IRF IRFP4232PBF

PD - 96965A
IRFP4232PbF
PDP MOSFET
Features
l Advanced process technology
l Key parameters optimized for PDP Sustain &
Energy Recovery applications
l Low EPULSE rating to reduce the power
dissipation in Sustain & ER applications
l Low QG for fast response
l High repetitive peak current capability for
reliable operation
l Short fall & rise times for fast switching
l175°C operating junction temperature for
improved ruggedness
l Repetitive avalanche capability for robustness
and reliability
Key Parameters
VDS min
250
V
VDS (Avalanche) typ.
300
RDS(ON) typ. @ 10V
30
V
m:
EPULSE typ.
310
µJ
IRP max @ TC= 100°C
117
A
TJ max
175
°C
D
G
TO-247AC
S
Description
This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch
applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve
low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 175°C
operating junction temperature and high repetitive peak current capability. These features combine to
make this MOSFET a highly efficient, robust and reliable device for PDP driving applications.
Absolute Maximum Ratings
Parameter
Max.
Units
V
VGS
Gate-to-Source Voltage
±20
VGS (TRANSIENT)
Gate-to-Source Voltage
±30
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V
60
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
42
IDM
Pulsed Drain Current c
240
A
IRP @ TC = 100°C
Repetitive Peak Current g
117
PD @TC = 25°C
Power Dissipation
430
PD @TC = 100°C
Power Dissipation
210
Linear Derating Factor
2.9
W/°C
TJ
Operating Junction and
-40 to + 175
°C
TSTG
Storage Temperature Range
300
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
W
10lbxin (1.1Nxm)
N
Thermal Resistance
Parameter
RθJC
Junction-to-Case f
Typ.
Max.
Units
–––
0.35
°C/W
Notes  through … are on page 8
www.irf.com
1
04/21/05
IRFP4232PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ. Max. Units
Conditions
VGS = 0V, ID = 250µA
BVDSS
Drain-to-Source Breakdown Voltage
250
–––
–––
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
180
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
30
35.7
mΩ
VGS = 10V, ID = 42A e
VGS(th)
Gate Threshold Voltage
3.0
–––
5.0
V
VDS = VGS, ID = 250µA
∆VGS(th)/∆TJ
Gate Threshold Voltage Coefficient
–––
-15
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
5.0
µA
–––
–––
150
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
gfs
Forward Transconductance
95
–––
–––
S
Qg
Total Gate Charge
–––
160
240
nC
VDD = 125V, ID = 42A, VGS = 10Ve
Qgd
Gate-to-Drain Charge
–––
60
–––
tst
Shoot Through Blocking Time
100
–––
–––
ns
VDD = 200V, VGS = 15V, RG= 4.7Ω
–––
310
–––
–––
950
–––
7290
–––
IGSS
EPULSE
Energy per Pulse
V
mV/°C Reference to 25°C, ID = 1mA
VDS = 200V, VGS = 0V
VDS = 200V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
VDS = 25V, ID = 42A
L = 220nH, C= 0.4µF, VGS = 15V
µJ
VDS = 200V, RG= 4.7Ω, TJ = 25°C
L = 220nH, C= 0.4µF, VGS = 15V
VDS = 200V, RG= 4.7Ω, TJ = 100°C
VGS = 0V
Ciss
Input Capacitance
–––
Coss
Output Capacitance
–––
610
–––
Crss
Reverse Transfer Capacitance
–––
240
–––
ƒ = 1.0MHz,
Coss eff.
Effective Output Capacitance
–––
420
–––
VGS = 0V, VDS = 0V to 200V
LD
Internal Drain Inductance
–––
5.0
–––
Between lead,
pF
nH
LS
Internal Source Inductance
–––
13
–––
VDS = 25V
See Fig.9
D
6mm (0.25in.)
G
from package
S
and center of die contact
Avalanche Characteristics
Parameter
Typ.
Max.
Units
220
mJ
EAS
Single Pulse Avalanche Energyd
–––
EAR
Repetitive Avalanche Energy c
–––
43
mJ
VDS(Avalanche)
Repetitive Avalanche Voltagec
300
–––
V
IAS
Avalanche Currentd
–––
42
A
Diode Characteristics
Parameter
IS @ TC = 25°C Continuous Source Current
Min.
Typ. Max. Units
–––
–––
60
–––
–––
240
(Body Diode)
ISM
Pulsed Source Current
Conditions
MOSFET symbol
A
showing the
integral reverse
p-n junction diode.
(Body Diode)c
VSD
Diode Forward Voltage
–––
–––
1.0
V
TJ = 25°C, IS = 42A, VGS = 0V e
trr
Reverse Recovery Time
–––
240
360
ns
TJ = 25°C, IF = 42A, VDD = 50V
Qrr
Reverse Recovery Charge
–––
1230
1850
nC
di/dt = 100A/µs e
2
www.irf.com
IRFP4232PbF
1000
1000
VGS
15V
10V
8.0V
7.0V
BOTTOM
7.0V
100
10
≤ 60µs PULSE WIDTH
Tj = 25°C
BOTTOM
100
7.0V
10
≤ 60µs PULSE WIDTH
Tj = 175°C
1
1
0.1
1
10
100
0.1
VDS , Drain-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics
1000
4.0
RDS(on) , Drain-to-Source On Resistance
100
TJ = 175°C
TJ = 25°C
10
VDS = 30V
≤ 60µs PULSE WIDTH
1
4.0
5.0
6.0
ID = 42A
VGS = 10V
3.0
(Normalized)
ID, Drain-to-Source Current(Α)
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
7.0
2.0
1.0
0.0
8.0
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
1000
1200
L = 220nH
C = 0.4µF
100°C
25°C
L = 220nH
C = Variable
100°C
25°C
800
Energy per pulse (µJ)
1000
Energy per pulse (µJ)
VGS
15V
10V
8.0V
7.0V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
800
600
600
400
200
400
0
200
150
160
170
180
190
200
VDS, Drain-to -Source Voltage (V)
Fig 5. Typical EPULSE vs. Drain-to-Source Voltage
www.irf.com
160
170
180
190
200
210
220
230
ID, Peak Drain Current (A)
Fig 6. Typical EPULSE vs. Peak Drain Current
3
IRFP4232PbF
1600
1000.0
L = 220nH
ISD , Reverse Drain Current (A)
Energy per pulse (µJ)
1400
C= 0.4µF
C= 0.3µF
C= 0.2µF
1200
1000
800
600
400
200
100.0
TJ = 175°C
10.0
1.0
TJ = 25°C
VGS = 0V
0
25
50
75
100
125
0.1
150
0.2
Temperature (°C)
20
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
Coss = Cds + Cgd
8000
Ciss
6000
4000
2000
Crss
1
1.2
ID= 42A
VDS = 200V
16
VDS= 125V
VDS= 50V
12
8
4
0
10
100
0
1000
40
80
120
160
200
240
280
QG Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
Fig 9. Typical Capacitance vs.Drain-to-Source Voltage
Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage
60
1000
OPERATION IN THIS AREA
LIMITED BY R DS (on)
ID, Drain-to-Source Current (A)
54
48
ID , Drain Current (A)
1.0
Coss
0
42
36
30
24
18
12
100
1µsec
10µsec
10
100µsec
1
Tc = 25°C
Tj = 175°C
Single Pulse
6
0
0.1
25
50
75
100
125
150
175
TC , CaseTemperature (°C)
Fig 11. Maximum Drain Current vs. Case Temperature
4
0.8
Fig 8. Typical Source-Drain Diode Forward Voltage
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
10000
0.6
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical EPULSE vs.Temperature
12000
0.4
1
10
100
1000
VDS , Drain-to-Source Voltage (V)
Fig 12. Maximum Safe Operating Area
www.irf.com
1000
600
EAS, Single Pulse Avalanche Energy (mJ)
RDS (on), Drain-to -Source On Resistance (mΩ)
IRFP4232PbF
ID = 42A
500
400
TJ = 25°C
300
TJ = 125°C
200
100
ID
12A
18A
BOTTOM 42A
TOP
800
600
400
200
0
0
4.0
6.0
8.0
10.0
25
VGS, Gate-to-Source Voltage (V)
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
Fig 13. On-Resistance Vs. Gate Voltage
Fig 14. Maximum Avalanche Energy Vs. Temperature
5.5
200
ton= 1µs
Duty cycle = 0.25
Half Sine Wave
Square Pulse
5.0
Repetitive Peak Current (A)
VGS(th) Gate threshold Voltage (V)
50
4.5
ID = 250µA
4.0
3.5
3.0
2.5
160
120
80
40
2.0
1.5
0
-75
-50
-25
0
25
50
75
100 125 150 175
25
50
TJ , Temperature ( °C )
75
100
125
150
175
Case Temperature (°C)
Fig 16. Typical Repetitive peak Current vs.
Case temperature
Fig 15. Threshold Voltage vs. Temperature
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.20
0.10
0.05
0.01
0.001
0.02
0.01
τJ
R1
R1
τJ
τ1
τ1
R2
R2
τ2
R3
R3
τC
τ
τ2
τ3
τ3
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
τ4
τ4
τi (sec)
Ri (°C/W)
R4
R4
0.0091
0.000003
0.0487
0.000071
0.1264
0.001743
0.1660
0.024564
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFP4232PbF
D.U.T
Driver Gate Drive
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
VDD
+
-
Re-Applied
Voltage
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
15V
D.U.T
RG
VGS
20V
DRIVER
L
VDS
tp
+
V
- DD
IAS
tp
A
0.01Ω
I AS
Fig 19a. Unclamped Inductive Test Circuit
Fig 19b. Unclamped Inductive Waveforms
Id
Vds
Vgs
L
DUT
0
VCC
Vgs(th)
1K
Qgs1 Qgs2
Fig 20a. Gate Charge Test Circuit
6
Qgd
Qgodr
Fig 20b. Gate Charge Waveform
www.irf.com
IRFP4232PbF
Fig 21a. tst and EPULSE Test Circuit
Fig 21b. tst Test Waveforms
Fig 21c. EPULSE Test Waveforms
www.irf.com
7
IRFP4232PbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
EXAMPLE: THIS IS AN IRFPE30
WITH ASSEMBLY
LOT CODE 5657
ASSEMBLED ON WW 35, 2000
IN THE AS SEMBLY LINE "H"
Note: "P" in assembly line
position indicates "Lead-Free"
INT ERNATIONAL
RECTIFIER
LOGO
AS SEMBLY
LOT CODE
PART NUMBER
IRFPE30
56
035H
57
DATE CODE
YEAR 0 = 2000
WEEK 35
LINE H
TO-247AC package is not recommended for Surface Mount Application.
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 0.25mH,
RG = 25Ω, IAS = 42A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Rθ is measured at TJ of approximately 90°C.
… Half sine wave with duty cycle = 0.25, ton=1µsec.
Data and specifications subject to change without notice.
This product has been designed for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.04/05
8
www.irf.com