TOSHIBA MG300Q2YS61

MG300Q2YS61
TOSHIBA IGBT Module Silicon N Channel IGBT
MG300Q2YS61
High Power Switching Applications
Motor Control Applications
·
High input impedance
·
High speed: tf = 0.3 µs (max)
Unit: mm
Inductive load
·
Low saturation voltage: VCE (sat) = 2.6 V (max)
·
Enhancement-mode
·
Includes a complete half bridge in one package.
·
The electrodes are isolated from case.
Equivalent Circuit
C1
G1
E1
E1/C2
JEDEC
―
JEITA
―
TOSHIBA
G2
2-109C4A
Weight: 430 g (typ.)
E2
E2
Maximum Ratings (Tc = 25°C)
Characteristics
Symbol
Rating
Unit
Collector-emitter voltage
VCES
1200
V
Gate-emitter voltage
VGES
±20
V
Collector current
DC (Tc = 80°C)
IC
300
A
Forward current
DC (Tc = 80°C)
IF
300
A
Collector power dissipation
(Tc = 25°C)
PC
2700
W
Junction temperature
Tj
150
°C
Storage temperature range
Tstg
-40 to 125
°C
Isolation voltage
Visol
2500
(AC 1 minute)
Vrms
Terminal
¾
3
N·m
Mounting
¾
3
N·m
Screw torque
1
2002-08-29
MG300Q2YS61
Electrical Characteristics (Ta = 25°C)
Characteristics
Symbol
Test Condition
Min
Typ.
Max
Unit
Gate leakage current
IGES
VGE = ±20 V, VCE = 0 V
¾
¾
±500
nA
Collector cut-off current
ICES
VCE = 1200 V, VGE = 0 V
¾
¾
1
mA
6.0
7.0
8.0
V
Tc = 25°C
¾
2.1
2.6
Tc = 125°C
¾
2.7
3.2
¾
25000
¾
¾
0.3
¾
¾
0.2
¾
¾
0.5
¾
¾
0.5
¾
¾
0.1
0.3
¾
0.6
¾
Tc = 25°C
¾
2.4
2.8
Tc = 125°C
¾
2.2
¾
Gate-emitter cut-off voltage
VGE (off)
IC = 300 mA, VCE = 5V
Collector-emitter saturation voltage
VCE (sat)
IC = 300 A,
VGE = 15 V
Input capacitance
VCE = 10 V, VGE = 0 V, f = 1 MHz
Cies
Turn-on delay time
td (on)
Rise time
tr
Turn-on time
Switching time
Inductive load
VCC = 600 V
IC = 300 A
VGE = ±15 V
RG = 2.7 W
ton
Turn-off delay time
td (off)
Fall time
(Note 1)
tf
Turn-off time
toff
Forward voltage
VF
IF = 300 A, VGE = 0 V
Reverse recovery time
trr
IF = 300 A, VGE = -15 V,
di/dt = 1500 A/ms
¾
0.2
¾
Transistor stage
¾
¾
0.045
Diode stage
¾
¾
0.100
Thermal resistance
Rth (j-c)
V
pF
ms
V
ms
°C/W
Note 1: Switching time and reverse recovery time test circuit and timing chart
RG
VGE
IF
90%
10%
0
-VGE
IC
VCC
L
IC
RG
90%
90%
VCE
0
IF
IF
toff
90% Irr
50% Irr
Irr
10%
tf
td (off)
10%
td (on)
tr
ton
trr
2
2002-08-29
MG300Q2YS61
< VCE (sat) Rank >
< VF Rank >
VCE (sat)
VF
Rank Symbol
Min
Max
Rank Symbol
Min
Max
21
1.80
2.10
D
1.9
2.2
22
1.90
2.20
E
2.1
2.4
23
2.00
2.30
F
2.3
2.6
24
2.10
2.40
G
2.5
2.8
25
2.20
2.50
26
2.30
2.60
27
2.40
2.70
< Mark Position >
21D
Low side
TOSHIBA
MG300Q2YS61
22E
High side
3
2002-08-29
MG300Q2YS61
IC – VCE
IC – VCE
600
600
Common emitter
15
15
Tj = 125°C
500
12
IC
400
Collector current
IC
(A)
500
Collector current
Common emitter
20
Tj = 25°C
(A)
20
300
200
10
100
12
400
300
10
200
VGE = 9 V
100
VGE = 9 V
0
0
2
4
6
Collector-emitter voltage
8
VCE
0
10
0
(V)
2
4
Collector-emitter voltage
VCE – VGE
(V)
VCE
8
6
300
4
600
2
10
Tj = 125°C
8
6
300
600
4
2
IC = 150 A
IC = 150 A
0
0
5
10
Gate-emitter voltage VGE
15
0
0
20
5
10
(V)
VCE – VGE
IC – VGE
Common emitter
Tj = -40°C
VCE = 5 V
(A)
500
IC
8
Collector current
(V)
VCE
20
(V)
600
Common emitter
Collector-emitter voltage
15
Gate-emitter voltage VGE
12
10
(V)
Common emitter
Tj = 25°C
Collector-emitter voltage
(V)
VCE
VCE
10
12
Common emitter
Collector-emitter voltage
8
VCE – VGE
12
10
6
6
300
4
600
2
400
300
Tj = 125°C
200
25
100
-40
IC = 150 A
0
0
5
10
Gate-emitter voltage VGE
15
0
0
20
(V)
2
4
6
8
10
Gate-emitter voltage VGE
4
12
14
(V)
2002-08-29
MG300Q2YS61
VCE, VGE – QG
Common cathode
VGE = 0
(V)
-40
400
Tj = 25°C
Collector-emitter voltage
Forward current IF
(A)
VCE
500
300
200
125
100
0
0
1
2
3
Forward voltage
4
VF
800
12
600
200
400
200
4
500
1000
(V)
Charge
(mJ)
toff
ton
td (off)
tr
td (on)
100
tf
10
0
2
4
6
8
10
Gate resistance RG
12
14
Eon
Eoff
2
4
(9)
8
(mJ)
td (off)
tf
Collector current
200
IC
(9)
VCC = 600 V
RG = 2.7 W
VGE = ±15 V
Ls = 80 nH
: Tj = 25°C
: Tj = 125°C
Eon
150
16
10
tr
100
14
Eoff
td (on)
50
12
Switching loss – IC
100
10
0
10
100
Switching loss
(ns)
Switching time
6
Gate resistance RG
1000
ton
(nC)
100
10
0
16
VCC = 600 V, RG = 2.7 W
VGE = ±15 V, Ls = 80 nH
: Tj = 25°C
: Tj = 125°C
toff
QG
0
2500
2000
VCC = 600 V
IC = 300 A
VGE = ±15 V
Ls = 80 nH
: Tj = 25°C
: Tj = 125°C
Switching time – IC
10000
1500
Switching loss – RG
1000
Switching loss
(ns)
Switching time
1000
VCC = 600 V
IC = 300 A
VGE = ±15 V
Ls = 80 nH
: Tj = 25°C
: Tj = 125°C
8
VCE = 0 V
Switching time – RG
10000
16
400
600
0
0
5
20
Common emitter
RL = 2 W
Tj = 25°C
(V)
1000
Gate-emitter voltage VGE
IF – VF
600
250
1
0
300
(A)
50
100
150
Collector current
5
200
IC
250
300
(A)
2002-08-29
MG300Q2YS61
Irr, trr – IF
Edsw – IF
(mJ)
10
Irr (A)
(ms)
1000
Reverse recovery loss Edsw
Peak reverse recovery current
Reverse recovery time trr
trr
100
Irr
10
0
Common cathode
VCC = 600 V
RG = 2.7 W
VGE = ±15 V
: Tj = 25°C
: Tj = 125°C
50
100
150
200
Forward current
IF
250
1
Common cathode
VCC = 600 V
RG = 2.7 W
VGE = ±15 V
: Tj = 25°C
: Tj = 125°C
0.1
0
300
50
(A)
100
C – VCE
1000
(A)
IC
Collector current
10000
5000
3000
Coes
1000
Common emitter
500 f = 1 MHz
0.3 0.5
Cres
1
3
5
Collector-emitter voltage
10
VCE
30 50
IC max (pulsed) *
(A)
Cies
(pF)
Capacitance C
300
Safe operating area
30000
100
IC max (continuous)
300
50 ms*
100
DC operation
30
100 ms*
1 ms*
* Single nonrepetitive
pulse Tc = 25°C
10
Curves must be derated
lineary with increase in
temperature.
3
1
3
10
30
(V)
100
Collector-emitter voltage
Reverse bias soa
300
VCE
1000
3000
(V)
Rth (t) – tw
1000
(A)
Transient thermal resistance Rth (j-c)
(°C/W)
1
IC
Collector current
IF
250
3000
50000
100
Tj <
= 125°C
VGE = ±15 V
RG = 2.7 W
10
0
200
Forward current
100000
300
0.1
150
200
400
600
800
Collector-emitter voltage
1000
VCE
1200
Tc = 25°C
0.3
0.03
(V)
Transistor stage
0.01
0.003
0.001
0.0003
0.001
1400
Diode stage
0.1
0.01
0.1
Pulse width
6
1
tw
10
(s)
2002-08-29
MG300Q2YS61
Short circuit soa
Collector current
IC
(A)
10000
1000
100
VGE = ±15 V
tw = 10 ms
Tj = 125°C
10
0
200
400
600
800
Collector-emitter voltage
1000
VCE
1200
1400
(V)
7
2002-08-29
MG300Q2YS61
RESTRICTIONS ON PRODUCT USE
000707EAA
· TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability
Handbook” etc..
· The TOSHIBA products listed in this document are intended for usage in general electronics applications
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this
document shall be made at the customer’s own risk.
· The information contained herein is presented only as a guide for the applications of our products. No
responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
rights of the third parties which may result from its use. No license is granted by implication or otherwise under
any intellectual property or other rights of TOSHIBA CORPORATION or others.
· The information contained herein is subject to change without notice.
8
2002-08-29