PD - 96965A IRFP4232PbF PDP MOSFET Features l Advanced process technology l Key parameters optimized for PDP Sustain & Energy Recovery applications l Low EPULSE rating to reduce the power dissipation in Sustain & ER applications l Low QG for fast response l High repetitive peak current capability for reliable operation l Short fall & rise times for fast switching l175°C operating junction temperature for improved ruggedness l Repetitive avalanche capability for robustness and reliability Key Parameters VDS min 250 V VDS (Avalanche) typ. 300 RDS(ON) typ. @ 10V 30 V m: EPULSE typ. 310 µJ IRP max @ TC= 100°C 117 A TJ max 175 °C D G TO-247AC S Description This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 175°C operating junction temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for PDP driving applications. Absolute Maximum Ratings Parameter Max. Units V VGS Gate-to-Source Voltage ±20 VGS (TRANSIENT) Gate-to-Source Voltage ±30 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 60 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 42 IDM Pulsed Drain Current c 240 A IRP @ TC = 100°C Repetitive Peak Current g 117 PD @TC = 25°C Power Dissipation 430 PD @TC = 100°C Power Dissipation 210 Linear Derating Factor 2.9 W/°C TJ Operating Junction and -40 to + 175 °C TSTG Storage Temperature Range 300 Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw W 10lbxin (1.1Nxm) N Thermal Resistance Parameter RθJC Junction-to-Case f Typ. Max. Units ––– 0.35 °C/W Notes through are on page 8 www.irf.com 1 04/21/05 IRFP4232PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions VGS = 0V, ID = 250µA BVDSS Drain-to-Source Breakdown Voltage 250 ––– ––– ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 180 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 30 35.7 mΩ VGS = 10V, ID = 42A e VGS(th) Gate Threshold Voltage 3.0 ––– 5.0 V VDS = VGS, ID = 250µA ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -15 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 5.0 µA ––– ––– 150 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 gfs Forward Transconductance 95 ––– ––– S Qg Total Gate Charge ––– 160 240 nC VDD = 125V, ID = 42A, VGS = 10Ve Qgd Gate-to-Drain Charge ––– 60 ––– tst Shoot Through Blocking Time 100 ––– ––– ns VDD = 200V, VGS = 15V, RG= 4.7Ω ––– 310 ––– ––– 950 ––– 7290 ––– IGSS EPULSE Energy per Pulse V mV/°C Reference to 25°C, ID = 1mA VDS = 200V, VGS = 0V VDS = 200V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V VDS = 25V, ID = 42A L = 220nH, C= 0.4µF, VGS = 15V µJ VDS = 200V, RG= 4.7Ω, TJ = 25°C L = 220nH, C= 0.4µF, VGS = 15V VDS = 200V, RG= 4.7Ω, TJ = 100°C VGS = 0V Ciss Input Capacitance ––– Coss Output Capacitance ––– 610 ––– Crss Reverse Transfer Capacitance ––– 240 ––– ƒ = 1.0MHz, Coss eff. Effective Output Capacitance ––– 420 ––– VGS = 0V, VDS = 0V to 200V LD Internal Drain Inductance ––– 5.0 ––– Between lead, pF nH LS Internal Source Inductance ––– 13 ––– VDS = 25V See Fig.9 D 6mm (0.25in.) G from package S and center of die contact Avalanche Characteristics Parameter Typ. Max. Units 220 mJ EAS Single Pulse Avalanche Energyd ––– EAR Repetitive Avalanche Energy c ––– 43 mJ VDS(Avalanche) Repetitive Avalanche Voltagec 300 ––– V IAS Avalanche Currentd ––– 42 A Diode Characteristics Parameter IS @ TC = 25°C Continuous Source Current Min. Typ. Max. Units ––– ––– 60 ––– ––– 240 (Body Diode) ISM Pulsed Source Current Conditions MOSFET symbol A showing the integral reverse p-n junction diode. (Body Diode)c VSD Diode Forward Voltage ––– ––– 1.0 V TJ = 25°C, IS = 42A, VGS = 0V e trr Reverse Recovery Time ––– 240 360 ns TJ = 25°C, IF = 42A, VDD = 50V Qrr Reverse Recovery Charge ––– 1230 1850 nC di/dt = 100A/µs e 2 www.irf.com IRFP4232PbF 1000 1000 VGS 15V 10V 8.0V 7.0V BOTTOM 7.0V 100 10 ≤ 60µs PULSE WIDTH Tj = 25°C BOTTOM 100 7.0V 10 ≤ 60µs PULSE WIDTH Tj = 175°C 1 1 0.1 1 10 100 0.1 VDS , Drain-to-Source Voltage (V) 10 100 Fig 2. Typical Output Characteristics 1000 4.0 RDS(on) , Drain-to-Source On Resistance 100 TJ = 175°C TJ = 25°C 10 VDS = 30V ≤ 60µs PULSE WIDTH 1 4.0 5.0 6.0 ID = 42A VGS = 10V 3.0 (Normalized) ID, Drain-to-Source Current(Α) 1 VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 7.0 2.0 1.0 0.0 8.0 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature 1000 1200 L = 220nH C = 0.4µF 100°C 25°C L = 220nH C = Variable 100°C 25°C 800 Energy per pulse (µJ) 1000 Energy per pulse (µJ) VGS 15V 10V 8.0V 7.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 800 600 600 400 200 400 0 200 150 160 170 180 190 200 VDS, Drain-to -Source Voltage (V) Fig 5. Typical EPULSE vs. Drain-to-Source Voltage www.irf.com 160 170 180 190 200 210 220 230 ID, Peak Drain Current (A) Fig 6. Typical EPULSE vs. Peak Drain Current 3 IRFP4232PbF 1600 1000.0 L = 220nH ISD , Reverse Drain Current (A) Energy per pulse (µJ) 1400 C= 0.4µF C= 0.3µF C= 0.2µF 1200 1000 800 600 400 200 100.0 TJ = 175°C 10.0 1.0 TJ = 25°C VGS = 0V 0 25 50 75 100 125 0.1 150 0.2 Temperature (°C) 20 VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) Coss = Cds + Cgd 8000 Ciss 6000 4000 2000 Crss 1 1.2 ID= 42A VDS = 200V 16 VDS= 125V VDS= 50V 12 8 4 0 10 100 0 1000 40 80 120 160 200 240 280 QG Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) Fig 9. Typical Capacitance vs.Drain-to-Source Voltage Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage 60 1000 OPERATION IN THIS AREA LIMITED BY R DS (on) ID, Drain-to-Source Current (A) 54 48 ID , Drain Current (A) 1.0 Coss 0 42 36 30 24 18 12 100 1µsec 10µsec 10 100µsec 1 Tc = 25°C Tj = 175°C Single Pulse 6 0 0.1 25 50 75 100 125 150 175 TC , CaseTemperature (°C) Fig 11. Maximum Drain Current vs. Case Temperature 4 0.8 Fig 8. Typical Source-Drain Diode Forward Voltage VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 10000 0.6 VSD, Source-to-Drain Voltage (V) Fig 7. Typical EPULSE vs.Temperature 12000 0.4 1 10 100 1000 VDS , Drain-to-Source Voltage (V) Fig 12. Maximum Safe Operating Area www.irf.com 1000 600 EAS, Single Pulse Avalanche Energy (mJ) RDS (on), Drain-to -Source On Resistance (mΩ) IRFP4232PbF ID = 42A 500 400 TJ = 25°C 300 TJ = 125°C 200 100 ID 12A 18A BOTTOM 42A TOP 800 600 400 200 0 0 4.0 6.0 8.0 10.0 25 VGS, Gate-to-Source Voltage (V) 75 100 125 150 175 Starting TJ, Junction Temperature (°C) Fig 13. On-Resistance Vs. Gate Voltage Fig 14. Maximum Avalanche Energy Vs. Temperature 5.5 200 ton= 1µs Duty cycle = 0.25 Half Sine Wave Square Pulse 5.0 Repetitive Peak Current (A) VGS(th) Gate threshold Voltage (V) 50 4.5 ID = 250µA 4.0 3.5 3.0 2.5 160 120 80 40 2.0 1.5 0 -75 -50 -25 0 25 50 75 100 125 150 175 25 50 TJ , Temperature ( °C ) 75 100 125 150 175 Case Temperature (°C) Fig 16. Typical Repetitive peak Current vs. Case temperature Fig 15. Threshold Voltage vs. Temperature 1 Thermal Response ( Z thJC ) D = 0.50 0.1 0.20 0.10 0.05 0.01 0.001 0.02 0.01 τJ R1 R1 τJ τ1 τ1 R2 R2 τ2 R3 R3 τC τ τ2 τ3 τ3 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) τ4 τ4 τi (sec) Ri (°C/W) R4 R4 0.0091 0.000003 0.0487 0.000071 0.1264 0.001743 0.1660 0.024564 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFP4232PbF D.U.T Driver Gate Drive - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + VDD + - Re-Applied Voltage Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V D.U.T RG VGS 20V DRIVER L VDS tp + V - DD IAS tp A 0.01Ω I AS Fig 19a. Unclamped Inductive Test Circuit Fig 19b. Unclamped Inductive Waveforms Id Vds Vgs L DUT 0 VCC Vgs(th) 1K Qgs1 Qgs2 Fig 20a. Gate Charge Test Circuit 6 Qgd Qgodr Fig 20b. Gate Charge Waveform www.irf.com IRFP4232PbF Fig 21a. tst and EPULSE Test Circuit Fig 21b. tst Test Waveforms Fig 21c. EPULSE Test Waveforms www.irf.com 7 IRFP4232PbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information EXAMPLE: THIS IS AN IRFPE30 WITH ASSEMBLY LOT CODE 5657 ASSEMBLED ON WW 35, 2000 IN THE AS SEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" INT ERNATIONAL RECTIFIER LOGO AS SEMBLY LOT CODE PART NUMBER IRFPE30 56 035H 57 DATE CODE YEAR 0 = 2000 WEEK 35 LINE H TO-247AC package is not recommended for Surface Mount Application. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.25mH, RG = 25Ω, IAS = 42A. Pulse width ≤ 400µs; duty cycle ≤ 2%. Rθ is measured at TJ of approximately 90°C. Half sine wave with duty cycle = 0.25, ton=1µsec. Data and specifications subject to change without notice. This product has been designed for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.04/05 8 www.irf.com