VISHAY ILD621/ GB/ ILQ621/ GB Vishay Semiconductors Optocoupler, Phototransistor Output (Dual, Quad Channel) Features • Alternate Source to TLP621-2/-4 and TLP621GB-2/-4 • High Collector-Emitter Voltage, BVCEO=70 V • Dual and Quad Packages Feature: - Lower Pin and Parts Count - Better Channel to Channel CTR Match - Improved Common Mode Rejection • Isolation Test Voltage 5300 VRMS Dual Channel A 1 8 C C 2 7 E A 3 6 C C 4 5 E Agency Approvals • UL File # E52744 System Code H or J • DIN EN 60747-5-2(VDE0884) DIN EN 60747-5-5 pending Available with Option 1 • BSI IEC60950 IEC60965 • FIMKO Quad Channel Description The ILD621/ ILQ621 and ILD621GB/ ILQ621GB are multi-channel phototransistor optocouplers that use GaAs IRLED emitters and high gain NPN silicon phototransistors. These devices are constructed using double molded insulation technology. This assembly process offers a withstand test voltage of 7500 VDC. The ILD621/ ILQ621GB is well suited for CMOS interfacing given the CTR CE sat of 30 % minimum at I F of 1.0 mA. High gain linear operation is guaranteed by a minimum CTR CE of 100 % at 5.0 mA. The ILD/Q621 has a guaranteed CTR CE 50 % minimum at 5.0 mA. The TRansparent IOn Shield insures stable DC gain in applications such as power supply feedback circuits, where constant DC VIO voltages are present. A 1 16 C C 2 15 E A 3 14 C C 4 13 E A 5 12 C C 6 11 E A 7 10 C C 8 9 E i179054 Order Information Part Remarks ILD621 CTR > 50 %, DIP-8 ILD621GB CTR > 100 %, DIP-8 ILQ621 CTR > 50 %, DIP-16 ILQ621GB CTR > 100 %, DIP-16 ILD621-X006 CTR > 50 %, DIP-8 400 mil (option 6) ILD621-X007 CTR > 50 %, SMD-8 (option 7) ILD621-X009 CTR > 50 %, SMD-8 (option 9) ILD621GB-X007 CTR > 100 %, SMD-8 (option 7) ILQ621-X006 CTR > 50 %, DIP-8 400 mil (option 6) ILQ621-X007 CTR > 50 %, SMD-16 (option 7) ILQ621-X009 CTR > 50 %, SMD-16 (option 9) ILQ621GB-X006 CTR > 100 %, DIP-16 400 mil (option 6) ILQ621GB-X007 CTR > 100 %, SMD-16 (option 7) ILQ621GB-X009 CTR > 100 %, SMD-16 (option 9) For additional information on the available options refer to Option Information. Document Number 83654 Rev. 1.3, 19-Apr-04 www.vishay.com 1 ILD621/ GB/ ILQ621/ GB VISHAY Vishay Semiconductors Absolute Maximum Ratings Tamb = 25 °C, unless otherwise specified Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability. Input Symbol Value Reverse voltage Parameter Test condition VR 6.0 Unit V Forward current IF 60 mA mA Surge current IFSM 1.5 A Power dissipation Pdiss 100 mW 1.33 mW/°C Symbol Value Unit VECO 70 V Derate from 25 °C Output Parameter Test condition Collector -emitter reverse voltage Collector current t < 1.0 ms Power dissipation IC 50 mA IC 100 mA Pdiss 150 mW - 2.0 mW/°C Derate from 25 °C Coupler Parameter Isolation test voltage Test condition Part t = 1.0 sec. Package dissipation Symbol Value Unit VISO 5300 VRMS ILD621 400 mW ILD621GB 400 mW 5.33 mW/°C Derate from 25 °C Package dissipation ILQ621 500 mW ILQ621GB 500 mW Derate from 25 °C 6.67 mW/°C Creepage ≥ 7.0 mm Clearance ≥ 7.0 mm Isolation resistance VIO = 500 V, Tamb = 25 °C RIO VIO = 500 V, Tamb = 100 °C RIO ≥ Ω 1012 ≥ 10 Ω 11 Storage temperature Tstg - 55 to +150 °C Operating temperature Tamb - 55 to +100 °C Tj 100 °C Tsld 260 °C Junction temperature Soldering temperature www.vishay.com 2 2.0 mm from case bottom Document Number 83654 Rev. 1.3, 19-Apr-04 ILD621/ GB/ ILQ621/ GB VISHAY Vishay Semiconductors Electrical Characteristics Tamb = 25 °C, unless otherwise specified Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements. Input Symbol Min Typ. Max Forward voltage Parameter IF = 10 mA Test condition VF 1.0 1.15 1.3 V Reverse current VR = 6.0 V IR 0.01 10 µA Capacitance VF = 0, f = 1.0 MHz Thermal resistance, Junction to lead Unit CO 40 pF RTHJL 750 K/W Output Parameter Test condition Symbol Min Typ. Max Unit 10 100 nA ICEO 20 50 RTHJL 500 Collector-emitter capacitance VCE = 5.0 V, f = 1.0 MHz CCE 6.8 Collector-emitter leakage current VCE = 24 V ICEO Thermal resistance, Junction to lead pF µA K/W Coupler Parameter Test condition Capacitance (input-output) VIO = 0 V, f = 1.0 MHz Insulation resistance VIO = 500 V Part Symbol Min CIO 0.8 Max Unit pF Ω 12 10 Channel to channel insulation Collector-emitter saturation voltage Typ. 500 VAC IF = 8.0 mA, ICE = 2.4 mA ILD621 ILQ621 VCEsat 0.4 V IF = 1.0 mA, ICE = 0.2 mA ILD621GB ILQ621GB VCEsat 0.4 V Part Symbol Min Max Unit CTRX/ CTRY 1 to 1 Current Transfer Ratio Parameter Test condition Channel/Channel CTR match IF = 5.0 mA, VCE = 5.0 V Current Transfer Ratio (collector-emitter saturated) IF = 1.0 mA, VCE = 0.4 V Current Transfer Ratio (collector-emitter) Document Number 83654 Rev. 1.3, 19-Apr-04 IF = 5.0 mA, VCE = 5.0 V Typ. 3 to 1 ILD621 ILQ621 CTRCEs 60 % ILD621GB ILQ621GB CTRCEs ILD621 ILQ621 CTRCE 50 80 600 % ILD621GB ILQ621GB CTRCE 100 200 600 % at 30 % at www.vishay.com 3 ILD621/ GB/ ILQ621/ GB VISHAY Vishay Semiconductors Switching Characteristics Non-saturated switching timing Parameter Test condition Symbol Min Typ. Max Unit On Time IF = ± 10 mA, VCC = 5.0 V, RL = 75 Ω, 50 % of VPP ton 3.0 µs Rise time IF = ± 10 mA, VCC = 5.0 V, RL = 75 Ω, 50 % of VPP tr 2.0 µs Off time IF = ± 10 mA, VCC = 5.0 V, RL = 75 Ω, 50 % of VPP toff 2.3 µs Fall time IF = ± 10 mA, VCC = 5.0 V, RL = 75 Ω, 50 % of VPP tf 2.0 µs Propagation H-L IF = ± 10 mA, VCC = 5.0 V, RL = 75 Ω, 50 % of VPP tPHL 1.1 µs Propagation L-H IF = ± 10 mA, VCC = 5.0 V, RL = 75 Ω, 50 % of VPP tPLH 2.5 µs Saturated switching timing Parameter Test condition Symbol Min Typ. Max Unit On time IF = ± 10 mA, VCC = 5.0 V, RL = 1.0 KΩ, VTH = 1.5 V ton 4.3 µs Rise time IF = ± 10 mA, VCC = 5.0 V, RL = 1.0 KΩ, VTH = 1.5 V tr 2.8 µs Off time IF = ± 10 mA, VCC = 5.0 V, RL = 1.0 KΩ, VTH = 1.5 V toff 2.5 µs Fall time IF = ± 10 mA, VCC = 5.0 V, RL = 1.0 KΩ, VTH = 1.5 V tf 11 µs Propagation H-L IF = ± 10 mA, VCC = 5.0 V, RL = 1.0 KΩ, VTH = 1.5 V tPHL 2.6 µs Propagation L-H IF = ± 10 mA, VCC = 5.0 V, RL = 1.0 KΩ, VTH = 1.5 V tPLH 7.2 µs Common Mode Transient Immunity Parameter Test condition Symbol Min Typ. Max Unit Common mode rejection output high VCM = 50 VP-P, RL = 1.0 KΩ, IF = 0 mA CMH 5000 V/µs Common mode rejection output low VCM = 50 VP-P, RL = 1.0 KΩ, IF = 10 mA CML 5000 V/µs www.vishay.com 4 Document Number 83654 Rev. 1.3, 19-Apr-04 ILD621/ GB/ ILQ621/ GB VISHAY Vishay Semiconductors Typical Characteristics (Tamb = 25 °C unless otherwise specified) IF VCC = 5 V F = 10 KHz, DF = 50% tPLH RL tPLH VO VO tS 50% tD tF tR iild621_04 iild621_01 Fig. 1 Non-saturated Switching Timing Fig. 4 Saturated Switching Timing VCC = 5 V IF = 10 mA VO RL = 75 Ω F = 10 KHz, DF = 50% IF - Maximum LED Current - mA 120 iild621_02 100 80 60 TJ (MAX) = 100 °C 40 20 0 -60 -40 iild621_05 Fig. 2 Non-saturated Switching Timing -20 0 20 40 60 80 100 TA - Ambient Temperature - °C Fig. 5 Maximum LED Current vs. Ambient Temperature 200 VO tD tR t PLH VTH = 1.5 V t PHL tS PLED - LED Power - mW IF tF iild621_06 Document Number 83654 Rev. 1.3, 19-Apr-04 100 50 0 -60 -40 iild621_03 Fig. 3 Saturated Switching Timing 150 -20 0 20 40 60 Ta - Ambient Temperature - °C 80 100 Fig. 6 Maximum LED Power Dissipation www.vishay.com 5 ILD621/ GB/ ILQ621/ GB VISHAY Vishay Semiconductors 1000 TA = 85 °C 1.2 TA = 85 °C 1.1 1.0 0.9 TA = 85° C 0.8 100 10 1 .1 1 10 IF - Forward Current - mA 1 10 100 RL - Collector Load Resistor - kΩ iild621_10 Fig. 7 Forward Voltage vs. Forward Current Fig. 10 Propagation Delay vs. Collector Load Resistor 200 PDET - Detector Power - mW 35 ICE - Collector Current - mA 1.0 .1 100 iild621_07 30 25 50°C 20 15 70°C 25°C 85°C 10 5 0 0 10 20 40 30 50 100 50 0 -60 -40 -20 0 20 40 60 80 100 TA - Ambient Temperature - °C iild621_11 Fig. 8 Collector-Emitter Current vs. Temperature and LED Current Fig. 11 Maximum Detector Power Dissipation 1000 ICE - Collector Current - mA 10 5 10 4 10 3 10 2 VCE = 10 V 10 1 Typical 10 0 10 -1 10 -2 -20 150 60 IF - LED Current - mA iild621_08 ICEO - Collector-Emitter - nA 1.5 tPHL 0.7 0 20 40 60 80 100 iild621_09 Fig. 9 Collector-Emitter Leakage vs. Temperature www.vishay.com 100 Rth = 500 °C/W 10 25 °C 50 °C 75 °C 90 °C 1 .1 .1 TA - Ambient Temperature - °C 6 2.0 tPLH tPHL - Propagation High-Low µs 1. 3 2.5 IF = 10 mA VCC = 5 V, Vth = 1.5 V tPLH - Propagation Low-High µs VF - Forward Voltage - V 1.4 iild621_12 10 1 VCE - Collector-Emitter Voltage - V 100 Fig. 12 Maximum Collector Current vs. Collector Voltage Document Number 83654 Rev. 1.3, 19-Apr-04 ILD621/ GB/ ILQ621/ GB VISHAY CTRNF - Normalized CTR Factor Vishay Semiconductors 2.0 Normalized to: VCE = 10 V, IF = 5 mA, CTRce(sat) VCE = 0.4 V 1.5 NCTRce 1.0 NCTRce(sat) 0.5 TA = 50 °C 0.0 .1 1 10 IF - LED Current - mA 100 iild621_13 CTRNF - Normalized CTR Factor Fig. 13 Normalization Factor for Non-saturated and Saturated CTR vs. IF 2.0 Normalized to: VCE = 10 V, IF = 5 mA, CTRce(sat) VCE = 0.4 V 1.5 NCTRce 1.0 NCTRce(sat) 0.5 TA = 70 °C 0.0 .1 1 10 IF - LED Current - mA 100 iild621_14 CTRNF - Normalized CTR Factor Fig. 14 Normalization Factor for Non-saturated and Saturated CTR vs. IF 2.0 Normalized to: VCE = 10 V, IF = 5 mA, CTRce(sat) VCE = 0.4 V 1.5 1.0 NCTRce 0.5 NCTRce(sat) TA = 100 °C 0.0 .1 1 10 IF - LED Current - mA 100 iild621_15 Fig. 15 Normalization Factor for Non-saturated and Saturated CTR vs. IF Document Number 83654 Rev. 1.3, 19-Apr-04 www.vishay.com 7 ILD621/ GB/ ILQ621/ GB VISHAY Vishay Semiconductors Package Dimensions in Inches (mm) pin one ID 4 3 2 1 5 6 7 8 .255 (6.48) .268 (6.81) ISO Method A .379 (9.63) .390 (9.91) .030 (0.76) .045 (1.14) 4° typ. .300 (7.62) typ. .031 (0.79) .130 (3.30) .150 (3.81) .050 (1.27) .020 (.51 ) .035 (.89 ) .100 (2.54) typ. .018 (.46) .022 (.56) i178006 .230(5.84) .110 (2.79) .250(6.35) .130 (3.30) 10° 3°–9° .008 (.20) .012 (.30) Package Dimensions in Inches (mm) pin one ID 8 7 6 5 4 3 2 1 .255 (6.48) .265 (6.81) 9 10 11 12 13 14 15 16 ISO Method A .779 (19.77 ) .790 (20.07) .030 (.76) .045 (1.14) .300 (7.62) typ. .031(.79) .130 (3.30) .150 (3.81) 4° .018 (.46) .022 (.56) .020(.51) .035 (.89) .100 (2.54)typ. .050 (1.27) 10° typ. 3°–9° .008 (.20) .012 (.30) .110 (2.79) .130 (3.30) .230 (5.84) .250 (6.35) i178007 www.vishay.com 8 Document Number 83654 Rev. 1.3, 19-Apr-04 ILD621/ GB/ ILQ621/ GB VISHAY Vishay Semiconductors Option 6 Option 7 .407 (10.36) .391 (9.96) .307 (7.8) .291 (7.4) .300 (7.62) TYP. .180 (4.6) .160 (4.1) .0040 (.102) .315 (8.0) MIN. Document Number 83654 Rev. 1.3, 19-Apr-04 .375 (9.53) .395 (10.03) .300 (7.62) ref. .028 (0.7) MIN. .014 (0.35) .010 (0.25) .400 (10.16) .430 (10.92) Option 9 .331 (8.4) MIN. .406 (10.3) MAX. .0098 (.249) .012 (.30) typ. .020 (.51) .040 (1.02) .315 (8.00) min. 15° max. 18450 www.vishay.com 9 ILD621/ GB/ ILQ621/ GB VISHAY Vishay Semiconductors Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423 www.vishay.com 10 Document Number 83654 Rev. 1.3, 19-Apr-04