MG300Q2YS61 TOSHIBA IGBT Module Silicon N Channel IGBT MG300Q2YS61 High Power Switching Applications Motor Control Applications · High input impedance · High speed: tf = 0.3 µs (max) Unit: mm Inductive load · Low saturation voltage: VCE (sat) = 2.6 V (max) · Enhancement-mode · Includes a complete half bridge in one package. · The electrodes are isolated from case. Equivalent Circuit C1 G1 E1 E1/C2 JEDEC ― JEITA ― TOSHIBA G2 2-109C4A Weight: 430 g (typ.) E2 E2 Maximum Ratings (Tc = 25°C) Characteristics Symbol Rating Unit Collector-emitter voltage VCES 1200 V Gate-emitter voltage VGES ±20 V Collector current DC (Tc = 80°C) IC 300 A Forward current DC (Tc = 80°C) IF 300 A Collector power dissipation (Tc = 25°C) PC 2700 W Junction temperature Tj 150 °C Storage temperature range Tstg -40 to 125 °C Isolation voltage Visol 2500 (AC 1 minute) Vrms Terminal ¾ 3 N·m Mounting ¾ 3 N·m Screw torque 1 2002-08-29 MG300Q2YS61 Electrical Characteristics (Ta = 25°C) Characteristics Symbol Test Condition Min Typ. Max Unit Gate leakage current IGES VGE = ±20 V, VCE = 0 V ¾ ¾ ±500 nA Collector cut-off current ICES VCE = 1200 V, VGE = 0 V ¾ ¾ 1 mA 6.0 7.0 8.0 V Tc = 25°C ¾ 2.1 2.6 Tc = 125°C ¾ 2.7 3.2 ¾ 25000 ¾ ¾ 0.3 ¾ ¾ 0.2 ¾ ¾ 0.5 ¾ ¾ 0.5 ¾ ¾ 0.1 0.3 ¾ 0.6 ¾ Tc = 25°C ¾ 2.4 2.8 Tc = 125°C ¾ 2.2 ¾ Gate-emitter cut-off voltage VGE (off) IC = 300 mA, VCE = 5V Collector-emitter saturation voltage VCE (sat) IC = 300 A, VGE = 15 V Input capacitance VCE = 10 V, VGE = 0 V, f = 1 MHz Cies Turn-on delay time td (on) Rise time tr Turn-on time Switching time Inductive load VCC = 600 V IC = 300 A VGE = ±15 V RG = 2.7 W ton Turn-off delay time td (off) Fall time (Note 1) tf Turn-off time toff Forward voltage VF IF = 300 A, VGE = 0 V Reverse recovery time trr IF = 300 A, VGE = -15 V, di/dt = 1500 A/ms ¾ 0.2 ¾ Transistor stage ¾ ¾ 0.045 Diode stage ¾ ¾ 0.100 Thermal resistance Rth (j-c) V pF ms V ms °C/W Note 1: Switching time and reverse recovery time test circuit and timing chart RG VGE IF 90% 10% 0 -VGE IC VCC L IC RG 90% 90% VCE 0 IF IF toff 90% Irr 50% Irr Irr 10% tf td (off) 10% td (on) tr ton trr 2 2002-08-29 MG300Q2YS61 < VCE (sat) Rank > < VF Rank > VCE (sat) VF Rank Symbol Min Max Rank Symbol Min Max 21 1.80 2.10 D 1.9 2.2 22 1.90 2.20 E 2.1 2.4 23 2.00 2.30 F 2.3 2.6 24 2.10 2.40 G 2.5 2.8 25 2.20 2.50 26 2.30 2.60 27 2.40 2.70 < Mark Position > 21D Low side TOSHIBA MG300Q2YS61 22E High side 3 2002-08-29 MG300Q2YS61 IC – VCE IC – VCE 600 600 Common emitter 15 15 Tj = 125°C 500 12 IC 400 Collector current IC (A) 500 Collector current Common emitter 20 Tj = 25°C (A) 20 300 200 10 100 12 400 300 10 200 VGE = 9 V 100 VGE = 9 V 0 0 2 4 6 Collector-emitter voltage 8 VCE 0 10 0 (V) 2 4 Collector-emitter voltage VCE – VGE (V) VCE 8 6 300 4 600 2 10 Tj = 125°C 8 6 300 600 4 2 IC = 150 A IC = 150 A 0 0 5 10 Gate-emitter voltage VGE 15 0 0 20 5 10 (V) VCE – VGE IC – VGE Common emitter Tj = -40°C VCE = 5 V (A) 500 IC 8 Collector current (V) VCE 20 (V) 600 Common emitter Collector-emitter voltage 15 Gate-emitter voltage VGE 12 10 (V) Common emitter Tj = 25°C Collector-emitter voltage (V) VCE VCE 10 12 Common emitter Collector-emitter voltage 8 VCE – VGE 12 10 6 6 300 4 600 2 400 300 Tj = 125°C 200 25 100 -40 IC = 150 A 0 0 5 10 Gate-emitter voltage VGE 15 0 0 20 (V) 2 4 6 8 10 Gate-emitter voltage VGE 4 12 14 (V) 2002-08-29 MG300Q2YS61 VCE, VGE – QG Common cathode VGE = 0 (V) -40 400 Tj = 25°C Collector-emitter voltage Forward current IF (A) VCE 500 300 200 125 100 0 0 1 2 3 Forward voltage 4 VF 800 12 600 200 400 200 4 500 1000 (V) Charge (mJ) toff ton td (off) tr td (on) 100 tf 10 0 2 4 6 8 10 Gate resistance RG 12 14 Eon Eoff 2 4 (9) 8 (mJ) td (off) tf Collector current 200 IC (9) VCC = 600 V RG = 2.7 W VGE = ±15 V Ls = 80 nH : Tj = 25°C : Tj = 125°C Eon 150 16 10 tr 100 14 Eoff td (on) 50 12 Switching loss – IC 100 10 0 10 100 Switching loss (ns) Switching time 6 Gate resistance RG 1000 ton (nC) 100 10 0 16 VCC = 600 V, RG = 2.7 W VGE = ±15 V, Ls = 80 nH : Tj = 25°C : Tj = 125°C toff QG 0 2500 2000 VCC = 600 V IC = 300 A VGE = ±15 V Ls = 80 nH : Tj = 25°C : Tj = 125°C Switching time – IC 10000 1500 Switching loss – RG 1000 Switching loss (ns) Switching time 1000 VCC = 600 V IC = 300 A VGE = ±15 V Ls = 80 nH : Tj = 25°C : Tj = 125°C 8 VCE = 0 V Switching time – RG 10000 16 400 600 0 0 5 20 Common emitter RL = 2 W Tj = 25°C (V) 1000 Gate-emitter voltage VGE IF – VF 600 250 1 0 300 (A) 50 100 150 Collector current 5 200 IC 250 300 (A) 2002-08-29 MG300Q2YS61 Irr, trr – IF Edsw – IF (mJ) 10 Irr (A) (ms) 1000 Reverse recovery loss Edsw Peak reverse recovery current Reverse recovery time trr trr 100 Irr 10 0 Common cathode VCC = 600 V RG = 2.7 W VGE = ±15 V : Tj = 25°C : Tj = 125°C 50 100 150 200 Forward current IF 250 1 Common cathode VCC = 600 V RG = 2.7 W VGE = ±15 V : Tj = 25°C : Tj = 125°C 0.1 0 300 50 (A) 100 C – VCE 1000 (A) IC Collector current 10000 5000 3000 Coes 1000 Common emitter 500 f = 1 MHz 0.3 0.5 Cres 1 3 5 Collector-emitter voltage 10 VCE 30 50 IC max (pulsed) * (A) Cies (pF) Capacitance C 300 Safe operating area 30000 100 IC max (continuous) 300 50 ms* 100 DC operation 30 100 ms* 1 ms* * Single nonrepetitive pulse Tc = 25°C 10 Curves must be derated lineary with increase in temperature. 3 1 3 10 30 (V) 100 Collector-emitter voltage Reverse bias soa 300 VCE 1000 3000 (V) Rth (t) – tw 1000 (A) Transient thermal resistance Rth (j-c) (°C/W) 1 IC Collector current IF 250 3000 50000 100 Tj < = 125°C VGE = ±15 V RG = 2.7 W 10 0 200 Forward current 100000 300 0.1 150 200 400 600 800 Collector-emitter voltage 1000 VCE 1200 Tc = 25°C 0.3 0.03 (V) Transistor stage 0.01 0.003 0.001 0.0003 0.001 1400 Diode stage 0.1 0.01 0.1 Pulse width 6 1 tw 10 (s) 2002-08-29 MG300Q2YS61 Short circuit soa Collector current IC (A) 10000 1000 100 VGE = ±15 V tw = 10 ms Tj = 125°C 10 0 200 400 600 800 Collector-emitter voltage 1000 VCE 1200 1400 (V) 7 2002-08-29 MG300Q2YS61 RESTRICTIONS ON PRODUCT USE 000707EAA · TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.. · The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer’s own risk. · The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. · The information contained herein is subject to change without notice. 8 2002-08-29