VISHAY ILD621-X009

VISHAY
ILD621/ GB/ ILQ621/ GB
Vishay Semiconductors
Optocoupler, Phototransistor Output (Dual, Quad Channel)
Features
• Alternate Source to TLP621-2/-4 and
TLP621GB-2/-4
• High Collector-Emitter Voltage, BVCEO=70 V
• Dual and Quad Packages Feature:
- Lower Pin and Parts Count
- Better Channel to Channel CTR Match
- Improved Common Mode Rejection
• Isolation Test Voltage 5300 VRMS
Dual Channel
A 1
8 C
C 2
7 E
A 3
6 C
C 4
5 E
Agency Approvals
• UL File # E52744 System Code H or J
• DIN EN 60747-5-2(VDE0884)
DIN EN 60747-5-5 pending
Available with Option 1
• BSI IEC60950 IEC60965
• FIMKO
Quad Channel
Description
The ILD621/ ILQ621 and ILD621GB/ ILQ621GB are
multi-channel phototransistor optocouplers that use
GaAs IRLED emitters and high gain NPN silicon phototransistors. These devices are constructed using
double molded insulation technology. This assembly
process offers a withstand test voltage of 7500 VDC.
The ILD621/ ILQ621GB is well suited for CMOS interfacing given the CTR CE sat of 30 % minimum at I F of
1.0 mA. High gain linear operation is guaranteed by a
minimum CTR CE of 100 % at 5.0 mA. The ILD/Q621
has a guaranteed CTR CE 50 % minimum at 5.0 mA.
The TRansparent IOn Shield insures stable DC gain
in applications such as power supply feedback circuits, where constant DC VIO voltages are present.
A 1
16 C
C 2
15 E
A 3
14 C
C
4
13 E
A
5
12 C
C
6
11 E
A 7
10 C
C 8
9 E
i179054
Order Information
Part
Remarks
ILD621
CTR > 50 %, DIP-8
ILD621GB
CTR > 100 %, DIP-8
ILQ621
CTR > 50 %, DIP-16
ILQ621GB
CTR > 100 %, DIP-16
ILD621-X006
CTR > 50 %, DIP-8 400 mil (option 6)
ILD621-X007
CTR > 50 %, SMD-8 (option 7)
ILD621-X009
CTR > 50 %, SMD-8 (option 9)
ILD621GB-X007
CTR > 100 %, SMD-8 (option 7)
ILQ621-X006
CTR > 50 %, DIP-8 400 mil (option 6)
ILQ621-X007
CTR > 50 %, SMD-16 (option 7)
ILQ621-X009
CTR > 50 %, SMD-16 (option 9)
ILQ621GB-X006
CTR > 100 %, DIP-16 400 mil (option 6)
ILQ621GB-X007
CTR > 100 %, SMD-16 (option 7)
ILQ621GB-X009
CTR > 100 %, SMD-16 (option 9)
For additional information on the available options refer to
Option Information.
Document Number 83654
Rev. 1.3, 19-Apr-04
www.vishay.com
1
ILD621/ GB/ ILQ621/ GB
VISHAY
Vishay Semiconductors
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is
not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
Maximum Rating for extended periods of the time can adversely affect reliability.
Input
Symbol
Value
Reverse voltage
Parameter
Test condition
VR
6.0
Unit
V
Forward current
IF
60 mA
mA
Surge current
IFSM
1.5
A
Power dissipation
Pdiss
100
mW
1.33
mW/°C
Symbol
Value
Unit
VECO
70
V
Derate from 25 °C
Output
Parameter
Test condition
Collector -emitter reverse
voltage
Collector current
t < 1.0 ms
Power dissipation
IC
50
mA
IC
100
mA
Pdiss
150
mW
- 2.0
mW/°C
Derate from 25 °C
Coupler
Parameter
Isolation test voltage
Test condition
Part
t = 1.0 sec.
Package dissipation
Symbol
Value
Unit
VISO
5300
VRMS
ILD621
400
mW
ILD621GB
400
mW
5.33
mW/°C
Derate from 25 °C
Package dissipation
ILQ621
500
mW
ILQ621GB
500
mW
Derate from 25 °C
6.67
mW/°C
Creepage
≥ 7.0
mm
Clearance
≥ 7.0
mm
Isolation resistance
VIO = 500 V, Tamb = 25 °C
RIO
VIO = 500 V, Tamb = 100 °C
RIO
≥
Ω
1012
≥ 10
Ω
11
Storage temperature
Tstg
- 55 to +150
°C
Operating temperature
Tamb
- 55 to +100
°C
Tj
100
°C
Tsld
260
°C
Junction temperature
Soldering temperature
www.vishay.com
2
2.0 mm from case bottom
Document Number 83654
Rev. 1.3, 19-Apr-04
ILD621/ GB/ ILQ621/ GB
VISHAY
Vishay Semiconductors
Electrical Characteristics
Tamb = 25 °C, unless otherwise specified
Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements.
Input
Symbol
Min
Typ.
Max
Forward voltage
Parameter
IF = 10 mA
Test condition
VF
1.0
1.15
1.3
V
Reverse current
VR = 6.0 V
IR
0.01
10
µA
Capacitance
VF = 0, f = 1.0 MHz
Thermal resistance, Junction to
lead
Unit
CO
40
pF
RTHJL
750
K/W
Output
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
10
100
nA
ICEO
20
50
RTHJL
500
Collector-emitter capacitance
VCE = 5.0 V, f = 1.0 MHz
CCE
6.8
Collector-emitter leakage
current
VCE = 24 V
ICEO
Thermal resistance, Junction to
lead
pF
µA
K/W
Coupler
Parameter
Test condition
Capacitance (input-output)
VIO = 0 V, f = 1.0 MHz
Insulation resistance
VIO = 500 V
Part
Symbol
Min
CIO
0.8
Max
Unit
pF
Ω
12
10
Channel to channel insulation
Collector-emitter saturation
voltage
Typ.
500
VAC
IF = 8.0 mA, ICE = 2.4 mA
ILD621
ILQ621
VCEsat
0.4
V
IF = 1.0 mA, ICE = 0.2 mA
ILD621GB
ILQ621GB
VCEsat
0.4
V
Part
Symbol
Min
Max
Unit
CTRX/
CTRY
1 to 1
Current Transfer Ratio
Parameter
Test condition
Channel/Channel CTR match
IF = 5.0 mA, VCE = 5.0 V
Current Transfer Ratio
(collector-emitter saturated)
IF = 1.0 mA, VCE = 0.4 V
Current Transfer Ratio
(collector-emitter)
Document Number 83654
Rev. 1.3, 19-Apr-04
IF = 5.0 mA, VCE = 5.0 V
Typ.
3 to 1
ILD621
ILQ621
CTRCEs
60
%
ILD621GB
ILQ621GB
CTRCEs
ILD621
ILQ621
CTRCE
50
80
600
%
ILD621GB
ILQ621GB
CTRCE
100
200
600
%
at
30
%
at
www.vishay.com
3
ILD621/ GB/ ILQ621/ GB
VISHAY
Vishay Semiconductors
Switching Characteristics
Non-saturated switching timing
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
On Time
IF = ± 10 mA, VCC = 5.0 V,
RL = 75 Ω, 50 % of VPP
ton
3.0
µs
Rise time
IF = ± 10 mA, VCC = 5.0 V,
RL = 75 Ω, 50 % of VPP
tr
2.0
µs
Off time
IF = ± 10 mA, VCC = 5.0 V,
RL = 75 Ω, 50 % of VPP
toff
2.3
µs
Fall time
IF = ± 10 mA, VCC = 5.0 V,
RL = 75 Ω, 50 % of VPP
tf
2.0
µs
Propagation H-L
IF = ± 10 mA, VCC = 5.0 V,
RL = 75 Ω, 50 % of VPP
tPHL
1.1
µs
Propagation L-H
IF = ± 10 mA, VCC = 5.0 V,
RL = 75 Ω, 50 % of VPP
tPLH
2.5
µs
Saturated switching timing
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
On time
IF = ± 10 mA, VCC = 5.0 V,
RL = 1.0 KΩ, VTH = 1.5 V
ton
4.3
µs
Rise time
IF = ± 10 mA, VCC = 5.0 V,
RL = 1.0 KΩ, VTH = 1.5 V
tr
2.8
µs
Off time
IF = ± 10 mA, VCC = 5.0 V,
RL = 1.0 KΩ, VTH = 1.5 V
toff
2.5
µs
Fall time
IF = ± 10 mA, VCC = 5.0 V,
RL = 1.0 KΩ, VTH = 1.5 V
tf
11
µs
Propagation H-L
IF = ± 10 mA, VCC = 5.0 V,
RL = 1.0 KΩ, VTH = 1.5 V
tPHL
2.6
µs
Propagation L-H
IF = ± 10 mA, VCC = 5.0 V,
RL = 1.0 KΩ, VTH = 1.5 V
tPLH
7.2
µs
Common Mode Transient Immunity
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
Common mode rejection output
high
VCM = 50 VP-P, RL = 1.0 KΩ,
IF = 0 mA
CMH
5000
V/µs
Common mode rejection output
low
VCM = 50 VP-P, RL = 1.0 KΩ,
IF = 10 mA
CML
5000
V/µs
www.vishay.com
4
Document Number 83654
Rev. 1.3, 19-Apr-04
ILD621/ GB/ ILQ621/ GB
VISHAY
Vishay Semiconductors
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
IF
VCC = 5 V
F = 10 KHz,
DF = 50%
tPLH
RL
tPLH
VO
VO
tS
50%
tD
tF
tR
iild621_04
iild621_01
Fig. 1 Non-saturated Switching Timing
Fig. 4 Saturated Switching Timing
VCC = 5 V
IF = 10 mA
VO
RL = 75 Ω
F = 10 KHz,
DF = 50%
IF - Maximum LED Current - mA
120
iild621_02
100
80
60
TJ (MAX) = 100 °C
40
20
0
-60
-40
iild621_05
Fig. 2 Non-saturated Switching Timing
-20
0
20
40
60
80
100
TA - Ambient Temperature - °C
Fig. 5 Maximum LED Current vs. Ambient Temperature
200
VO
tD
tR
t PLH
VTH = 1.5 V
t PHL
tS
PLED - LED Power - mW
IF
tF
iild621_06
Document Number 83654
Rev. 1.3, 19-Apr-04
100
50
0
-60 -40
iild621_03
Fig. 3 Saturated Switching Timing
150
-20
0
20
40
60
Ta - Ambient Temperature - °C
80
100
Fig. 6 Maximum LED Power Dissipation
www.vishay.com
5
ILD621/ GB/ ILQ621/ GB
VISHAY
Vishay Semiconductors
1000
TA = 85 °C
1.2
TA = 85 °C
1.1
1.0
0.9
TA = 85° C
0.8
100
10
1
.1
1
10
IF - Forward Current - mA
1
10
100
RL - Collector Load Resistor - kΩ
iild621_10
Fig. 7 Forward Voltage vs. Forward Current
Fig. 10 Propagation Delay vs. Collector Load Resistor
200
PDET - Detector Power - mW
35
ICE - Collector Current - mA
1.0
.1
100
iild621_07
30
25
50°C
20
15
70°C
25°C
85°C
10
5
0
0
10
20
40
30
50
100
50
0
-60
-40
-20
0
20
40
60
80
100
TA - Ambient Temperature - °C
iild621_11
Fig. 8 Collector-Emitter Current vs. Temperature and LED
Current
Fig. 11 Maximum Detector Power Dissipation
1000
ICE - Collector Current - mA
10 5
10 4
10 3
10 2
VCE = 10 V
10 1
Typical
10 0
10 -1
10 -2
-20
150
60
IF - LED Current - mA
iild621_08
ICEO - Collector-Emitter - nA
1.5
tPHL
0.7
0
20
40
60
80
100
iild621_09
Fig. 9 Collector-Emitter Leakage vs. Temperature
www.vishay.com
100
Rth = 500 °C/W
10
25 °C
50 °C
75 °C
90 °C
1
.1
.1
TA - Ambient Temperature - °C
6
2.0
tPLH
tPHL - Propagation High-Low µs
1. 3
2.5
IF = 10 mA
VCC = 5 V, Vth = 1.5 V
tPLH - Propagation Low-High µs
VF - Forward Voltage - V
1.4
iild621_12
10
1
VCE - Collector-Emitter Voltage - V
100
Fig. 12 Maximum Collector Current vs. Collector Voltage
Document Number 83654
Rev. 1.3, 19-Apr-04
ILD621/ GB/ ILQ621/ GB
VISHAY
CTRNF - Normalized CTR Factor
Vishay Semiconductors
2.0
Normalized to:
VCE = 10 V, IF = 5 mA,
CTRce(sat) VCE = 0.4 V
1.5
NCTRce
1.0
NCTRce(sat)
0.5
TA = 50 °C
0.0
.1
1
10
IF - LED Current - mA
100
iild621_13
CTRNF - Normalized CTR Factor
Fig. 13 Normalization Factor for Non-saturated and Saturated CTR
vs. IF
2.0
Normalized to:
VCE = 10 V, IF = 5 mA,
CTRce(sat) VCE = 0.4 V
1.5
NCTRce
1.0
NCTRce(sat)
0.5
TA = 70 °C
0.0
.1
1
10
IF - LED Current - mA
100
iild621_14
CTRNF - Normalized CTR Factor
Fig. 14 Normalization Factor for Non-saturated and Saturated CTR
vs. IF
2.0
Normalized to:
VCE = 10 V, IF = 5 mA,
CTRce(sat) VCE = 0.4 V
1.5
1.0
NCTRce
0.5
NCTRce(sat)
TA = 100 °C
0.0
.1
1
10
IF - LED Current - mA
100
iild621_15
Fig. 15 Normalization Factor for Non-saturated and Saturated CTR
vs. IF
Document Number 83654
Rev. 1.3, 19-Apr-04
www.vishay.com
7
ILD621/ GB/ ILQ621/ GB
VISHAY
Vishay Semiconductors
Package Dimensions in Inches (mm)
pin one ID
4
3
2
1
5
6
7
8
.255 (6.48)
.268 (6.81)
ISO Method A
.379 (9.63)
.390 (9.91)
.030 (0.76)
.045 (1.14)
4° typ.
.300 (7.62)
typ.
.031 (0.79)
.130 (3.30)
.150 (3.81)
.050 (1.27)
.020 (.51 )
.035 (.89 )
.100 (2.54) typ.
.018 (.46)
.022 (.56)
i178006
.230(5.84)
.110 (2.79) .250(6.35)
.130 (3.30)
10°
3°–9°
.008 (.20)
.012 (.30)
Package Dimensions in Inches (mm)
pin one ID
8
7
6
5
4
3
2
1
.255 (6.48)
.265 (6.81)
9
10
11 12 13
14
15
16
ISO Method A
.779 (19.77 )
.790 (20.07)
.030 (.76)
.045 (1.14)
.300 (7.62)
typ.
.031(.79)
.130 (3.30)
.150 (3.81)
4°
.018 (.46)
.022 (.56)
.020(.51)
.035 (.89)
.100 (2.54)typ.
.050 (1.27)
10°
typ.
3°–9°
.008 (.20)
.012 (.30)
.110 (2.79)
.130 (3.30) .230 (5.84)
.250 (6.35)
i178007
www.vishay.com
8
Document Number 83654
Rev. 1.3, 19-Apr-04
ILD621/ GB/ ILQ621/ GB
VISHAY
Vishay Semiconductors
Option 6
Option 7
.407 (10.36)
.391 (9.96)
.307 (7.8)
.291 (7.4)
.300 (7.62)
TYP.
.180 (4.6)
.160 (4.1) .0040 (.102)
.315 (8.0)
MIN.
Document Number 83654
Rev. 1.3, 19-Apr-04
.375 (9.53)
.395 (10.03)
.300 (7.62)
ref.
.028 (0.7)
MIN.
.014 (0.35)
.010 (0.25)
.400 (10.16)
.430 (10.92)
Option 9
.331 (8.4)
MIN.
.406 (10.3)
MAX.
.0098 (.249)
.012 (.30) typ.
.020 (.51)
.040 (1.02)
.315 (8.00)
min.
15° max.
18450
www.vishay.com
9
ILD621/ GB/ ILQ621/ GB
VISHAY
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and
operatingsystems with respect to their impact on the health and safety of our employees and the public, as
well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the
use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
www.vishay.com
10
Document Number 83654
Rev. 1.3, 19-Apr-04