VISHAY IRFP17N50L

IRFP17N50L, SiHFP17N50L
Vishay Siliconix
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
• SuperFast Body Diode Eliminates the Need
For External Diodes in ZVS Applications
500
RDS(on) (Ω)
VGS = 10 V
0.28
Qg (Max.) (nC)
130
Qgs (nC)
33
Qgd (nC)
59
Configuration
• Low Gate Charge Results in Simple Drive
Requirement
Available
RoHS*
COMPLIANT
• Enhanced dV/dt Capabilities Offer Improved
Ruggedness
Single
• Higher Gate Voltage Threshold Offers Improved Noise
Immunity
D
• Lead (Pb)-free Available
TO-247
APPLICATIONS
• Zero Voltage Switching SMPS
G
• Telecom and Server Power Supplies
S
• Uninterruptible Power Supply
D
S
G
• Motor Control applications
N-Channel MOSFET
ORDERING INFORMATION
Package
TO-247
IRFP17N50LPbF
SiHFP17N50L-E3
IRFP17N50L
SiHFP17N50L
Lead (Pb)-free
SnPb
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
LIMIT
Drain-Source Voltage
VDS
500
Gate-Source Voltage
VGS
± 30
VGS at 10 V
Continuous Drain Current
TC = 25 °C
ID
TC = 100 °C
Pulsed Drain Currenta
UNIT
V
16
11
A
IDM
64
1.8
W/°C
EAS
390
mJ
Currenta
IAR
16
A
Repetitive Avalanche Energya
EAR
22
mJ
PD
220
W
dV/dt
13
V/ns
TJ, Tstg
- 55 to + 150
Linear Derating Factor
Single Pulse Avalanche Energyb
Repetitive Avalanche
Maximum Power Dissipation
Peak Diode Recovery
TC = 25 °C
dV/dtc
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
Mounting Torque
for 10 s
6-32 or M3 screw
300d
°C
10
lbf · in
1.1
N·m
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Starting TJ = 25 °C, L = 3.0 mH, RG = 25 Ω, IAS = 16 A (see fig. 12).
c. ISD ≤ 16 A, dI/dt ≤ 347 A/µs, VDD ≤ VDS, TJ ≤ 150 °C.
d. 1.6 mm from case.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91205
S-Pending-Rev. A, 16-Jun-08
WORK-IN-PROGRESS
www.vishay.com
1
IRFP17N50L, SiHFP17N50L
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER
SYMBOL
TYP.
MAX.
Maximum Junction-to-Ambient
RthJA
-
62
Case-to-Sink, Flat, Greased Surface
RthCS
0.50
-
Maximum Junction-to-Case (Drain)
RthJC
-
0.56
UNIT
°C/W
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
V
V/°C
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
Gate-Source Threshold Voltage
VDS
VGS = 0 V, ID = 250 µA
500
-
-
ΔVDS/TJ
Reference to 25 °C, ID = 1 mAd
-
0.60
-
VGS(th)
VDS = VGS, ID = 250 µA
3.0
-
5.0
V
Gate-Source Leakage
IGSS
VGS = ± 30 V
-
-
± 100
nA
Zero Gate Voltage Drain Current
IDSS
VDS = 500 V, VGS = 0 V
-
-
50
VDS = 400 V, VGS = 0 V, TJ = 125 °C
-
-
2.0
Drain-Source On-State Resistance
-
0.28
0.32
Ω
gfs
VDS = 50 V, ID = 9.9 Ab
11
-
-
S
VGS = 0 V,
VDS = 25 V,
f = 1.0 MHz, see fig. 5
-
2760
-
-
325
-
-
37
-
VDS = 1.0 V , f = 1.0 MHz
-
3690
-
VDS = 400 V , f = 1.0 MHz
-
84
-
-
159
-
-
120
-
-
1.4
-
-
-
130
-
-
33
RDS(on)
Forward Transconductance
µA
ID = 9.9 Ab
VGS = 10 V
Dynamic
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Output Capacitance
Coss
Effective Output Capacitance
Effective Output Capacitance
(Energy Related)
Coss eff.
VGS = 0 V
VDS = 0 V to 400 V
Coss eff. (ER)
Internal Gate Resistance
Rg
Total Gate Charge
Qg
Gate-Source Charge
Qgs
f = 1 MHz, open drain
VGS = 10 V
ID = 16 A, VDS = 400 V
see fig. 7 and 15b
Gate-Drain Charge
Qgd
-
-
59
Turn-On Delay Time
td(on)
-
21
-
-
51
-
-
50
-
-
28
-
-
-
16
-
-
64
Rise Time
Turn-Off Delay Time
Fall Time
tr
td(off)
VDD = 250 V, ID = 16 A
RG = 7.5 Ω, VGS = 10 V
see fig. 14a & 14bb
tf
pF
Ω
nC
ns
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
IS
Pulsed Diode Forward Currenta
ISM
Body Diode Voltage
VSD
Body Diode Reverse Recovery Time
Body Diode Reverse Recovery Charge
Reverse Recovery Current
trr
Qrr
IRRM
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
S
TJ = 25 °C, IS = 16 A, VGS = 0 Vb
TJ = 25 °C
TJ = 125 °C
TJ = 25 °C
IF = 16 A,
dI/dt = 100 A/µsb
TJ =1 25 °C
TJ = 25 °C
-
-
1.5
-
170
250
-
220
330
-
470
710
-
810
1210
-
7.3
11
V
ns
µC
Forward Turn-On Time
ton
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.
c. COSS eff. is a fixed capacitance that gives the same charging time as COSS while VDS is rising fom 0 to 80 % VDS.
COSS eff. (ER) is a fixed capacitance that stores the same energy as COSS while VDS is rising fom 0 to 80 % VDS.
www.vishay.com
2
Document Number: 91205
S-Pending-Rev. A, 16-Jun-08
IRFP17N50L, SiHFP17N50L
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
100
100
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
10
I D , Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
1
5.0V
0.1
TJ = 150 ° C
10
TJ = 25 ° C
1
20µs PULSE WIDTH
Tj = 25°C
0.01
0.1
1
10
0.1
4.0
100
Fig. 1 - Typical Output Characteristics
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
VGS
TOP
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
5.0V
1
20µs PULSE WIDTH
Tj = 150°C
0.1
1
10
VDS, Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics
Document Number: 91205
S-Pending-Rev. A, 16-Jun-08
6.0
7.0
8.0
9.0
10.0
Fig. 3 - Typical Transfer Characteristics
100
0.1
5.0
VGS , Gate-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
10
V DS = 50V
20µs PULSE WIDTH
100
3.0
ID = 16A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20 40 60
80 100 120 140 160
TJ , Junction Temperature ( ° C)
Fig. 4 - Normalized On-Resistance vs. Temperature
www.vishay.com
3
IRFP17N50L, SiHFP17N50L
Vishay Siliconix
20
100000
Coss = Cds + Cgd
10000
C, Capacitance(pF)
VGS , Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Ciss
1000
Coss
100
ID = 16A
V DS= 400V
V DS= 250V
V DS= 100V
16
12
8
4
Crss
10
0
1
10
100
1000
0
60
90
120
150
QG , Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
30
Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage
20
ISD , Reverse Drain Current (A)
100
Energy (µJ)
15
10
5
TJ = 150 ° C
10
TJ = 25 ° C
1
0
0
100
200
300
400
500
600
VDS, Drain-to-Source Voltage (V)
Fig. 6 - Typ. Output Capacitance Stored Energy vs. VDS
www.vishay.com
4
0.1
0.2
V GS = 0 V
0.6
0.9
1.3
1.6
VSD ,Source-to-Drain Voltage (V)
Fig. 8 - Typical Source-Drain Diode Forward Voltage
Document Number: 91205
S-Pending-Rev. A, 16-Jun-08
IRFP17N50L, SiHFP17N50L
Vishay Siliconix
RD
VDS
VGS
20
D.U.T.
RG
+
- VDD
ID , Drain Current (A)
16
10 V
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
12
Fig. 10a - Switching Time Test Circuit
8
VDS
4
0
90 %
25
50
75
100
125
150
TC , Case Temperature ( °C)
10 %
VGS
td(on)
Fig. 9 - Maximum Drain Current vs. Case Temperature
td(off) tf
tr
Fig. 10b - Switching Time Waveforms
Thermal Response(Z thJC )
1
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
PDM
0.01
0.001
0.00001
t1
t2
Notes:
1. Duty factor D =t 1 / t 2
2. Peak TJ = P DM x ZthJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
Document Number: 91205
S-Pending-Rev. A, 16-Jun-08
www.vishay.com
5
IRFP17N50L, SiHFP17N50L
Vishay Siliconix
EAS , Single Pulse Avalanche Energy (mJ)
1000
OPERATION IN THIS AREA LIMITED
BY RDS(on)
ID , Drain Current (A)
100
10us
10
100us
1ms
1
0.1
10ms
TC = 25 °C
TJ = 150 °C
Single Pulse
10
100
1000
10000
800
ID
7A
10A
BOTTOM 16A
TOP
640
480
320
160
0
25
50
Fig. 12 - Maximum Safe Operating Area
75
100
125
150
Starting T J , Junction Temperature ( ° C)
VDS , Drain-to-Source Voltage (V)
Fig. 13 - Maximum Avalanche Energy vs. Drain Current
VDS
tp
15 V
Driver
L
VDS
D.U.T
RG
IAS
20 V
tp
+
- VDD
A
0.01Ω
Fig. 14a - Unclamped Inductive Test Circuit
IAS
Fig. 14b - Unclamped Inductive Waveforms
Current regulator
Same type as D.U.T.
50 kΩ
QG
10 V
12 V
0.2 µF
0.3 µF
QGS
QGD
+
D.U.T.
VG
-
VDS
VGS
3 mA
Charge
IG
ID
Current sampling resistors
Fig. 15a - Basic Gate Charge Waveform
www.vishay.com
6
Fig. 15b - Gate Charge Test Circuit
Document Number: 91205
S-Pending-Rev. A, 16-Jun-08
IRFP17N50L, SiHFP17N50L
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
-
-
•
•
•
•
RG
dV/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Driver Gate Drive
P.W.
+
Period
D=
+
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
dI/dt
D.U.T. VDS Waveform
Diode Recovery
dV/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig. 16. For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see http://www.vishay.com/ppg?91205.
Document Number: 91205
S-Pending-Rev. A, 16-Jun-08
www.vishay.com
7
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1