IRF IRG4BC20MDPBF

PD -94908
IRG4BC20MDPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
• Rugged: 10µsec short circuit capable at VGS=15V
• Low VCE(on) for 4 to 10kHz applications
• IGBT Co-packaged with ultra-soft-recovery
antiparallel diode
• Industry standard TO-220AB package
• Lead-Free
C
VCES = 600V
VCE(on) typ. = 1.85V
G
Benefits
• Offers highest efficiency and short circuit
capability for intermediate applications
• Provides best efficiency for the mid range frequency
(4 to 10kHz)
• Optimized for Appliance Motor Drives, Industrial (Short
Circuit Proof) Drives and Intermediate Frequency
Range Drives
• High noise immune "Positive Only" gate driveNegative bias gate drive not necessary
• For Low EMI designs- requires little or no snubbing
• Single Package switch for bridge circuit applications
• Compatible with high voltage Gate Driver IC's
• Allows simpler gate drive
Short Circuit Rated
Fast IGBT
@VGE = 15V, IC = 11A
E
n-channel
TO-220AB
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
tsc
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Diode Continuous Forward Current
Short Circuit Withstand Time
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Max.
Units
600
18
11
36
36
7.0
10
36
± 20
60
24
-55 to +150
V
A
µs
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1 N•m)
Min.
Typ.
Max.
-------------------------
----------0.50
----2 (0.07)
2.1
2.5
-----80
------
Units
°C/W
g (oz)
1
3/6/01
IRG4BC20MDPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Collector-to-Emitter Breakdown Voltageƒ 600
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage ---VCE(on)
Collector-to-Emitter Saturation Voltage ---------VGE(th)
Gate Threshold Voltage
4.0
∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage ---gfe
Forward Transconductance
„
3.0
ICES
Zero Gate Voltage Collector Current
------VFM
Diode Forward Voltage Drop
------IGES
Gate-to-Emitter Leakage Current
---V(BR)CES
Typ.
---0.67
1.85
2.46
2.07
----11
3.6
------1.4
1.3
----
Max. Units
Conditions
---V
VGE = 0V, IC = 250µA
---- V/°C VGE = 0V, I C = 1.0mA
2.1
IC = 11A
VGE = 15V
---V
IC = 18A
See Fig. 2, 5
---IC = 11A, TJ = 150°C
6.5
VCE = VGE, IC = 250µA
---- mV/°C VCE = VGE, IC = 250µA
---S
VCE = 100V, IC = 11A
250
µA
VGE = 0V, VCE = 600V
2500
VGE = 0V, VCE = 600V, TJ = 150°C
1.7
V
IC = 8.0A
See Fig. 13
1.6
IC = 8.0A, TJ = 150°C
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
trr
Irr
Q rr
di(rec)M/dt
2
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Min.
---------------------------------------------------------------Diode Peak Reverse Recovery Current ------Diode Reverse Recovery Charge
------Diode Peak Rate of Fall of Recovery
---During tb
----
Typ.
39
5.3
20
21
37
463
340
0.41
2.03
2.44
19
41
590
600
3.49
7.5
460
54
14
37
55
3.5
4.5
65
124
240
210
Max. Units
Conditions
59
IC = 11A
8.0
nC VCC = 400V
See Fig. 8
30
VGE = 15V
---TJ = 25°C
---ns
IC = 11A, VCC = 480V
690
VGE = 15V, RG = 50Ω
510
Energy losses include "tail" and
---diode reverse recovery.
---mJ See Fig. 9, 10, 11, 18
3.7
---TJ = 150°C, See Fig. 9, 10, 11, 18
---ns
IC = 6.5A, VCC = 480V
---VGE = 15V, RG = 50Ω
---Energy losses include "tail" and
---mJ diode reverse recovery.
---nH Measured 5mm from package
---VGE = 0V
---pF
VCC = 30V
See Fig. 7
---ƒ = 1.0MHz
55
ns
TJ = 25°C See Fig.
90
TJ = 125°C
14
IF = 8.0A
5.0
A
TJ = 25°C See Fig.
8.0
TJ = 125°C
15
VR = 200V
138
nC TJ = 25°C See Fig.
360
TJ = 125°C
16
di/dt 200A/µs
---- A/µs TJ = 25°C See Fig.
---TJ = 125°C
17
www.irf.com
IRG4BC20MDPbF
12
Duty cycle : 50%
Tj = 125°C
Tsink = 90°C
Gate drive as specified
Turn-on losses include effects of
reverse recovery
Power Dissipation = 13W
10
Load Current ( A )
8
60% of rated
voltage
6
4
Ideal diodes
2
0
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
10
1
T J = 150°C
TJ = 25°C
VGE= 15V
20µs PULSE WIDTH
0.1
0.1
1.0
VCE , Collector-to-Emitter Voltage (V)
10.0
I C , Collector-to-Emitter Current (A)
IC , Collector-to Emitter Current (A)
100
TJ = 150 °C
10
TJ = 25 °C
1
0.1
V CC = 50V
5µs PULSE WIDTH
6
8
10
12
14
16
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
Fig. 3 - Typical Transfer Characteristics
3
IRG4BC20MDPbF
4.0
VCE , Collector-to Emitter Voltage (V)
Maximum DC Collector Current(A)
20
15
10
5
0
VGE = 15V
80µs PULSE WIDTH
IC = 22A
3.0
IC = 11A
2.0
IC = 5.5A
1.0
25
50
75
100
125
150
-60 -40 -20
TC , Case Temperature ( °C)
0
20
40
60
80 100 120 140
TJ , Junction Temperature (°C)
Fig. 4 - Maximum Collector Current vs.
Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
0.10
PDM
0.05
0.1
0.02
0.01
0.01
0.00001
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D =t 1 / t2
2. Peak TJ = PDM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4BC20MDPbF
20
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
VGE , Gate-to-Emitter Voltage (V)
C, Capacitance (pF)
800
600
Cies
400
200
Coes
VCC = 400V
I C = 11A
16
12
8
4
Cres
0
1
10
0
100
VCE , Collector-to-Emitter Voltage (V)
10
20
30
40
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
100
2.5
VCC = 480V
VGE = 15V
TJ = 25°C
I C = 11A
Total Switching Losses (mJ)
Total Switching Losses (mJ)
0
2.4
RG = 50Ω
VGE = 15V
VCC = 480V
IC = 22A
10
IC = 11A
IC = 5.5A
1
0.1
2.3
0
10
20
30
40
RG, Gate Resistance (Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
50
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J, Junction Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4BC20MDPbF
100
10.0
8.0
VCC = 480V
C, Capacitance(pF)
Total Switching Losses (mJ)
VGE = 20V
T J = 125°
RG = 50Ω
TJ = 150°C
VGE = 15V
6.0
4.0
SAFE OPERATING AREA
10
2.0
0.0
5
10
15
20
1
25
1
I C , Collector Current (A)
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
Instantaneous Forward Current - I F (A)
100
10
TJ = 150°C
TJ = 125°C
TJ = 25°C
1
0.1
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
Forward Voltage Drop - V FM (V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4BC20MDPbF
100
100
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
80
I F = 8.0A
I IRRM - (A)
t rr - (ns)
IF = 16A
60
I F = 16A
10
IF = 8.0A
40
I F = 4.0A
I F = 4.0A
20
0
100
1
100
1000
di f /dt - (A/µs)
Fig. 14 - Typical Reverse Recovery vs. dif/dt
di f /dt - (A/µs)
1000
Fig. 15 - Typical Recovery Current vs. dif/dt
500
10000
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
di(rec)M/dt - (A/µs)
Q RR - (nC)
400
300
I F = 16A
200
I F = 8.0A
1000
IF = 4.0A
IF = 8.0A
I F = 16A
100
IF = 4.0A
0
100
di f /dt - (A/µs)
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
1000
100
100
di f /dt - (A/µs)
1000
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
IRG4BC20MDPbF
90% Vge
+Vge
Same type
device as
D.U.T.
Vce
Ic
90% Ic
10% Vce
Ic
5% Ic
430µF
80%
of Vce
D.U.T.
td(off)
tf
Eoff =
∫
t1+5µS
Vce ic dt
t1
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T.
10% +Vg
trr
Ic
Qrr =
tx
DUT VOLTAGE
AND CURRENT
Vce
10% Ic
90% Ic
tr
td(on)
10% Irr
Ipk
Vpk
Vcc
Irr
Ic
DIODE RECOVERY
WAVEFORMS
5% Vce
t1
∫
t2
Eon = Vce ie dt
t1
t2
DIODE REVERSE
RECOVERY ENERGY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫
+Vg
10% Vcc
Vcc
trr
id dt
tx
∫
t4
Erec = Vd id dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4BC20MDPbF
Vg GATE SIGNAL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
RL=
0 - 480V
480V
4 X IC @25°C
50V
6000µF
100V
Figure 19. Clamped Inductive Load Test Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4BC20MDPbF
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
‚VCC=80%(VCES), VGE=20V, L=10µH, RG = 50Ω (figure 19)
ƒPulse width ≤ 80µs; duty factor ≤ 0.1%.
„Pulse width 5.0µs, single shot.
TO-220AB Package Outline
10.54 (.415)
10.29 (.405)
2.87 (.113)
2.62 (.103)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
L E A D A S S IG N M E N T S
LEAD ASSIGNMENTS
1.15 (.045)
MIN
1
2
3
1234-
14.09 (.555)
13.47 (.530)
G A T2E- DRAIN
- SOURCE
D R A3I N
S O U4R- CDRAIN
E
D R A IN
IG B T s , C o P A C K
1234-
G ATE
CO LLE CTO R
E M IT T E R
CO LLE CTO R
4.06 (.160)
3.55 (.140)
3X
3X
H E X F E1T- GATE
1.40 (.055)
1.15 (.045)
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B
A
M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E X AM P L E :
T H I S I S A N IR F 1 0 1 0
L O T COD E 1789
AS S E M B L E D O N W W 1 9, 1 99 7
IN T H E A S S E M B L Y L IN E "C "
N o t e : " P " in a s s e m b l y li n e
p o s i t io n in d i c a t e s " L e a d - F r e e "
IN T E R N A T IO N A L
R E C T IF IE R
L OGO
AS S E M B L Y
LOT CODE
P AR T N U M B E R
D AT E CO D E
YE AR 7 = 1997
W EE K 19
L IN E C
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 12/03
10
www.irf.com
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/