PD- 95906 SMPS MOSFET IRFPS30N60KPbF HEXFET® Power MOSFET Applications l Switch Mode Power Supply (SMPS) l Uninterruptible Power Supply l High Speed Power Switching l Lead-Free VDSS RDS(on) typ. ID 160mΩ 30A 600V Benefits l Low Gate Charge Qg results in Simple Drive Requirement l Improved Gate, Avalanche and Dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche Voltage and Current Super-247™ Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case ) Max. Units 30 19 120 450 3.6 ± 30 13 -55 to + 150 A W W/°C V V/ns 300 °C Avalanche Characteristics Symbol EAS IAR EAR Parameter Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Typ. Max. Units ––– ––– ––– 520 30 45 mJ A mJ Typ. Max. Units ––– 0.24 ––– 0.28 ––– 40 °C/W Thermal Resistance Symbol RθJC RθCS RθJA www.irf.com Parameter Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient 1 09/15/04 IRFPS30N60KPbF Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS RDS(on) VGS(th) Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage ∆V(BR)DSS/∆TJ Min. 600 ––– ––– 3.0 ––– ––– ––– ––– Typ. ––– 0.66 160 ––– ––– ––– ––– ––– Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 190 mΩ VGS = 10V, ID = 18A 5.0 V VDS = VGS, ID = 250µA 50 VDS = 600V, VGS = 0V µA 250 VDS = 480V, VGS = 0V, TJ = 125°C 100 VGS = 30V nA -100 VGS = -30V Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. 16 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– ––– ––– 29 120 56 50 5870 530 54 6920 140 270 Max. Units Conditions ––– S VDS = 50V, ID = 18A 220 ID = 30A 64 nC VDS = 480V 110 VGS = 10V ––– VDD = 300V ––– I D = 30A ns ––– RG = 3.9 Ω ––– VGS = 10V ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 1.0MHz ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 480V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 480V Diode Characteristics Symbol IS ISM VSD trr Qrr IRRM ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Reverse RecoveryCurrent Forward Turn-On Time Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 1.1mH, RG = 25Ω, IAS = 30A ISD ≤ 30A, di/dt ≤ 630A/µs, VDD ≤ V(BR)DSS, Min. Typ. Max. Units ––– ––– 30 ––– ––– 120 A Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = 30A, VGS = 0V TJ = 25°C, IF = 30A di/dt = 100A/µs D S ––– ––– 1.5 V ––– 640 960 ns ––– 11 16 µC ––– 31 ––– A Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Pulse width ≤ 300µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS Rθ is measured at TJ approximately 90°C TJ ≤ 150°C 2 www.irf.com IRFPS30N60KPbF 100 VGS TOP 15V 12V 10V 8.0V 7.0V 6.0V 5.5V BOTTOM 5.0V 10 1 5.0V 0.1 10 5.0V 1 0.1 0.01 1 10 20µs PULSE WIDTH Tj = 150°C 20µs PULSE WIDTH Tj = 25°C 0.1 VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V BOTTOM 5.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 100 0.1 100 1 VDS, Drain-to-Source Voltage (V) 3.0 T J = 150°C T J = 25°C VDS = 50V 20µs PULSE WIDTH 6.0 7.0 8.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 9.0 2.0 (Normalized) 10.0 5.0 I D = 30A 2.5 RDS(on) , Drain-to-Source On Resistance ID, Drain-to-Source Current ( A) 100.0 0.1 100 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 1.0 10 VDS, Drain-to-Source Voltage (V) 1.5 1.0 0.5 V GS = 10V 0.0 -60 -40 -20 0 20 40 60 TJ, Junction Temperature 80 100 120 140 ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 160 IRFPS30N60KPbF VGS = 0V, f = 1 MHZ C iss = C gs + Cgd , SHORTED C, Capacitance (pF) 100000 20 ID= 30A C ds VGS , Gate-to-Source Voltage (V) 1000000 Crss = Cgd Coss = Cds + Cgd 10000 Ciss 1000 Coss 100 Crss VDS= 480V VDS= 300V VDS= 120V 16 12 8 4 0 10 1 10 100 0 1000 40 80 120 160 200 240 Q G Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 100.0 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) 10.0 TJ = 150°C 1.0 T J = 25°C VGS = 0V 0.1 0.2 0.4 0.6 0.8 1.0 1.2 VSD, Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 100 1msec 1 0.1 1.4 100µsec 10 Tc = 25°C Tj = 150°C Single Pulse 1 10 10msec 100 1000 10000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFPS30N60KPbF 30 VGS 24 ID , Drain Current (A) RD V DS D.U.T. RG + -VDD VGS 18 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 12 Fig 10a. Switching Time Test Circuit VDS 6 90% 0 25 50 75 100 TC , Case Temperature 125 150 ( °C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms (Z thJC) 1 D = 0.50 0.1 Thermal Response 0.20 0.10 0.05 0.01 0.02 0.01 P DM SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = 2. Peak T 0.001 0.00001 0.0001 0.001 0.01 t1/ t 2 J = P DM x Z thJC +T C 0.1 1 t 1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFPS30N60KPbF 1000 15V ID TOP + V - DD IAS 20V A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS , Single Pulse Avalanche Energy (mJ) D.U.T RG 800 DRIVER L VDS 13A 19A 30A BOTTOM 600 400 200 0 25 50 75 100 125 150 ( °C) Starting T , JJunction Temperature Fig 12c. Maximum Avalanche Energy Vs. Drain Current I AS Fig 12b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. QG 50KΩ 12V .2µF .3µF QGS QGD D.U.T. VG + V - DS VGS 3mA Charge Fig 13a. Basic Gate Charge Waveform 6 IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit www.irf.com IRFPS30N60KPbF Peak Diode Recovery dv/dt Test Circuit Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D.U.T + - - + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Driver Gate Drive P.W. Period D= + - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFET® Power MOSFETs www.irf.com 7 IRFPS30N60KPbF Case Outline and Dimensions — Super-247 Super-247 (TO-274AA) Part Marking Information EXAMPLE: THIS IS AN IRFPS37N50A WITH ASSEMBLY LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C" PART NUMBER INTERNATIONAL RECTIFIER LOGO IRFPS37N50A 719C 17 89 ASSEMBLY LOT CODE Note: "P" in assembly line position indicates "Lead-Free" DATE CODE YEAR 7 = 1997 WEEK 19 LINE C TOP Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/04 8 www.irf.com