PD -94908 IRG4BC20MDPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features • Rugged: 10µsec short circuit capable at VGS=15V • Low VCE(on) for 4 to 10kHz applications • IGBT Co-packaged with ultra-soft-recovery antiparallel diode • Industry standard TO-220AB package • Lead-Free C VCES = 600V VCE(on) typ. = 1.85V G Benefits • Offers highest efficiency and short circuit capability for intermediate applications • Provides best efficiency for the mid range frequency (4 to 10kHz) • Optimized for Appliance Motor Drives, Industrial (Short Circuit Proof) Drives and Intermediate Frequency Range Drives • High noise immune "Positive Only" gate driveNegative bias gate drive not necessary • For Low EMI designs- requires little or no snubbing • Single Package switch for bridge circuit applications • Compatible with high voltage Gate Driver IC's • Allows simpler gate drive Short Circuit Rated Fast IGBT @VGE = 15V, IC = 11A E n-channel TO-220AB Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C tsc IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Short Circuit Withstand Time Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Max. Units 600 18 11 36 36 7.0 10 36 ± 20 60 24 -55 to +150 V A µs A V W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m) Min. Typ. Max. ------------------------- ----------0.50 ----2 (0.07) 2.1 2.5 -----80 ------ Units °C/W g (oz) 1 3/6/01 IRG4BC20MDPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Collector-to-Emitter Breakdown Voltage 600 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage ---VCE(on) Collector-to-Emitter Saturation Voltage ---------VGE(th) Gate Threshold Voltage 4.0 ∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage ---gfe Forward Transconductance 3.0 ICES Zero Gate Voltage Collector Current ------VFM Diode Forward Voltage Drop ------IGES Gate-to-Emitter Leakage Current ---V(BR)CES Typ. ---0.67 1.85 2.46 2.07 ----11 3.6 ------1.4 1.3 ---- Max. Units Conditions ---V VGE = 0V, IC = 250µA ---- V/°C VGE = 0V, I C = 1.0mA 2.1 IC = 11A VGE = 15V ---V IC = 18A See Fig. 2, 5 ---IC = 11A, TJ = 150°C 6.5 VCE = VGE, IC = 250µA ---- mV/°C VCE = VGE, IC = 250µA ---S VCE = 100V, IC = 11A 250 µA VGE = 0V, VCE = 600V 2500 VGE = 0V, VCE = 600V, TJ = 150°C 1.7 V IC = 8.0A See Fig. 13 1.6 IC = 8.0A, TJ = 150°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres trr Irr Q rr di(rec)M/dt 2 Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Min. ---------------------------------------------------------------Diode Peak Reverse Recovery Current ------Diode Reverse Recovery Charge ------Diode Peak Rate of Fall of Recovery ---During tb ---- Typ. 39 5.3 20 21 37 463 340 0.41 2.03 2.44 19 41 590 600 3.49 7.5 460 54 14 37 55 3.5 4.5 65 124 240 210 Max. Units Conditions 59 IC = 11A 8.0 nC VCC = 400V See Fig. 8 30 VGE = 15V ---TJ = 25°C ---ns IC = 11A, VCC = 480V 690 VGE = 15V, RG = 50Ω 510 Energy losses include "tail" and ---diode reverse recovery. ---mJ See Fig. 9, 10, 11, 18 3.7 ---TJ = 150°C, See Fig. 9, 10, 11, 18 ---ns IC = 6.5A, VCC = 480V ---VGE = 15V, RG = 50Ω ---Energy losses include "tail" and ---mJ diode reverse recovery. ---nH Measured 5mm from package ---VGE = 0V ---pF VCC = 30V See Fig. 7 ---ƒ = 1.0MHz 55 ns TJ = 25°C See Fig. 90 TJ = 125°C 14 IF = 8.0A 5.0 A TJ = 25°C See Fig. 8.0 TJ = 125°C 15 VR = 200V 138 nC TJ = 25°C See Fig. 360 TJ = 125°C 16 di/dt 200A/µs ---- A/µs TJ = 25°C See Fig. ---TJ = 125°C 17 www.irf.com IRG4BC20MDPbF 12 Duty cycle : 50% Tj = 125°C Tsink = 90°C Gate drive as specified Turn-on losses include effects of reverse recovery Power Dissipation = 13W 10 Load Current ( A ) 8 60% of rated voltage 6 4 Ideal diodes 2 0 0.1 1 10 100 f , Frequency ( kHz ) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 10 1 T J = 150°C TJ = 25°C VGE= 15V 20µs PULSE WIDTH 0.1 0.1 1.0 VCE , Collector-to-Emitter Voltage (V) 10.0 I C , Collector-to-Emitter Current (A) IC , Collector-to Emitter Current (A) 100 TJ = 150 °C 10 TJ = 25 °C 1 0.1 V CC = 50V 5µs PULSE WIDTH 6 8 10 12 14 16 VGE , Gate-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com Fig. 3 - Typical Transfer Characteristics 3 IRG4BC20MDPbF 4.0 VCE , Collector-to Emitter Voltage (V) Maximum DC Collector Current(A) 20 15 10 5 0 VGE = 15V 80µs PULSE WIDTH IC = 22A 3.0 IC = 11A 2.0 IC = 5.5A 1.0 25 50 75 100 125 150 -60 -40 -20 TC , Case Temperature ( °C) 0 20 40 60 80 100 120 140 TJ , Junction Temperature (°C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 0.10 PDM 0.05 0.1 0.02 0.01 0.01 0.00001 t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D =t 1 / t2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4BC20MDPbF 20 VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc VGE , Gate-to-Emitter Voltage (V) C, Capacitance (pF) 800 600 Cies 400 200 Coes VCC = 400V I C = 11A 16 12 8 4 Cres 0 1 10 0 100 VCE , Collector-to-Emitter Voltage (V) 10 20 30 40 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 100 2.5 VCC = 480V VGE = 15V TJ = 25°C I C = 11A Total Switching Losses (mJ) Total Switching Losses (mJ) 0 2.4 RG = 50Ω VGE = 15V VCC = 480V IC = 22A 10 IC = 11A IC = 5.5A 1 0.1 2.3 0 10 20 30 40 RG, Gate Resistance (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 50 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J, Junction Temperature (°C) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4BC20MDPbF 100 10.0 8.0 VCC = 480V C, Capacitance(pF) Total Switching Losses (mJ) VGE = 20V T J = 125° RG = 50Ω TJ = 150°C VGE = 15V 6.0 4.0 SAFE OPERATING AREA 10 2.0 0.0 5 10 15 20 1 25 1 I C , Collector Current (A) 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA Instantaneous Forward Current - I F (A) 100 10 TJ = 150°C TJ = 125°C TJ = 25°C 1 0.1 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 Forward Voltage Drop - V FM (V) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4BC20MDPbF 100 100 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C 80 I F = 8.0A I IRRM - (A) t rr - (ns) IF = 16A 60 I F = 16A 10 IF = 8.0A 40 I F = 4.0A I F = 4.0A 20 0 100 1 100 1000 di f /dt - (A/µs) Fig. 14 - Typical Reverse Recovery vs. dif/dt di f /dt - (A/µs) 1000 Fig. 15 - Typical Recovery Current vs. dif/dt 500 10000 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C di(rec)M/dt - (A/µs) Q RR - (nC) 400 300 I F = 16A 200 I F = 8.0A 1000 IF = 4.0A IF = 8.0A I F = 16A 100 IF = 4.0A 0 100 di f /dt - (A/µs) Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 1000 100 100 di f /dt - (A/µs) 1000 Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4BC20MDPbF 90% Vge +Vge Same type device as D.U.T. Vce Ic 90% Ic 10% Vce Ic 5% Ic 430µF 80% of Vce D.U.T. td(off) tf Eoff = ∫ t1+5µS Vce ic dt t1 Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf GATE VOLTAGE D.U.T. 10% +Vg trr Ic Qrr = tx DUT VOLTAGE AND CURRENT Vce 10% Ic 90% Ic tr td(on) 10% Irr Ipk Vpk Vcc Irr Ic DIODE RECOVERY WAVEFORMS 5% Vce t1 ∫ t2 Eon = Vce ie dt t1 t2 DIODE REVERSE RECOVERY ENERGY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ +Vg 10% Vcc Vcc trr id dt tx ∫ t4 Erec = Vd id dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4BC20MDPbF Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 1000V Vc* RL= 0 - 480V 480V 4 X IC @25°C 50V 6000µF 100V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4BC20MDPbF Notes: Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10µH, RG = 50Ω (figure 19) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. TO-220AB Package Outline 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) L E A D A S S IG N M E N T S LEAD ASSIGNMENTS 1.15 (.045) MIN 1 2 3 1234- 14.09 (.555) 13.47 (.530) G A T2E- DRAIN - SOURCE D R A3I N S O U4R- CDRAIN E D R A IN IG B T s , C o P A C K 1234- G ATE CO LLE CTO R E M IT T E R CO LLE CTO R 4.06 (.160) 3.55 (.140) 3X 3X H E X F E1T- GATE 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E X AM P L E : T H I S I S A N IR F 1 0 1 0 L O T COD E 1789 AS S E M B L E D O N W W 1 9, 1 99 7 IN T H E A S S E M B L Y L IN E "C " N o t e : " P " in a s s e m b l y li n e p o s i t io n in d i c a t e s " L e a d - F r e e " IN T E R N A T IO N A L R E C T IF IE R L OGO AS S E M B L Y LOT CODE P AR T N U M B E R D AT E CO D E YE AR 7 = 1997 W EE K 19 L IN E C Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 12/03 10 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/