IRF IRG4BC10SD

PD -91784B
IRG4BC10SD
Standard Speed CoPack
IGBT
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
C
• Extremely low voltage drop 1.1Vtyp. @ 2A
• S-Series: Minimizes power dissipation at up to 3
KHz PWM frequency in inverter drives, up to 4
KHz in brushless DC drives.
• Very Tight Vce(on) distribution
• IGBT co-packaged with HEXFREDTM ultrafast,
ultra-soft-recovery anti-parallel diodes for use
in bridge configurations
• Industry standard TO-220AB package
VCES = 600V
VCE(on) typ. = 1.10V
G
@VGE = 15V, IC = 2.0A
E
n-channel
Benefits
• Generation 4 IGBTs offer highest efficiencies
available
• IGBTs optimized for specific application conditions
• HEXFRED diodes optimized for performance with
IGBTs . Minimized recovery characteristics require
less/no snubbing
• Lower losses than MOSFET's conduction and
Diode losses
TO-220AB
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Max.
Units
600
14
8.0
18
18
4.0
18
± 20
38
15
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1 N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Min.
Typ.
Max.
–––
–––
–––
–––
–––
–––
–––
0.50
–––
2.0(0.07)
3.3
7.0
–––
80
–––
Units
°C/W
g (oz)
1
07/04/07
IRG4BC10SD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltageƒ 600
—
Temperature Coeff. of Breakdown Voltage — 0.64
Collector-to-Emitter Saturation Voltage
— 1.58
— 2.05
— 1.68
Gate Threshold Voltage
3.0
—
Temperature Coeff. of Threshold Voltage
— -9.5
Forward Transconductance„
3.65 5.48
Zero Gate Voltage Collector Current
—
—
—
—
Diode Forward Voltage Drop
—
1.5
—
1.4
Gate-to-Emitter Leakage Current
—
—
Max. Units
Conditions
—
V
VGE = 0V, IC = 250µA
— V/°C VGE = 0V, IC = 1.0mA
1.8
IC = 8.0A
VGE = 15V
—
V
IC = 14.0A
See Fig. 2, 5
—
IC = 8.0A, TJ = 150°C
6.0
VCE = VGE, IC = 250µA
— mV/°C VCE = VGE, IC = 250µA
—
S
VCE = 100V, IC =8.0A
250
µA
VGE = 0V, VCE = 600V
1000
VGE = 0V, VCE = 600V, TJ = 150°C
1.8
V
IC =4.0A
See Fig. 13
1.7
IC =4.0A, TJ = 150°C
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
trr
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ. Max. Units
15
22
2.42 3.6
6.53 9.8
76
—
32
—
815 1200
720 1080
0.31 —
3.28 —
3.60 10.9
1.46 2.6
70
—
36
—
890
—
890
—
3.83 —
7.5
—
280
—
30
—
4.0
—
28
42
38
57
2.9 5.2
3.7 6.7
40
60
70 105
280
—
235
—
nC
ns
mJ
mJ
ns
mJ
nH
pF
ns
A
nC
A/µs
Conditions
IC = 8.0A
VCC = 400V
See Fig. 8
VGE = 15V
TJ = 25°C
IC = 8.0A, VCC = 480V
VGE = 15V, RG = 100Ω
Energy losses include "tail" and
diode reverse recovery.
See Fig. 9, 10, 18
IC = 5.0A
TJ = 150°C, See Fig. 10,11, 18
IC = 8.0A, VCC = 480V
VGE = 15V, RG = 100Ω
Energy losses include "tail" and
diode reverse recovery.
Measured 5mm from package
VGE = 0V
VCC = 30V
See Fig. 7
ƒ = 1.0MHz
TJ = 25°C See Fig.
14
IF =4.0A
TJ = 125°C
TJ = 25°C See Fig.
TJ = 125°C
15
VR = 200V
TJ = 25°C See Fig.
16
di/dt = 200A/µs
TJ = 125°C
TJ = 25°C See Fig.
TJ = 125°C
17
Details of note  through „ are on the last page
2
www.irf.com
IRG4BC10SD
10.0
For both:
Duty cycle: 50%
TJ = 125°C
Tsink = 90°C
Gate drive as specified
LOAD CURRENT (A)
8.0
Power Dissipation = 9.2 W
6.0
Square wave:
60% of rated
voltage
4.0
I
2.0
Ideal diodes
0.0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
TJ = 25 °C
TJ = 150 °C
10
1
0.5
V GE = 15V
80µs PULSE WIDTH
1.0
1.5
2.0
2.5
3.0
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
I C , Collector-to-Emitter Current (A)
I C , Collector Current (A)
100
TJ = 150 °C
10
TJ = 25 °C
1
V CC = 50V
5µs
5µs PULSE
PULSEWIDTH
WIDTH
6
8
10
12
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4BC10SD
3.00
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
16
IC = 16 A
2.50
12
2.00
8
IC =
8A
IC =
4A
1.50
4
0
VGE = 15V
80 us PULSE WIDTH
25
50
75
100
125
150
1.00
-60 -40 -20
Fig. 4 - Maximum Collector Current vs. Case
Temperature
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C)
TC , Case Temperature ( °C)
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.01
0.00001
0.02
0.01
PDM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4BC10SD
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
C, Capacitance (pF)
400
Cies
300
Coes
200
Cres
100
0
1
10
20
VGE , Gate-to-Emitter Voltage (V)
500
15
10
5
0
100
VCE , Collector-to-Emitter Voltage (V)
Total Switching Losses (mJ)
Total Switching Losses (mJ)
100
V CC = 480V
V GE = 15V
TJ = 25 °C
3.55
I C = 8A
3.50
3.45
3.40
3.35
20
40
60
80
RGRG, Gate
, GateResistance
Resistance (Ohm)
(Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
5
10
15
20
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
3.60
0
0
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
3.30
VCC = 400V
I C = 8A
100
RG =100Ω
Ohm
VGE = 15V
VCC = 480V
IC = 16 A
10
IC =
8A
IC =
4A
1
0.1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature (° C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4BC10SD
100
= 100
100 Ω
= 150 ° C
= 480V
= 15V
I C , Collector Current (A)
RG
TJ
VCC
12 VGE
9
6
3
0
0
4
8
12
16
10
1
20
VGE = 20V
T J = 125 oC
SAFE OPERATING AREA
1
I C , Collector Current (A)
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs.
Collector Current
Fig. 12 - Turn-Off SOA
100
Instantaneous Forward Current ( A )
Total Switching Losses (mJ)
15
TJ = 150°C
10
T = 125°C
J
T = 25°C
J
1
0.1
0.0
1.0
2.0
3.0
4.0
5.0
6.0
Forward Voltage
Voltage Drop
Drop -- VVFM
((V)
V)
FM
6
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
www.irf.com
IRG4BC10SD
50
14
I F = 8.0A
45
12
I F = 4.0A
10
I F = 8.0A
I F = 4.0A
Irr- ( A)
trr- (nC)
40
VR = 200V
TJ = 125°C
TJ = 25°C
35
8
6
30
4
25
2
VR = 200V
TJ = 125°C
TJ = 25°C
20
100
di f /dt - (A/µs)
0
100
1000
di f /dt - (A/µs)
1000
Fig. 15 - Typical Recovery Current vs. dif/dt
Fig. 14 - Typical Reverse Recovery vs. dif/dt
200
1000
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
160
I F = 8.0A
di (rec) M/dt- (A /µs)
I F = 4.0A
Qrr- (nC)
120
I F = 8.0A
80
I F = 4.0A
40
0
100
di f /dt - (A/µs)
1000
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
100
100
A
di f /dt - (A/µs)
1000
Fig. 17 - Typical di(rec)M/dt vs. dif/dt,
7
IRG4BC10SD
Same type
device as
D.U.T.
430µF
80%
of Vce
90%
D.U.T.
10%
Vge
VC
90%
td(off)
10%
IC 5%
Fig. 18a - Test Circuit for Measurement of
tf
tr
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t d(on)
t=5µs
Eon
Eoff
Ets = (Eon +Eoff )
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T.
10% +Vg
trr
Ic
Qrr =
+Vg
tx
10% Irr
10% Vcc
DUT VOLTAGE
AND CURRENT
Vce
Vcc
10% Ic
90% Ic
tr
td(on)
Ipk
Vpk
Vcc
Irr
Ic
DIODE RECOVERY
WAVEFORMS
5% Vce
t1
∫
t2
VceieIcdt dt
Eon = Vce
t1
t2
DIODE REVERSE
RECOVERY ENERGY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
trr
id dt
tx
∫ Ic dt
∫
t4
Erec = Vd
VdidIcdt dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4BC10SD
Vg GATE SIGNAL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
RL =
0 - 480V
480V
4 X I C @25°C
50V
6000µF
100V
Figure 19. Clamped Inductive Load Test Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4BC10SD
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
‚VCC=80%(VCES), VGE=20V, L=10µH, RG = 100W (figure 19)
ƒPulse width ≤ 80µs; duty factor ≤ 0.1%.
„Pulse width 5.0µs, single shot.
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
(; $03/(
7+,6,6$ 1,5) / 27&2'( $ 66(0 %/('21:: ,17 +($ 66(0 %/</ ,1(&
,17(51$7,21$/
3$ 57 180%(5
5(&7,),(5
/2*2
'$7(&2'(
1RWH3LQDVVH P EO\OLQH S RVLWLRQ
LQG LFD WH V/HD G)UHH $ 66(0 %/ <
/ 27&2'(
<($5 :((. /,1(&
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 07/2007
10
www.irf.com