TOSHIBA TA1317ANG

TA1317ANG
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic
TA1317ANG
Deflection Processor IC for TV
TA1317ANG is a deflection processor IC for a large and wide
picture tube.
TA1317ANG incorporates an EW, a vertical distortion
correction circuit and a dynamic focus correction circuit. It can
control various functions via I2C BUS line.
Features
•
Vertical drive (AC/DC-coupling)
•
Picture height adjustment
•
Vertical shift adjustment
•
Vertical symmetry correction
•
Vertical linearity correction
•
Vertical S correction
•
Vertical integral correction
•
Vertical/Horizontal EHT compensation
•
EW drive (parabola/PWM output)
•
Picture width
•
EW trapezium correction
•
EW parabola correction
•
EW corner correction (top only/bottom only/top & bottom)
•
EW S correction
•
Center curve correction (SAW/PAR)
•
Parabola output for horizontal and vertical dynamic focus (H/V output independently)
•
Horizontal and vertical dynamic focus phase adjustment
•
Horizontal and vertical dynamic focus amplitude adjustment
•
Horizontal dynamic focus curve characteristic adjustment
•
V-ramp limiter circuit
•
Analog blanking output
Weight: 1.22 g (typ.)
1
2005-08-18
TA1317ANG
V
SYMMETRY
V→I
V
LINEARITY
V-S
CORRECTION
DIGITAL GND
SCL
SDA
PULSE
GENE
H-DF OUT
V-RAMP
LVP IN
AGC
V-DF OUT
22
CENTER OUT
TC FILTER
23
BLK OUT
V-RAMP FILTER
24
VIN
AGC FILTER
Block Diagram
21
20
19
18
17
16
15
14
13
ANALOG
BLK
CENTER
OUT
LVP
DETECT
+
CENTER
PARABOLA
CENTER
SAW
V- ∫∫
CORRECTION
+
I CBUS
DECODER
V-DF
AMP
H-DF
OUT
V→I
V-DF
PHASE
EW-S
CORRECTION
EW
CORNER
V→I
+
EW
TRAPEZIUM
V AMP
+
H-DF
PHASE
EW AMP
V EHT
V GUARD
DETECT
V→I
H-DF
BATHTUB
H EHT
V-RAMP
LIMITER
DAC
2
V-DF
OUT
EW WIDTH
H-RAMP
V PHASE
2
EHT IN
V DRIVE
V-DC REF
V NF
7
8
9
10
11
12
FBP IN
6
EW FILTER
5
EW FD
4
ANALOG GND
3
EW PWM
2
VCC
1
CENTER DAC
EW PWM
VREF
BAND-GAP
2005-08-18
TA1317ANG
Pin Functions
Pin
No.
Pin Name
Function
Interface Circuit
Input/Output Signal
10 kΩ
1
⎯
10.3 kΩ
VREF
1 kΩ
40 kΩ
1
Internal reference
voltage adjustment pin.
If the CRT DY has a
temperature coefficient,
it can be cancelled in
the TV by applying the
inverse temperature
coefficient to this pin. In
case of not using it,
connect a 0.01 µF
capacitor between this
pin and GND.
1 kΩ
7
9
CENTER DAC
DC
2
5 kΩ
2
DAC output pin.
When bus write function
VD = 0, 2 bit DAC
output; VD = 1, 7 bit
DAC output.
In case of not used, it
should be open.
50 Ω
7
9
7
EHT IN
DC
3
11 kΩ
4.5 V
3
EHT input pin.
In case of not using it,
connect a 0.01 µF
capacitor between this
pin and GND.
10 kΩ
9
7
V DRIVE
Vertical output pin
100 Ω
4
30 kΩ
⎯
4.5 kΩ
4
9
3
2005-08-18
TA1317ANG
Pin
No.
Pin Name
Function
Interface Circuit
Input/Output Signal
1 kΩ
7
V-DC REF
DC
30 kΩ
5
DC reference voltage
output pin when V is DC
coupling.
In case of not used, it
should be open.
5 kΩ
5
40 kΩ
9
6
7
V NF
VCC
Vertical negative
feedback input pin.
When VD = 0, if pin is
1.2 V (typ.) or below, or
3.7 V (typ.) or higher,
returns abnormal
detection result to BUS
read function (V guard),
forcibly setting pin 20 to
High. When VD = 1, if
pin is 2.4 V (typ.) or
below, or 7.4 V (typ.) or
higher, abnormality is
detected.
7
12.5 kΩ
6
50 Ω
9
VCC pin.
Connect 9 V (typ.).
⎯
⎯
7
8
EW PWM
EW D drive (PWM)
output pin. Open
collector output.
In case of not used, it
should be open.
8
9
9
ANALOG GND
GND pin for analog
block
⎯
⎯
7
10
EW FD
EW feedback pin
10
60 kΩ
9
4
2005-08-18
TA1317ANG
Pin
No.
Pin Name
Function
Interface Circuit
Input/Output Signal
7
EW FILTER
100 Ω
11
⎯
100 Ω
500 Ω
11
Connect phase
compensation filter for
EW output. The EW
parabola waveform can
be extracted from this
pin.
9
7
Th: 2.25 V
Input frequency:
28 k~45 kHz
2.25 V
FBP IN
500 Ω
12
5.0 V
12
FBP input pin.
In case of H-DF and
EW-PWM outputs are
not used, it should be
open.
9
15
7
SDA
2
SDA pin for I C bus
50 Ω 20 kΩ
13
SDA
3V
13
Th: 2.25 V
ACK
15
7
SCL
2
SCL pin for I C bus
20 kΩ
14
SCL
3V
14
Th: 2.25 V
15
15
DIGITAL GND
⎯
GND pin for digital block
5
⎯
2005-08-18
TA1317ANG
Pin
No.
Pin Name
Function
Interface Circuit
Input/Output Signal
H-DF OUT
H-BLK
200 Ω
1 kΩ
16
22.5 kΩ
16
Outputs parabola
waveform for horizontal
dynamic focus.
Mask the pulse in
horizontal blanking if it
is not needed.
In case of not used, it
should be open.
100 Ω
7
H-DF OUT
9
15
LVP IN
7
3 kΩ
17
DC
5V
17
LVP detection pin.
Connect reference
voltage used to protect
deflection circuit against
low supply voltage. If
this pin is 5.0 V (typ.) or
below, returns abnormal
detection result to bus
read function.
In case of LVP
detection is not used, it
should be open.
9
7
V-DF OUT
100 Ω
18
2 kΩ
1 mA
18
Outputs parabola
waveform for vertical
dynamic focus.
In case of not used, it
should be open.
9
CENTER OUT
or
19
1 kΩ
22.5 kΩ
19
Outputs center curve
correction waveform.
Connect this pin to
curve correction input
pin of horizontal sync
IC.
In case of not used, it
should be open.
100 Ω
7
9
6
or composite of above
two waveforms
2005-08-18
TA1317ANG
Pin
No.
Pin Name
Function
Interface Circuit
Input/Output Signal
20
BLK OUT
200 Ω
Analog blanking output
pin. Open collector
output.
In case of not used, it
should be open.
200 Ω
7
1 kΩ
20
9
7
21
VIN
Inputs vertical trigger
pulse. Notifies
subsequent circuit of
input fall as trigger.
Th: 1.5 V
2 kΩ
21
9
7
22
TC FILTER
Connects filter for
generating internal
pulse.
100 Ω
22
⎯
10 kΩ
9
7
1 kΩ
23
23
V-RAMP FILTER
Connects filter for
generating vertical ramp
signal.
100 Ω
⎯
1 kΩ
9
7
2005-08-18
TA1317ANG
Pin
No.
Pin Name
Function
Interface Circuit
Input/Output Signal
24
8
2.25 V
AGC FILTER
3.2 V
24
Connects filter used to
automatically adjust
oscillation amplitude of
vertical ramp signal.
Can switch AGC
sensitivity by BUS write
function.
500 Ω 500 Ω
7
1 kΩ
⎯
9
2005-08-18
TA1317ANG
Bus Control Map
Write Mode
Slave Address: 8CH (10001100)
Sub-Address
D7
MSB
D6
D5
D4
D3
D2
D1
PICTURE HEIGHT
00
PICTURE WIDTH1
01
D0
LSB
Preset
MSB
LSB
VD
1000
0000
1000
0000
V SHIFT
V LINEARITY
V-EHT COMPENSATION
1000
0000
03
ANALOG V-BLK STOP PHASE
H-EHT COMPENSATION
1000
0000
04
ANALOG V-BLK START PHASE
V-RAMP LIMIT2
1000
0000
1000
0000
02
V CENTERING
05
V-RAMP LIMIT1
06
V-DF PHASE
V-DF AMPLITUDE
1000
1000
07
H-DF PHASE
H-DF AMPLITUDE
1000
1000
08
H-DF CURVE
V INTEGRAL CORRECTION
1000
0000
V AGC
09
0A
*
*
V S CORRECTION
1000
0000
EW PARABOLA
1000
0000
V STOP
1000
0000
EW TRAPEZIUM
0B
0C
EW TOP CORNER
*
*
PICTURE WIDTH2
1000
0000
0D
EW BOTTOM CORNER
*
*
*
1000
0000
0E
EW S CORRECTION
*
*
*
1000
0000
0F
EW CORNER
*
*
*
1000
0000
CENTER PARABOLA
10
CENTER SAW
V SYMMETRY
11
1000
1000
0000
0000
Read Mode
Slave Address: 8DH (10001101)
0
D7
MSB
D6
D5
D4
D3
D2
D1
D0
LSB
V DF
H DF
LVP
V NF
V GUARD
EW OUT
V OUT
POR
9
2005-08-18
TA1317ANG
Bus Control Function
Write Mode
Register Name/Number of Bits
PICTURE HEIGHT/7
Function Explanation
Output Change
Picture Change
Preset
Adjusts the picture height.
0000000: min
1000000: center
1111111: max
Solid line
Dashed line
center
(1000000)
Pin 6
VD/1
Changes V-DRIVE mode
0: DC-coupling
PICTURE WIDTH/7
⎯
1: AC-coupling
DC-coupling
⎯
(0)
Adjusts the picture width.
0000000: max
1000000: center
1111111: min
Solid line
Dashed line
center
Sub-address 0C-D0 bit comes LSB.
(1000000)
Pin 11
V SHIFT/2
Where VD = 0, sets DAC output level of pin 2 is set. Where
VD = 1, sets DC level of V-DRIVE is adjusted.
Solid line
00: min
Dashed line
min
11: max
Pin 6 (VD = 1)
(00)
VD = 1
V LINEARITY/5
Corrects the vertical linearity.
00000: min
10000: center
11111: max
Solid line
Dashed line
center
Pin 6
10
(10000)
2005-08-18
TA1317ANG
Register Name/Number of Bits
V-EHT COMPENSATION/3
Function Explanation
Output Change
Picture Change
Adjusts the compensated rate for the V-DRIVE by EHT-IN
(pin 3).
000: min
Solid line
111: max
Dashed line
min
Pin 6
ANALOG V-BLK STOP PHASE/5
Sets the analog blanking stop phase on pin 20. Inputs the
output from pin 20 to an external BLK-IN of synchronization
IC.
00000: min
H-EHT COMPENSATION/3
10000: center
11111: max
(000)
Solid line
Dashed line
center
⎯
(10000)
Adjusts the compensated rate for the EW output by EHT-IN
(pin 3).
000: min
Solid line
111: max
Dashed line
min
(000)
Pin 11
ANALOG V-BLK START PHASE/5
Sets the analog blanking start phase on pin 20. Inputs the
output from pin 20 to external BLK-IN of synchronization IC.
00000: min
V-RAMP LIMIT LEVEL/4
Preset
10000: center
11111: max
Solid line
Dashed line
center
⎯
(10000)
Sets the V-ramp slice level.
0000: OFF
0001: min
1111: max
⎯
Sub-address 05-D0 bit comes MSB.
Pin 6
11
OFF
(0000)
2005-08-18
TA1317ANG
Register Name/Number of Bits
V CENTERING/7
Function Explanation
Output Change
Picture Change
Preset
Where VD = 0, DC level of V-DRIVE is adjusted. Where VD =
1, DAC output level of pin 2 is set.
Solid line
0000000: min
Dashed line
min
1000000: center
Pin 6 (VD = 0)
1111111: max
(0000000)
VD = 0
V-DF PHASE/4
Adjusts the phase of the vertical dynamic focus output.
0000: min
1000: center
1111: max
⎯
center
(1000)
Pin 18
V-DF AMPLITUDE/4
Adjusts the amplitude of the vertical dynamic focus output.
0000: min
1000: center
1111: max
⎯
center
(1000)
Pin 18
H-DF PHASE/4
Adjusts the phase of the horizontal dynamic focus output.
0000: min
1000: center
1111: max
⎯
center
(1000)
Pin 16
12
2005-08-18
TA1317ANG
Register Name/Number of Bits
H-DF AMPLITUDE/4
Function Explanation
Output Change
Picture Change
Preset
Adjusts the amplitude of the horizontal dynamic focus output.
0000: min
1000: center
1111: max
center
⎯
(1000)
Pin 16
H-DF CURVE/4
Adjusts the curve characteristic of the horizontal dynamic
focus output.
0000: max
1111: min
max
⎯
(0000)
Pin 16
V INTEGRAL CORRECTION/4
Adjusts the vertical integral correction.
0000: min
1111: max
Solid line
Dashed line
min
(0000)
Pin 6
V AGC/2
Sets the AGC gain for V-ramp.
V S CORRECTION/6
Adjusts the vertical S correction.
00: LOW
000000: min
⎯
11: HIGH
100000: center
111111: max
LOW
⎯
Solid line
(00)
Dashed line
min
(000000)
Pin 6
EW PARABOLA/6
Adjusts the amplitude of the EW output.
000000: min
111111: max
Solid line
Dashed line
min
(000000)
Pin 11
13
2005-08-18
TA1317ANG
Register Name/Number of Bits
EW TRAPEZIUM/7
Function Explanation
Output Change
Picture Change
Preset
Adjusts the EW trapezium correction.
0000000: min
1000000: center
1111111: max
Solid line
Dashed line
center
Note: When this data is changed, V symmetry characteristic
will be also changed.
V STOP/1
(1000000)
Pin 11
Switches over the V-stop mode.
0: Normal
1: V stop/BLK stop
Normal
⎯
(0)
Pin 6
EW TOP CORNER/5
Adjusts the EW top corner correction.
00000: max
10000: center
11111: min
Solid line
Dashed line
center
(10000)
Pin 11
EW BOTTOM CORNER/5
Adjusts the EW bottom corner correction.
00000: max
10000: center
11111: min
Solid line
Dashed line
center
(10000)
Pin 11
EW S CORRECTION/5
Adjusts the EW S correction.
00000: max
10000: center
11111: min
Solid line
Dashed line
center
(10000)
Pin 11
14
2005-08-18
TA1317ANG
Register Name/Number of Bits
EW CORNER/5
Function Explanation
Output Change
Picture Change
Preset
Adjusts the EW corner correction.
00000: max
10000: center
11111: min
Solid line
Dashed line
center
(10000)
Pin 11
CENTER PARABOLA/4
Adjusts the parabola-component amplitude.
0000: max
1000: center
1111: min
Solid line
Dashed line
center
Pin 19
(1000)
CENTER SAW/4
Adjusts the saw-component amplitude.
0000: min
1000: center
1111: max
Solid line
Dashed line
center
Pin 19
(1000)
V SYMMETRY/8
Corrects the vertical symmetry.
00000000: min
10000000: center
11111111: max
Note: When this data is changed, EW trapezium
characteristic will be also changed.
15
Solid line
Pin 6
Dashed line
center
(10000000)
2005-08-18
TA1317ANG
Read Mode
Register Name/Number of Bits
V DF/1
Function Explanation
Vertical dynamic focus output self-check.
0: NG (no)
H DF/1
Horizontal dynamic focus output self-check.
0: NG (no)
LVP/1
1: OK (yes)
V-DRIVE output self-check.
0: NG (no)
POR/1
1: ON (abnormal)
EW output self-check.
0: NG (no)
V OUT/1
1: OK (yes)
Detects abnormality on V-NF input. If abnormal, Pin 20 goes high.
0: OFF (normal)
EW OUT/1
1: ON (pin 17 is low)
V-NF input self-check.
0: NG (no)
V GUARD/1
1: OK (yes)
LVP (low voltage protection) is detected.
0: OFF (pin 17 is high)
V NF/1
1: OK (yes)
1: OK (yes)
Power-on reset.
Responds with 0 at first reading after power-on, 1 at second reading.
0: Resister preset
1: Normal
16
2005-08-18
TA1317ANG
2
Data Transfer Formats via I C Bus
Slave address
A6
A5
A4
A3
A2
A1
A0
W/R
1
0
0
0
1
1
0
0/1
Start and Stop Condition
SDA
SCL
S
P
Start condition
Stop condition
Bit Transfer
SDA
SCL
Change of SDA allowed
SDA stable
Acknowledge
SDA by transmitter
Bit 9: High impedance
SDA by receiver
Only bit 9: Low impedance
SCL from master
1
8
9
S
Clock pulse for acknowledge
17
2005-08-18
TA1317ANG
Data Transmit Format 1
S
Slave address
7 bit
0 A
MSB
S: Start condition
Sub address
8 bit
A
Transmit data
9 bit
A P
MSB
MSB
A: Acknowledge
P: Stop condition
Data Transmit Format 2
S
Slave address
0 A
Sub address
・・・・・・
A
Transmit data
Sub address
A
A
・・・・・・
Transmit data n
A P
Data Receive Format
S
Slave address
7 bit
1 A
Receive data
8 bit
A P
MSB
MSB
At the moment of the first acknowledge, the master transmitter becomes a receiver and the slave receiver
becomes a transmitter.
The Stop condition is generated by the master.
Optional Data Transmit Format: Automatic Increment Mode
S
Slave address
7 bit
0 A 1
MSB
Sub address
7 bit
A
Transmit data 1
8 bit
MSB
MSB
・・・・
Transmit data 2
8 bit
A P
MSB
In this transmission method, sub-addresses are incremented automatically and data is set from the specified
sub-address.
I2C BUS Conditions
Characteristics
Symbol
Min
Typ.
Max
Unit
Low level input voltage
VIL
0
⎯
1.5
V
High level input voltage
VIH
2.7
⎯
Vcc
V
VOL1
0
⎯
0.4
V
Input current each I/O pin with an input voltage
between 0.1 VDD and 0.9 VDD
Ii
−10
⎯
10
µA
Capacitance for each I/O pin
Ci
⎯
⎯
10
pF
fSCL
0
⎯
100
kHz
Low level output voltage at 3 mA sink current
SCL clock frequency
tHD;STA
4.0
⎯
⎯
µs
Low period of SCL clock
tLOW
4.7
⎯
⎯
µs
High period of SCL clock
tHIGH
4.0
⎯
⎯
µs
Set-up time for a repeated START condition
tSU;STA
4.7
⎯
⎯
µs
Data hold time
tHD;DAT
100
⎯
⎯
ns
Data set-up time
tSU;DAT
250
⎯
⎯
ns
Set-up time for STOP condition
tSU;STO
4.0
⎯
⎯
µs
tBUF
4.7
⎯
⎯
µs
Hold time START condition
Bus free time between a STOP and START condition
18
2005-08-18
TA1317ANG
Maximum Ratings (Ta = 25°C)
Characteristics
Symbol
Rating
Unit
VCCmax
12
V
Input pin voltage
Vin
GND − 0.3 to VCC + 0.3
V
Power dissipation
PD (*)
1250
mW
Power dissipation reduction rate
1/θja
−10
mW/°C
Operating temperature
Topr
−20~65
°C
Storage temperature
Tstg
−55~150
°C
Power supply voltage
*: See the figure below.
PD
(mW)
1250
Power dissipation
850
0
0
25
65
Ambient temperature
150
Ta
(°C)
Figure 1 PD – Ta Curve
Operating Conditions
Characteristics
Description
Min
Typ.
Max
Unit
Supply voltage (VCC)
Pin 7
8.5
9.0
9.5
V
EHT input voltage
Pin 3
0.0
⎯
9.0
V
FBP input amplitude
Pin 12
4.0
⎯
9.0
V
FBP input frequency
Pin 12
28
⎯
45
kHz
FBP input width
Pin 12
2.5
⎯
⎯
µs
SCL/SDA pull-up voltage
Pins 13 & 14
3.0
5.0
9.0
V
LVP input voltage
Pin 17
0.0
⎯
9.0
V
V input amplitude
Pin 21
3.0
⎯
9.0
V
V input frequency
Pin 21
50
⎯
120
Hz
V input width
Pin 21
2.5
⎯
⎯
µs
EW PWM input current
Pin 8
⎯
⎯
5
mA
19
2005-08-18
TA1317ANG
Electrical Characteristics (unless otherwise specified, VCC = 9 V, Ta = 25°C)
Current dissipation
Pin Name
Symbol
Test
Circuit
Min
Typ.
Max
Unit
VCC
ICC
⎯
40
50.8
62
mA
Pin voltages
Pin No.
Pin Name
Symbol
Test
Circuit
Min
Typ.
Max
Unit
1
VREF
V1
⎯
4.60
4.88
5.10
V
5
V -DC REF
V5
⎯
4.60
4.88
5.10
V
Min
Typ.
Max
Unit
1.2
1.5
1.7
V
3.90
4.10
4.30
2.95
3.15
3.35
0.97
1.07
1.17
AC Characteristics
Characteristics
Vertical trigger input shaped voltage
Timing pulse output voltage
Vertical ramp wave amplitude
Vertical drive amplification
Vertical drive output voltage
Vertical NF signal amplitude
Vertical phase adjustment 1 (V shift)
change amount
Vertical phase adjustment 2
(V centering) change amount
Vertical amplitude adjustment
(picture height) change amount
Vertical linearity correction
(V linearity) change amount
Vertical symmetry (V symmetry)
change amount
Symbol
Test
Circuit
VTH
⎯
VTCH
⎯
VTCM
⎯
VTCL
⎯
VRMP
⎯
(Note 3)
1.65
1.75
1.85
Vp-p
GV
⎯
(Note 4)
21
24
27
dB
V4H
⎯
V4L
⎯
VNFM
⎯
VDC (80)
⎯
VDC (83)
⎯
VDC
⎯
Test Condition
(Note 1)
(Note 2)
2.5
3.3
4.1
0.00
0.00
0.30
1.65
1.85
2.05
3.00
3.55
4.10
5.65
6.20
6.75
2.30
2.65
3.00
1.64
1.82
2.00
2.87
3.16
3.45
(Note 5)
(Note 6)
(Note 7)
V
VDD (00)
⎯
VDD (FE)
⎯
VDD
⎯
1.30
1.45
1.60
VNFL
⎯
0.85
1.00
1.15
VNFH
⎯
2.55
2.75
2.95
VNFP
⎯
43
48
53
VNFN
⎯
−53
−48
−43
V1 (00)
⎯
0.90
1.06
1.22
V2 (00)
⎯
0.69
0.81
0.93
V1 (80)
⎯
0.82
0.96
1.10
V2 (80)
⎯
0.77
0.91
1.05
V1 (F8)
⎯
0.73
0.86
0.99
V2 (F8)
⎯
0.85
1.00
1.15
VLIN
⎯
9.5
10.5
12.5
4.60
4.95
5.20
5.40
5.70
6.00
0.67
0.76
0.85
VVT (00)
⎯
VVT (FF)
⎯
VVT
⎯
(Note 8)
V
Vp-p
V
V
Vp-p
(Note 9)
(Note 10)
(Note 11)
20
%
Vp-p
%
V
2005-08-18
TA1317ANG
Characteristics
Vertical S correction (V S correction)
change amount
Vertical integral correction
(V ∫ correction) change amount
Symbol
Test
Circuit
VS (80)
⎯
VS (BF)
⎯
VS
⎯
V ∫ (80)
⎯
V ∫ (8F)
⎯
V∫
Vertical EHT compensation (V EHT
compensation) change amount
EHT input dynamic range
Horizontal amplitude adjustment
(picture width) change amount
Parabola amplitude adjustment
(EW parabola) change amount
EW top corner correction
(EW top corner) change amount
EW bottom corner correction
(EW bottom corner) change amount
EW corner correction change amount
EW S correction change amount
EW trapezium correction change
amount
Horizontal EHT compensation (H-EHT
compensation) DC change amount
Parabola amplitude EHT
compensation
Test Condition
(Note 12)
(Note 13)
⎯
VE (80)
⎯
VE (87)
⎯
VEHT
⎯
VEHL
⎯
VEHH
⎯
VEV (00)
⎯
VEV (FC)
⎯
(Note 14)
Min
Typ.
Max
1.92
2.26
2.60
1.27
1.50
1.73
17
21
25
1.54
1.82
2.10
1.62
1.90
2.18
3.0
4.0
5.2
1.58
1.86
2.14
1.44
1.69
1.94
8.5
10.0
11.5
1.9
2.4
2.9
5.9
6.4
6.9
5.20
6.15
7.10
1.30
1.55
1.80
(Note 15)
(Note 16)
Unit
Vp-p
%
Vp-p
%
Vp-p
%
V
VEV
⎯
4.20
4.60
5.00
VPB (00)
⎯
0.00
0.02
0.06
VPB (20)
⎯
1.6
2.0
2.3
VPB (3F)
⎯
2.8
3.3
3.8
VPB
⎯
2.8
3.3
3.8
VTC (00)
⎯
2.3
2.8
3.2
VTC (F8)
⎯
0.9
1.2
1.4
VTCP
⎯
32
40
46
VTCN
⎯
−46
−40
−32
VBC (00)
⎯
2.4
2.8
3.2
VBC (F8)
⎯
0.9
1.2
1.4
VBCP
⎯
32
45
55
VBCN
⎯
−52
−40
−35
(Note 17)
V
Vp-p
Vp-p
(Note 18)
%
Vp-p
(Note 19)
VM (00)
⎯
2.4
2.8
3.2
VM (F8)
⎯
0.8
1.1
1.4
VMP
⎯
40
47
57
VMN
⎯
−52
−42
−32
VS (00)
⎯
2.2
2.6
3.0
VS (F8)
⎯
1.0
1.4
1.6
VSP
⎯
28
35
40
VSN
⎯
−40
−32
−27
VET (00)
⎯
2.4
2.7
3.0
VET (FE)
⎯
−3.0
−2.7
−2.4
VETP
⎯
11.0
13.5
16.0
VETN
⎯
−16.0
−13.5
−11.0
VHC (80)
⎯
3.0
3.6
4.2
VHC (87)
⎯
4.0
4.7
5.4
%
Vp-p
(Note 20)
%
Vp-p
(Note 21)
(Note 22)
(Note 23)
VHC
⎯
1.0
1.2
1.4
EHT (1)
⎯
1.55
1.90
2.20
EHT (7)
⎯
1.65
2.00
2.30
EHT
⎯
2.7
4.0
5.3
(Note 24)
21
%
ms
%
V
Vp-p
%
2005-08-18
TA1317ANG
Symbol
Test
Circuit
VX (00)
VX (40)
VX (80)
⎯
VX (C0)
Sawtooth correction (cent saw)
maximum amplitude
VN (8F)
VN (80)
⎯
Parabola correction (cent par)
maximum amplitude
VP (F8)
⎯
VP (08)
⎯
VHD (80)
⎯
Characteristics
AGC operating current
Horizontal DF amplitude adjustment
(H DF amp)
Horizontal DF phase adjustment
(H DF phase)
Horizontal DF bathtub (H DF curve)
adjustment
Vertical DF amplitude adjustment
(V DF amp)
Vertical DF phase adjustment
(V DF phase)
LVP detection voltage
Vertical guard detection voltage
Vertical guard detection output current
(BLK-OUT output current)
Vertical centering DAC output voltage
1 (V centering)
Vertical centering DAC output voltage
2 (V shift)
Vertical centering change amount in V
STOP mode
Vertical NF signal amplitude at DC
coupling
Vertical NF center voltage at DC
coupling
Test Condition
Min
Typ.
Max
⎯
20
35
50
⎯
45
65
85
250
340
430
⎯
535
715
895
⎯
4.3
5.0
5.7
4.3
5.0
5.7
(Note 25)
(Note 26)
1.9
2.2
2.5
1.9
2.2
2.5
2.1
2.8
3.3
2.4
3.1
4.0
2.6
3.4
4.3
(Note 27)
VHD (88)
⎯
VHD (8F)
⎯
VHDP
⎯
7
10
13
VHDN
⎯
−15
−12
−7
−2.9
−2.1
−0.9
0.9
2.1
2.9
3.0
4.2
4.8
15
20
25
10
15
20
THD (08)
⎯
THD (F8)
⎯
THD
⎯
(Note 28)
(Note 29)
THB (00)
⎯
THB (F0)
⎯
THB
⎯
1.1
2.1
3.1
VVD (80)
⎯
2.05
2.40
2.75
VVD (88)
⎯
2.30
2.70
3.10
VVD (8F)
⎯
2.55
3.00
3.45
VVDP
⎯
7
10
13
VVDN
⎯
−15
−10
−7
TVD (08)
⎯
−2.5
−2.0
−1.5
TVD (F8)
⎯
1.5
2.0
2.5
3.4
4.0
4.6
4.7
5.0
5.3
7.0
7.3
7.6
2.1
2.4
2.7
450
630
750
0.20
0.50
0.55
4.7
5.0
5.3
0.20
0.60
0.80
4.7
5.0
5.3
1.7
1.9
2.1
2.25
2.50
2.75
2.7
3.0
3.3
(Note 30)
(Note 31)
(Note 32)
Unit
µA
Vp-p
Vp-p
Vp-p
%
µs
µs
Vp-p
%
ms
TVD
⎯
VLVP
⎯
VVGH
⎯
VVGL
⎯
I20
⎯
VCA (00)
⎯
VCA (FE)
⎯
VCD (80)
⎯
VCD (83)
⎯
VY (00)
⎯
VY (80)
⎯
VY (FE)
⎯
VDFB
⎯
(Note 39)
0.85
0.95
1.05
Vp-p
VC
⎯
(Note 40)
2.25
2.50
2.75
V
(Note 33)
(Note 34)
(Note 35)
V
(Note 36)
22
µA
V
(Note 37)
(Note 38)
V
V
V
2005-08-18
TA1317ANG
Characteristics
Vertical ramp cut level
Symbol
Test
Circuit
VCHH
⎯
VCLH
⎯
BLHL
Min
Typ.
Max
20.0
26.0
32.0
26.0
32.1
38.0
⎯
5.05
5.90
6.75
BLHM
⎯
2.30
2.70
3.10
BLHH
⎯
⎯
0.00
0.10
5.10
6.00
6.90
Analog blanking phase
Parabola amplitude adjustment (EW
parabola) change amount at PWM
Test Condition
(Note 41)
(Note 42)
⎯
BLLM
⎯
2.05
2.40
3.00
BLLH
⎯
⎯
0.00
0.10
VPP (00)
⎯
0.00
0.02
0.06
VPP (20)
⎯
⎯
VPP
⎯
1.6
2.00
2.30
2.80
3.30
3.80
2.80
3.30
3.80
(Note 43)
23
%
ms
BLLL
VPP (3F)
Unit
Vp-p
2005-08-18
TA1317ANG
Test Condition
Test Condition
Note
No.
1
Parameter
Vertical trigger input shaped
voltage
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse (figure below) to pin VIN.
(2) Increase vertical trigger pulse level (VT) from 0 VP-P. When timing pulse is output to
pin 22 (TC FILTER), measure vertical trigger pulse level VTH.
Vertical cycle = 20 ms
Vertical trigger pulse
Pulse level (VT)
0V
640 µs
2
Timing pulse output voltage
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Measure pin 22 (TC FILTER) voltages (VTCH, VTCM, VTCL) as shown in the figure
below.
VTCH
Pin 22
(TC FILTER) waveform
VTCM
VTCL
Pin 23
(V-RAMP FILTER) waveform
24
2005-08-18
TA1317ANG
Test Condition
Note
No.
3
Parameter
Vertical ramp wave amplitude
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Measure pin 23 (V-RAMP FILTER) amplitude VRMP as shown in the figure below.
Pin 23
(V-RAMP FILTER) waveform
Vertical drive amplification
OFF
C
ON
OFF
B
ON
A
A
(1) No signal input to pin VIN.
(2) Set VD (V-DRIVE mode switch) (sub-address: 00) to AC-Coupling mode (data: 81).
(3) Connect external power supply (V6) to TP6 (V fb).
(4) Change external power supply (V6) until pin 4 (V DRIVE) voltage is 0.8 V.
The voltage is made V6A.
(5) Measure pin 4 voltage (V4A) when the external power supply voltage is V6A + 0.2 V.
(6) Calculate the drive amplification (GV) using the following formula.
Pin 4 (V DRIVE) voltage
(V4)
4
VRMP
V4H
V4A
0.8 V
V4L
V6A
V6A + 0.2 V
Pin 6 (V NF) external supply voltage (V6)
GV = 20 log
25
V4A − 0.8
0.2
2005-08-18
TA1317ANG
Test Condition
Note
No.
5
Parameter
Vertical drive output voltage
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
C
ON
OFF
B
ON
A
A
(1) Measure V4H using the figure for Note 4.
(2) Measure V4L using the figure for Note 4.
6
Vertical NF signal amplitude
OFF
C
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Set VD (sub-address: 00) to AC-Coupling mode (data: 81).
(3) Set V INTEGRAL CORRECTION (sub-address: 08) to center (data: 88).
(4) Set V S CORRECTION (sub-address: 09) to center (data: A0).
(5) Set V SHIFT (sub-address: 01) data to 82.
(6) Measure Pin 6 (V NF) vertical sawtooth amplitude VNFM.
Pin 6
(V NF) waveform
26
VNFM
2005-08-18
TA1317ANG
Test Condition
Note
No.
7
Parameter
Vertical phase adjustment 1
(V shift) change amount
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Set VD (sub-address: 00) to AC-Coupling mode (data: 81).
(3) Set V INTEGRAL CORRECTION (sub-address: 08) to center (data: 88).
(4) Set V S CORRECTION (sub-address: 09) to center (data: A0).
(5) Set V SHIFT (sub-address: 01) to minimum (data: 80) and measure VDC (80) as
shown in the figure below.
(6) Set V SHIFT (sub-address: 01) to maximum (data: 83) and measure VDC (83) as
shown in the figure below.
(7) Calculate change amount VDC using the following formula.
Pin 6
(V NF) waveform
VDC (83)
VDC (80)
10 ms
10 ms
VDC = VDC (83) − VDC (80)
27
2005-08-18
TA1317ANG
Test Condition
Note
No.
8
Parameter
Vertical phase adjustment 2
(V centering) change amount
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
ON
A
OFF
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Set VD (sub-address: 00) to DC-Coupling mode (data: 80).
(3) Set V INTEGRAL CORRECTION (sub-address: 08) to center (data: 88).
(4) Set V S CORRECTION (sub-address: 09) to center (data: A0).
(5) Set V CENTERING (sub-address: 05) to minimum (data: 00) and measure VDD (00)
as shown in the figure below.
(6) Set V CENTERING (sub-address: 05) to maximum (data: FE) and measure VDD
(FE) as shown in the figure below.
(7) Calculate change amount VDD using the following formula.
Pin 6
(V NF) waveform
VDD (FE)
VDD (00)
10 ms
10 ms
VDD = VDD (FE) − VDD (00)
28
2005-08-18
TA1317ANG
Test Condition
Vertical amplitude adjustment
(picture height) change
amount
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Set VD (sub-address: 00) to AC-Coupling mode (data: 81).
(3) Set V INTEGRAL CORRECTION (sub-address: 08) to center (data: 88).
(4) Set V S CORRECTION (sub-address: 09) to center (data: A0).
(5) Set V SHIFT (sub-address: 01) data to 82.
(6) Set PICTURE HEIGHT (sub-address: 00) to minimum (data: 01) and measure Pin 6
(V NF) amplitude (VNFL).
(7) Set PICTURE HEIGHT (sub-address: 00) to maximum (data: FF) and measure Pin
6 (V NF) amplitude (VNFH).
(8) Determine variable ranges (VNFP, VNFN) using the following formulas.
Pin 6
(V NF) waveform
VNFP =
29
VNFL
9
Parameter
VNFH
Note
No.
VNFH − VNFM
VNFM
× 100,
VNFN =
VNFL − VNFM
× 100
VNFM
2005-08-18
TA1317ANG
Test Condition
10
Parameter
Vertical linearity correction
(V linearity) change amount
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Set VD (sub-address: 00) to AC-Coupling mode (data: 81).
(3) Set V INTEGRAL CORRECTION (sub-address: 08) to center (data: 88).
(4) Set V S CORRECTION (sub-address: 09) to center (data: A0).
(5) Set V SHIFT (sub-address: 01) data to 82.
(6) Set V LINEARITY (sub-address: 02) to minimum (data: 00) and measure V1 (00)
and V2 (00) as shown in the figure below.
(7) Set V LINEARITY (sub-address: 02) to center (data: 80) and measure V1 (80) and
V2 (80) as shown in the figure below.
(8) Set V LINEARITY (sub-address: 02) to maximum (data: F8) and measure V1 (F8)
and V2 (F8) as shown in the figure below.
(9) Calculate maximum correction VLIN from measured result using the following
formula.
Pin 6
(V NF) waveform
V2 (**) V1 (**)
Note
No.
10 ms
VLIN =
30
V1 (00) − V1 (F8) + V2 (F8) − V2 (00)
2 × [V1 (80) + V2 (80)]
10 ms
× 100
2005-08-18
TA1317ANG
Test Condition
Note
No.
11
Parameter
Vertical symmetry
(V symmetry) change amount
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Set VD (sub-address: 00) to AC-Coupling mode (data: 81).
(3) Set V INTEGRAL CORRECTION (sub-address: 08) to center (data: 88).
(4) Set V S CORRECTION (sub-address: 09) to center (data: A0).
(5) Set V SHIFT (sub-address: 01) data to 82.
(6) Set V SYMMETRY (sub-address: 11) to minimum (data: 00) and measure Pin 6 (V
NF) voltage VVT (00).
(7) Set V SYMMETRY (sub-address: 11) to maximum (data: FF) and measure Pin 6 (V
NF) voltage VVT (FF).
(8)
Calculate change amount VVT using the following formula.
Pin 6
(V NF) waveform
VVT (FF)
VVT (00)
10 ms
10 ms
VVT = VVT (FF) − VVT (00)
31
2005-08-18
TA1317ANG
Test Condition
Vertical S correction (V S
correction) change amount
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Set VD (sub-address: 00) to AC-Coupling mode (data: 81).
(3) Set V INTEGRAL CORRECTION (sub-address: 08) to center (data: 88).
(4) Set V SHIFT (sub-address: 01) to 82.
(5) Set V S CORRECTION (sub-address: 09) to minimum (data: 80) and measure VS
(80) as shown in the figure below.
(6) Set V S CORRECTION (sub-address: 09) to maximum (data: BF) and measure VS
(BF) as shown in the figure below.
(7) Calculate maximum correction VS using measured result and the following formula.
Pin 6
(V NF) waveform
VS =
32
VS (BF)
12
Parameter
VS (80)
Note
No.
VS (80) − VS (8F)
VS (80) + VS (8F)
× 100
2005-08-18
TA1317ANG
Test Condition
Note
No.
13
Parameter
Vertical integral correction
(V ∫ correction) change
amount
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Set VD (sub-address: 00) to AC-Coupling mode (data: 81).
(3) Set V S CORRECTION (sub-address: 09) to center (data: A0).
(4) Set V SHIFT (sub-address: 01) to 82.
(5) Set V INTEGRAL CORRECTION (sub-address: 08) to minimum (data: 80) and
measure V ∫ (80) as shown in the figure below.
(6) Set V INTEGRAL CORRECTION (sub-address: 08) to maximum (data: 8F) and
measure V ∫ (8F) as shown in the figure below.
(7) Calculate maximum correction V ∫ from measured result using the following
formula.
Pin 6
(V NF) waveform
V∫
(8F)
V∫ =
33
V∫
(80)
V ∫ (8F) − V ∫ (80)
× 100
V ∫ (80)
2005-08-18
TA1317ANG
Test Condition
Note
No.
14
Parameter
Vertical EHT compensation
(V EHT compensation)
change amount
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Set VD (sub-address: 00) to AC-Coupling mode (data: 81).
(3) Set V SHIFT (sub-address: 01) data to 82.
(4) Connect external power supply (DC voltage = 0 V) to pin 3 (EHT IN).
(5) Set V-EHT COMPENSATION (sub-address: 02) to minimum (data: 80) and
measure Pin 6 (V NF) amplitude VE (80).
(6) Set V-EHT COMPENSATION (sub-address: 02) to maximum (data: 87) and
measure Pin 6 (V NF) amplitude VE (87).
(7) Calculate change amount VEHT using the following formula.
VEHT =
34
VE (80) − VE (87)
× 100
VE (87)
2005-08-18
TA1317ANG
Test Condition
Note
No.
15
Parameter
EHT input dynamic range
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Set VD (sub-address: 00) to AC-Coupling mode (data: 81).
(3) Set V SHIFT (sub-address: 01) data to 82.
(4) Connect external power supply V3 to pin 3 (EHT IN).
(5) Set V-EHT COMPENSATION (sub-address: 02) to maximum (data: 87).
(6) Change external power supply V3 from 1 to 7 V and monitor Pin 6 (V NF)
amplitude.
Pin 6 (V NF) amplitude
(7) When Pin 6 (V NF) amplitude changes, measure V3 voltages VEHL and VEHH.
VEHL
16
Horizontal amplitude
adjustment (picture width)
change amount
OFF
B
ON
OFF
B
ON
A
A
VEHH
Voltage applied to pin 3 (EHT IN) (V3)
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Set EW PARABOLA (sub-address: 0A) to minimum (data: 00).
(3) Set PICTURE WIDTH to maximum ( (sub-address: 01, data: FC) and (sub-address:
0C, data: 81) ) and measure Pin 10 (EW FD) voltage VEV (FC).
(4) Set PICTURE WIDTH to minimum ( (sub-address: 01, data: 00) and (sub-address:
0C, data: 80) ) and measure Pin 10 (EW FD) voltage VEV (00).
(5) Calculate change amount VEV using the following formula.
VEV = VEV (FC) − VEV (00)
35
2005-08-18
TA1317ANG
Test Condition
Parabola amplitude
adjustment (EW parabola)
change amount
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Set PICTURE WIDTH (sub-address: 01) to maximum (data: FC).
(3) Apply external power supply (DC voltage = 7 V) to pin 3 (EHT IN).
(4) Set EW PARABOLA (sub-address: 0A) to minimum (data: 00) and measure Pin 10
(EW FD) amplitude VPB (00).
(5) Set EW PARABOLA (sub-address: 0A) to center (data: 20) and measure Pin 10
(EW FD) amplitude VPB (20).
(6) Set EW PARABOLA (sub-address: 0A) to maximum (data: 3F) and measure Pin 10
(EW FD) amplitude VPB (3F).
(7) Calculate change amount VPB using the following formula.
VPB (3F)
17
Parameter
VPB (00)
Note
No.
Pin 10 (EW FD) waveform
VPB = VPB (3F) − VPB (00)
36
2005-08-18
TA1317ANG
Test Condition
EW top corner correction (EW
top corner) change amount
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Apply external power supply (DC voltage = 7 V) to pin 3 (EHT IN).
(3) Set EW PARABOLA (sub-address: 0A) to center (data: 20).
(4) Set EW TOP CORNER (sub-address: 0C) to minimum (data: 00) and measure Pin
10 (EW FD) amplitude VTC (00).
(5) Set EW TOP CORNER (sub-address: 0C) to maximum (data: F8) and measure Pin
10 (EW FD) amplitude VTC (F8).
(6) Calculate change amounts VTCP and VTCN using the following formulas.
VTC (00)
18
Parameter
VTC(00)
VTC (F8)
Note
No.
VTC(F8)
Pin 10 (EW FD) waveform
VTCP =
VTCN =
37
VTC (00) − VPB (20)
× 100
VPB (20)
VTC (F8) − VPB (20)
× 100
VPB (20)
2005-08-18
TA1317ANG
Test Condition
EW bottom corner correction
(EW bottom corner) change
amount
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Apply external power supply (DC voltage = 7 V) to pin 3 (EHT IN).
(3) Set EW PARABOLA (sub-address: 0A) to center (data: 20).
(4) Set EW BTM CORNER (sub-address: 0D) to minimum (data: 00) and measure Pin
10 (EW FD) amplitude VBC (00).
(5) Set EW BTM CORNER (sub-address: 0D) to maximum (data: F8) and measure Pin
10 (EW FD) amplitude VBC (F8).
(6) Calculate change amounts VBCP and VBCN using the following formulas.
VBC (00)
19
Parameter
VTC(00)
VBC (F8)
Note
No.
VTC(F8)
Pin 10 (EW FD) waveform
VBCP =
VBCN =
38
VBC (00) − VPB (20)
× 100
VPB (20)
VBC (F8) − VPB (20)
× 100
VPB (20)
2005-08-18
TA1317ANG
Test Condition
EW corner correction change
amount
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Apply external power supply (DC voltage = 7 V) to pin 3 (EHT IN).
(3) Set EW PARABOLA (sub-address: 0A) to center (data: 20).
(4) Set EW CORNER (sub-address: 0F) to minimum (data: 00) and measure Pin 10
(EW FD) amplitude VM (00).
(5) Set EW CORNER (sub-address: 0F) to maximum (data: F8) and measure Pin 10
(EW FD) amplitude VM (F8).
(6) Calculate change amounts VMP and VMN using the following formulas.
VM (00)
20
Parameter
VM (F8)
Note
No.
Pin 10 (EW FD) waveform
VMP =
VMN =
39
VM (00) − VPB (20)
× 100
VPB (20)
VM (F8) − VPB (20)
× 100
VPB (20)
2005-08-18
TA1317ANG
Test Condition
EW S correction change
amount
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Apply external power supply (DC voltage = 7 V) to pin 3 (EHT IN).
(3) Set EW PARABOLA (sub-address: 0A) to center (data: 20).
(4) Set S CORRECTION (sub-address: 0E) to minimum (data: 00) and measure Pin 10
(EW FD) amplitude VS (00).
(5) Set S CORRECTION (sub-address: 0E) to maximum (data: F8) and measure Pin
10 (EW FD) amplitude VS (F8).
(6) Calculate change amounts VSP and VSN using the following formulas.
VS (00)
21
Parameter
VS (F8)
Note
No.
Pin 10 (EW FD) waveform
VSP =
VSN =
40
VS (00) − VPB (20)
× 100
VPB (20)
VS (F8) − VPB (20)
× 100
VPB (20)
2005-08-18
TA1317ANG
Test Condition
Note
No.
22
Parameter
EW trapezium correction
change amount
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Apply external power supply (DC voltage = 7 V) to pin 3 (EHT IN).
(3) Set EW PARABOLA (sub-address: 0A) to maximum (data: 3F).
(4) Set EW TRAPEZIUM (sub-address: 0B) to minimum (data: 00) and measure Pin 10
(EW FD) phase VET (00).
(5) Set EW TRAPEZIUM (sub-address: 0B) to maximum (data: FE) and measure Pin
10 (EW FD) phase VET (FE).
(6) Calculate change amounts VETP and VETN using the following formulas.
VET (FE)
VET (00)
Pin 10 (EW FD) waveform
VETP =
VETN =
41
VET (FE)
× 100
20
VET (00)
× 100
20
2005-08-18
TA1317ANG
Test Condition
Note
No.
23
Parameter
Horizontal EHT compensation
(H-EHT compensation) DC
change amount
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Apply external power supply (DC voltage = 1 V) to pin 3 (EHT IN).
(3) Set H-EHT COMPENSATION (sub-address: 03) to minimum (data: 80) and
measure Pin 10 (EW FD) amplitude VHC (80).
(4) Set H-EHT COMPENSATION (sub-address: 03) to maximum (data: 87) and
measure Pin 10 (EW FD) amplitude VHC (87).
(5) Calculate change amount VHC using the following formula.
VHC (87)
VHC (80)
Pin 10 (EW FD) waveform
VHC = VHC (87) − VHC (80)
42
2005-08-18
TA1317ANG
Test Condition
Note
No.
24
Parameter
Parabola amplitude EHT
compensation
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Apply external power supply V3 to pin 3 (EHT IN).
(3) Set EW PARABOLA (sub-address: 0A) to center (data: 20).
(4) Set external power supply V3 to 7 V and measure Pin 10 (EW FD) amplitude EHT
(7).
(5) Set external power supply V3 to 1 V and measure Pin 10 (EW FD) amplitude EHT
(1).
(6) Calculate change amount EHT using the following formula.
EHT =
EHT (7) − EHT (1)
× 100
EHT (7)
25
AGC operating current
OFF
B
ON
OFF
B
ON
A
B
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) When V AGC (sub-address: 09) is switched, set data to 00, 40, 80, and C0 and
measure the following.
(3) Connect GND through 200 Ω to pin 24 (AGC FILTER).
(4) Monitor pin 24 (AGC FILTER) and measure pulse levels VX (00), VX (40), VX (80),
and VX (C0) as shown in the figure below.
(5) Calculate output currents (IX (00), IX (40), IX (80), IX (C0) using the following
formula.
VX
Pin 24 (AGC FILTER) waveform
IX (**) =
43
VX (**)
200 Ω
2005-08-18
TA1317ANG
Test Condition
Note
No.
26
Parameter
Sawtooth correction
(cent saw) maximum
amplitude
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Set CENTER SAW (sub-address: 10) to maximum (data: 8F) and measure pin 19
(CENT OUT) amplitude VN (8F).
(3) Set CENTER SAW (sub-address: 10) to minimum (data: 80) and measure pin 19
(CENT OUT) amplitude VN (80).
VN (8F)
VN (80)
Pin 19 (CENT OUT) waveform
Pin 19 (CENT OUT) waveform
27
Parabola correction (cent par)
maximum amplitude
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Set CENTER PARABOLA (sub-address: 10) to maximum (data: F8) and measure
pin 19 (CENT OUT) amplitude VP (F8).
(3) Set CENTER PARABOLA (sub-address: 10) to minimum (data: 08) and measure
pin 19 (CENT OUT) amplitude VP (08).
VP (08)
Pin 19 (CENT OUT) waveform
44
VP (F8)
Pin 19 (CENT OUT) waveform
2005-08-18
TA1317ANG
Test Condition
Horizontal DF amplitude
adjustment (H DF amp)
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input horizontal trigger pulse (figure below) to pin 12 (FBP IN).
Pulse level (HT) = 4.0 V
3 µs
Pulse level (HT)
H cycle = 30 µs
(2) Set H-DF CURVE (sub-address: 08) to maximum (data: F0).
(3) Set H-DF AMPLITUDE (sub-address: 07) to minimum (data: 80) and measure pin
16 (H-DF OUT) amplitude VHD (80).
(4) Set H-DF AMPLITUDE (sub-address: 07) to center (data: 88) and measure pin 16
(H-DF OUT) amplitude VHD (88).
(5) Set H-DF AMPLITUDE (sub-address: 07) to maximum (data: 8F) and measure pin
16 (H-DF OUT) amplitude VHD (8F).
(6) Calculate change amounts VHDP and VHDN using the following formulas.
VHD (8F)
28
Parameter
VHD (80)
Note
No.
Pin 16 (H-DF OUT) waveform
VHDP =
VHDN =
45
VHD (8F) − VHD (88)
× 100
VHD (88)
VHD (80) − VHD (88)
× 100
VHD (88)
2005-08-18
TA1317ANG
Test Condition
Note
No.
29
Parameter
Horizontal DF phase
adjustment (H DF phase)
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input horizontal trigger pulse (figure below) to pin 12 (FBP IN).
Pulse level (HT) = 4.0 V
(2) Set H-DF CURVE (sub-address: 08) to maximum (data: F0).
(3) Set H-DF PHASE (sub-address: 07) to minimum (data: 08) and measure pin 16
(H-DF OUT) phase THD (08).
(4) Set H-DF PHASE (sub-address: 07) to maximum (data: F8) and measure pin 16
(H-DF OUT) phase THD (F8).
(5) Calculate change amount THD using the following formula.
THD (08) THD (F8)
Pin 16 (H-DF OUT)waveform
THD = THD (08) + THD (F8)
46
2005-08-18
TA1317ANG
Test Condition
Note
No.
30
Parameter
Horizontal DF bathtub
(H DF curve) adjustment
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input horizontal trigger pulse (figure below) to pin 12 (FBP IN).
Pulse level (HT) = 4.0 V
(2) Set H-DF AMPLITUDE (sub-address: 07) to maximum (data: 8F).
(3) Set H-DF CURVE (sub-address: 08) to minimum (data: 00) and measure pin 16
(H-DF OUT) phase THB (00).
(4) Set H-DF CURVE (sub-address: 08) to maximum (data: F0) and measure pin 16
(H-DF OUT) phase THB (F0).
(5) Calculate change amount THB using the following formula.
1V
THB (F0)
THB (00)
Pin 16 (H-DF OUT) waveform
THB =
47
THB (00) − THB (F0)
2
2005-08-18
TA1317ANG
Test Condition
Vertical DF amplitude
adjustment (V DF amp)
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Set V-DF AMPLITUDE (sub-address: 06) to minimum (data: 80) and measure pin
18 (V-DF OUT) amplitude VVD (80).
(3) Set V-DF AMPLITUDE (sub-address: 06) to center (data: 88) and measure pin 18
(V-DF OUT) amplitude VVD (88).
(4) Set V-DF AMPLITUDE (sub-address: 06) to maximum (data: 8F) and measure pin
18 (V-DF OUT) amplitude VVD (8F).
(5) Calculate change amounts VVDP and VVDN using the following formulas.
VVD (80)
31
Parameter
VVD (8F)
Note
No.
Pin 18 (V-DF OUT) waveform
VVDP =
VVDN =
48
VVD (80) − VVD (88)
× 100
VVD (88)
VVD (8F) − VVD (88)
× 100
VVD (88)
2005-08-18
TA1317ANG
Test Condition
Note
No.
32
Parameter
Vertical DF phase adjustment
(V DF phase)
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Set V-DF PHASE (sub-address: 06) to minimum (data: 08) and measure pin 18
(V-DF OUT) phase TVD (08).
(3) Set V-DF PHASE (sub-address: 06) to maximum (data: F8) and measure pin 18
(V-DF OUT) phase TVD (F8).
(4) Calculate change amount TVD using the following formula.
TVD (08)
TVD (F8)
Pin 18 (V-DF OUT) waveform
TVD = TVD (08) + TVD (F8)
33
LVP detection voltage
OFF
B
ON
OFF
B
ON
B
A
(1) Connect external supply voltage V7 to TP17 (LVP).
(2) Decrease external supply voltage V7 from 9 V. When D5 data in Read mode
changes from 0 to 1, measure TP17 voltage VLVP.
34
Vertical guard detection
voltage
OFF
C
ON
OFF
B
ON
A
A
(1) Connect external supply voltage V6 to TP6 (V NF).
(2) Switch to VD (sub-address: 00) to AC-Coupling mode (data: 81).
(3) Increase external supply voltage V6 from 5.5 V. When D3 data in Read mode
changes from 0 to 1, measure TP6 voltage VVGH.
(4) Decrease external supply voltage V6 from 5.5 V. When D3 data in Read mode
changes from 0 to 1, measure TP6 voltage VVGL.
49
2005-08-18
TA1317ANG
Test Condition
Note
No.
35
Parameter
Vertical guard detection
output current
(BLK-OUT output current)
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
C
ON
OFF
B
ON
A
A
(1) Connect external supply voltage V6 = 8 V to TP6 (V NF).
(2) Measure pin 20 (BLK OUT) voltage V20 and calculate output current (I20) using the
following formula.
I20 =
36
Vertical centering DAC output
voltage 1 (V centering)
OFF
B
ON
OFF
B
ON
A
A
V20
10 kΩ
(1) Set VD (sub-address: 00) to AC-Coupling mode (data: 81).
(2) Set V CENTERING (sub-address: 05) to minimum (data: 00) and measure pin 2
(CENTER DAC) voltage VCA (00).
(3) Set V CENTERING (sub-address: 05) to maximum (data: FE) and measure pin 2
(CENTER DAC) voltage VCA (FE).
37
Vertical centering DAC output
voltage 2 (V shift)
OFF
A
OFF
OFF
B
ON
A
A
(1) Set VD (sub-address: 00) to DC-Coupling mode (data: 80).
(2) Set V SHIFT (sub-address: 01) to minimum (data: 80) and measure pin 2 (CENTER
DAC) voltage VCD (80).
(3) Set V SHIFT (sub-address: 01) to maximum (data: 83) and measure pin 2
(CENTER DAC) voltage VCD (83).
38
Vertical centering change
amount in V STOP mode
ON
A
OFF
OFF
B
ON
A
A
(1) Set VD (sub-address: 00) to DC-Coupling mode (data: 80).
(2) Set to V STOP (sub-address: 0B, data: 81).
(3) Set V CENTERING (sub-address: 05) to minimum (data: 00) and measure Pin 6 (V
NF) voltage VY (00).
(4) Set V CENTERING (sub-address: 05) to center (data: 80) and measure Pin 6 (V
NF) voltage VY (80).
(5) Set V CENTERING (sub-address: 05) to minimum (data: FE) and measure Pin 6 (V
NF) voltage VY (FE).
50
2005-08-18
TA1317ANG
Test Condition
Note
No.
39
Parameter
Vertical NF signal amplitude
at DC coupling
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
ON
A
OFF
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Set VD (sub-address: 00) to DC-Coupling mode (data: 80).
(3) Measure vertical Pin 6 (V NF) sawtooth width VDFB.
Pin 6
(V NF) waveform
40
Vertical NF center voltage at
DC coupling
ON
A
OFF
OFF
B
ON
A
A
VDFB
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Set VD (sub-address: 00) to DC-Coupling mode (data: 80).
(3) Measure center voltage VC as shown in the figure below.
Pin 6
V
(V NF) waveform C
10 ms
51
10 ms
2005-08-18
TA1317ANG
Test Condition
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
ON
A
OFF
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Set VD (sub-address: 00) to DC-Coupling mode (data: 80).
(3) Set V INTEGRAL CORRECTION (sub-address: 08) to center (data: 8F).
(4) Set V S CORRECTION (sub-address: 09) to center (data: A0).
VT
(5) Measure amplitudes VT and VB as shown in the figure below.
Pin 6
(V NF) waveform
VB
Vertical ramp cut level
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
10 ms
10 ms
(6) Set V-RAMP to maximum and measure amplitudes VTH and VBH.
Sub-address 04 data: 87
VTH
41
Parameter
Pin 6
(V NF) waveform
VBL
VBH
Note
No.
10 ms
10 ms
Sub-address 05 data: 81
(7) Calculate cut levels using the following formulas.
VCHH =
VCLH =
52
VT − VTH
× 100,
VT
VB − VBH
× 100,
VB
2005-08-18
TA1317ANG
Test Condition
Note
No.
42
Parameter
Analog blanking phase
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
ON
A
OFF
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V, 60Hz
(2) Set VD (sub-address: 00) to DC-Coupling mode (data: 80).
(3) Set V INTEGRAL CORRECTION (sub-address: 08) to center (data: 8F).
(4) Set V S CORRECTION (sub-address: 09) to center (data: A0).
(5) AS shown in the figure below, measure analog blanking phase in relation to pin 21
(VIN) under the following conditions.
(6) Set ANALOG V-BLK STOP PHASE (sub-address: 03) to minimum (data: 00) and
measure blanking phase BLHL.
(7) Set ANALOG V-BLK STOP PHASE (sub-address: 03) to center (data: 80) and
measure blanking phase BLHM.
(8) Set ANALOG V-BLK STOP PHASE (sub-address: 03) to maximum (data: F8) and
measure blanking phase BLHH.
(9) Set ANALOG V-BLK START PHASE (sub-address: 04) to minimum (data: 00) and
measure blanking phase BLLL.
(10) Set ANALOG V-BLK START PHASE (sub-address: 04) to center (data: 80) and
measure blanking phase BLLM.
(11) Set ANALOG V-BLK START PHASE (sub-address: 04) to maximum (data: F8) and
measure blanking phase BLLH.
Vertical trigger pulse
Pin 20 (BLK OUT)
BLLL BLHL
BLLM BLHM
BLLH BLHH
53
2005-08-18
TA1317ANG
Test Condition
Parabola amplitude
adjustment (EW parabola)
change amount at PWM
Test Method
(unless otherwise specified, VCC = 9 V, Ta = 25 ± 3°C, data = preset values)
SW Mode
SW5
SW6
SW7
SW8
SW10
SW11
SW17
SW24
OFF
B
ON
ON
A
OFF
A
A
(1) Input vertical trigger pulse to pin VIN.
Pulse level (VT) = 3.0 V
(2) Set PICTURE WIDTH (sub-address: 01) to maximum (data: 8C).
(3) Apply external power supply (DC voltage = 7 V) to pin 3 (EHT IN).
(4) Set EW PARABOLA (sub-address: 0A) to minimum (data: 00) and measure Pin 10
(EW FD) amplitude VPP (00).
(5) Set EW PARABOLA (sub-address: 0A) to center (data: 20) and measure Pin 10
(EW FD) amplitude VPP (20).
(6) Set EW PARABOLA (sub-address: 0A) to maximum (data: 3F) and measure Pin 10
(EW FD) amplitude VPP (3F).
(7) Calculate change amount VPP using the following formula.
VPP (3F)
43
Parameter
VPP (00)
Note
No.
Pin 10 (EW FD) waveform
VPP = VPP (3F) − VPP (00)
54
2005-08-18
SW7
TP6
SW11
1200 pF
55
16
15
1
2
1000 pF
14
3
13
12
4
5
51 kΩ
A
10 µF
RTC18
SW6
51 kΩ
CTC9
12
#12
RTC17
11
#11
50 kΩ 7.5 kΩ
SDA
FBP IN
DIGITAL GND
H-DF OUT
10
#10
RTC16
RTC15
SW8
SCL
9
EW FILTER
TA1317ANG
EW FD
#9
RTC13
8
14
RTC14
5.1 kΩ 50 kΩ
#8
15
C11
7
16
#14
0.1 µF
#7
ANALOG GND
17
#15
M
○
C
LVP IN
18
SW17
B
#16
Q10
6
A
#17
470 Ω
R13a
R14a
470 Ω
R17
47 kΩ
SCL
1 kΩ
R10
#6
EW PWM
19
C7A
V-DF OUT
TP17
C8
AB
VCC
R20
10 kΩ
C22
20 kΩ
R22
Vin
1 µF
SW5
#18
C7B
5
#5
220 µF
CENTER OUT
20
0.01 µF
V NF
#19
R6a
4
BLK OUT
#20
1 kΩ
#4
V-DC REF
M
○
C24
200 Ω
R24
1 µF
C23
0.02 µF ○
M
M
○
1 µF
VCC
2.4 kΩ
R8f
Q6
3
R5a
21
10 kΩ
VIN
22
R5b
#3
#21
3.6 kΩ
2
V DRIVE
23
1 kΩ
R4
#2
#22
C4
1
TC FILTER
24
EHT IN
SW24
B
#23
0. 1 µF
M
○
#1
V-RAMP FILTER
AGC FILTER
A
#24
CENTER DAC
VREF
470 Ω
TA1317ANG
Test Circuit
VCC
LED
SDA
#13
13
M Mylar capacitor
○
Hin
SW12
SW10
B
CTC8
TC4538BP
11
10
9
CTC7
6
7
8
Pin
2005-08-18
390 kΩ
F.B.T.
2.2 MΩ 330 kΩ
7.5 kΩ
M 0.047 µF
○
+B
TA8427K
EW PWM
ANALOG GND
EW FD
CENTER OUT
13
DIGITAL GND
BLK OUT
14
H-DF OUT
VIN
15
LVP IN
TC FILTER
16
V-DF OUT
V-RAMP FILTER
17
TA1317ANG
1
2
3
4
5
6
7
8
9
10
33 kΩ
+9 V
56
SDA
VCC
AGC FILTER
18
FBP IN
V NF
19
SCL
V-DC REF
20
EW FILTER
V DRIVE
21
1.2 kΩ
EHT IN
22
M 0.01 µF
○
CENTER DAC
23
220 µF
VREF
24
0.1 µF
M
○
270 kΩ
130 kΩ
0.01 µF
M
○
1 µF
10 kΩ
20 kΩ
0.02 µF ○
M
M
○
1 µF
TA1317ANG
Application Circuit 1 (V-AC coupling/EW parabola output)
+200 V
400 kΩ 18 kΩ
11
12
M Mylar capacitor
○
+27 V
27 kΩ
−27 V
H-OUT
+21 V
2005-08-18
DY
390 kΩ
F.B.T.
2.2 MΩ 330 kΩ
270 kΩ
1 kΩ
+B
H ramp (Internal signal)
10 kΩ
0.056 µF
1200 pF
SCL
SDA
FBP IN
1
2
3
4
5
6
7
8
9
10
11
12
16
DIGITAL GND
H-DF OUT
LVP IN
V-DF OUT
EW FILTER
CENTER OUT
17
15
+9 V
57
10 kΩ
BLK OUT
18
3900 pF
VIN
EW FD
TC FILTER
ANALOG GND
V-RAMP FILTER
EW PWM
AGC FILTER
VCC
TA1317ANG
V NF
19
V-DC REF
20
V DRIVE
21
EHT IN
22
CENTER DAC
23
VREF
24
0.01 µF
220 µF
10 kΩ
M 0.047 µF
○
130 kΩ
0.01 µF
M
○
1 µF
10 kΩ
20 kΩ
0.02 µF ○
M
M
○
1 µF
TA1317ANG
Application Circuit 2 (V-DC coupling/EW PWM output)
+200 V
400 kΩ 18 kΩ
14
13
M Mylar capacitor
○
+25 V
G
D
TA8427K
S
+21 V
H-OUT
−B
FBP (Pin 12)
EW parabola (Pin 11)
EW PWM (Pin 8)
H ramp
2005-08-18
TA1317ANG
Package Dimensions
Weight: 1.22 g (typ.)
58
2005-08-18
TA1317ANG
59
2005-08-18