
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
FMAX, OPERATING FREQUENCY (kHz)
40
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 800V
CE
R = 4.7Ω
30
G
75°C
10
F
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
max
20
10
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
100°C
0
0
10
20 30 40 50 60 70 80 90 100
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
052-6290 Rev C 6-2008
ZθJC, THERMAL IMPEDANCE (°C/W)
0.25
APT100GT120JRDQ4
Gate Voltage
10%
a -46.0ns 780.4V
b 422ns 34.13V
∆468ns ∆746.3V
TJ = 125°C
td(on)
APT100DQ120
Collector Current
tr
90%
V CE
IC
V CC
5%
10%
5%
Collector Voltage
Switching Energy
A
D.U.T.
Figure 21, Inductive Switching Test Circuit
90%
TJ = 125°C
a -226ns 97.34V
b 928ns 0.000V
∆1.15μs ∆97.34V
Gate Voltage
Collector Voltage
90%
td(off)
tf
10%
0
Collector Current
Switching Energy
052-6290 Rev C 6-2008
Figure 23, Turn-off Switching Waveforms and Definitions
Figure 22, Turn-on Switching Waveforms and Definitions
Typical Performance Curves
APT100GT120JRDQ4
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS All Ratings: TC = 25°C unless otherwise specified.
Symbol Characteristic / Test Conditions
IF(AV)
IF(RMS)
IFSM
APT100GT120JRDQ4
Maximum Average Forward Current (TC = 88°C, Duty Cycle = 0.5)
60
RMS Forward Current (Square wave, 50% duty)
73
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms)
540
Unit
Amps
STATIC ELECTRICAL CHARACTERISTICS
Symbol Characteristic / Test Conditions
VF
Min
Type
IF = 75A
2.8
IF = 150A
3.48
IF = 75A, TJ = 125°C
2.17
Forward Voltage
Max
Unit
Volts
DYNAMIC CHARACTERISTICS
Symbol Characteristic
trr
Reverse Recovery Time
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Max
IF = 1A, diF/dt = -100A/µs,
VR = 30V, TJ = 25°C
-
60
-
-
265
-
-
560
-
nC
-
5
-
Amps
-
350
-
ns
-
2890
-
nC
-
13
-
Amps
-
150
-
ns
-
4720
-
nC
-
40
-
Amps
VR = 800V, TC = 25°C
IF = 60A, diF/dt = -200A/µs
VR = 800V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Maximum Reverse Recovery Current
IF = 60A, diF/dt = -1000A/µs
VR = 800V, TC = 125°C
Unit
ns
D = 0.9
0.50
0.40
0.7
0.30
0.5
0.20
0.3
Note:
PDM
Z JC, THERMAL IMPEDANCE (°C/W)
θ
0.60
t1
t2
0.10
0
t
0.1
0.05
10-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
TJ (°C)
TC (°C)
0.148
0.238
0.174
Dissipated Power
(Watts)
0.006
0.0910
0.524
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
052-6290 Rev C 6-2008
IRRM
Typ
IF = 60A, diF/dt = -200A/µs
Maximum Reverse Recovery Current
trr
Min
ZEXT
IRRM
Test Conditions
Typical Perfromance Curves
APT100GT120JRDQ4
200
400
TJ = 175°C
120
100
TJ = 125°C
80
60
TJ = 25°C
TJ = -55°C
20
0
120A
5000
60A
3000
30A
2000
1000
0
0
200 400 600 800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 27. Reverse Recovery Charge vs. Current Rate of Change
50
T = 125°C
J
V = 800V
45
120A
R
40
35
30
25
60A
20
15
30A
10
5
Duty cycle = 0.5
T = 175°C
80
J
70
IF(AV) (A) Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
0.6
100
90
trr
0.8
150
0
200 400 600 800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Current vs. Current Rate of Change
Qrr
trr
1.0
30A
200
0
IRRM
0.4
60
50
40
30
Qrr
20
0.2
10
0.0
25
50
75
100 125 150
TJ, JUNCTION TEMPERATURE (°C)
Figure 29. Dynamic Parameters vs. Junction Temperature
0
0
75
100 125 150 175
Case Temperature (°C)
Figure 30. Maximum Average Forward Current vs. CaseTemperature
300
250
200
150
100
50
0
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 31. Junction Capacitance vs. Reverse Voltage
CJ, JUNCTION CAPACITANCE
(pF)
350
052-6290 Rev C 6-2008
IRRM, REVERSE RECOVERY CURRENT
(A)
Qrr, REVERSE RECOVERY CHARGE
(nC)
R
4000
60A
250
0
200 400 600 800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 26. Reverse Recovery Time vs. Current Rate of Change
T = 125°C
J
V = 800V
6000
300
0
1
2
3
4
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 25. Forward Current vs. Forward Voltage
7000
R
350
50
0
1.2
trr, REVERSE RECOVERY TIME (ns)
140
40
160
T = 125°C
J
V = 800V
120A
IF, FORWARD CURRENT
(A)
180
25
50
APT100GT120JRDQ2
Vr
diF /dt Adjust
+18V
APT10035LLL
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 32, Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
3
0.25 IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 33, Diode Reverse Recovery Waveform and Definitions
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
r = 4.0 (.157)
(2 places)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
3.3 (.129)
3.6 (.143)
14.9 (.587)
15.1 (.594)
1.95 (.077)
2.14 (.084)
* Emitter/Anode
30.1 (1.185)
30.3 (1.193)
Collector/Cathode
* Emitter/Anode terminals are
shorted internally. Current
handling capability is equal
for either Emitter/Anode terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter/Anode
Gate
)
Dimensions in Millimeters and (Inches
Microsemi’s prod
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743 and foreign patents. US and Foreign patents pending. All Rights Reserved.
052-6290 Rev C 6-2008
7.8 (.307)
8.2 (.322)