MCTV35P60F1D Semiconductor April 1999 AWN NS 35A, 600V ITHDR DESIG PART W E - NO NEW Thyristor (MCT) OLET S OBS S PROCE Features P-Type MOS Controlled with Anti-Parallel Diode Package • 35A, -600V JEDEC STYLE TO-247 • VTM = -1.35V (Max) at I = 35A and +150oC • 800A Surge Current Capability A • 800A/µs di/dt Capability A K • MOS Insulated Gate Control GR G • 50A Gate Turn-Off Capability at +150oC • Anti-Parallel Diode Description The MCT is an MOS Controlled Thyristor designed for switching currents on and off by negative and positive pulsed control of an insulated MOS gate. It is designed for use in motor controls, inverters, line switches and other power switching applications. The MCT is especially suited for resonant (zero voltage or zero current switching) applications. The SCR like forward drop greatly reduces conduction power loss. Symbol MCTs allow the control of high power circuits with very small amounts of input energy. They feature the high peak current capability common to SCR type thyristors, and operate at junction temperatures up to +150oC with active switching. This device features a discrete anti-parallel diode that shunts current around the MCT in the reverse direction without introducing carriers into the depletion region. G K PART NUMBER INFORMATION PART NUMBER MCTV35P60F1D PACKAGE TO-247 A BRAND M35P60F1D NOTE: When ordering, use the entire part number. Formerly developmental type TA9789 (MCT) and TA49054 (diode). Absolute Maximum Ratings TC = +25oC, Unless Otherwise Specified MCTV35P60F1D Peak Off-State Voltage (See Figure 11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDRM -600 Continuous Cathode Current (See Figure 2) TC = +25oC (Package Limited) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IK25 60 TC = +90oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IK115 35 Non-repetitive Peak Cathode Current (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IKSM 800 Peak Controllable Current (See Figure 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IKC 50 Gate-Anode Voltage (Continuous) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGA1 ±20 Gate-Anode Voltage (Peak) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGAM ±25 Rate of Change of Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dv/dt See Figure 11 Rate of Change of Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .di/dt 800 Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PT 178 Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.43 Operating and Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -55 to +150 Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL 260 (0.063" (1.6mm) from case for 10s) NOTE: 1. Maximum Pulse Width of 250µs (Half Sine) Assume TJ (Initial) = +90oC and TJ (Final) = TJ (Max) = +150oC CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures. Copyright © Harris Corporation 1999 2-8 UNITS V A A A A V V A/µs W W/oC oC oC File Number 3694.4 Specifications MCTV35P60F1D Electrical Specifications PARAMETER Peak Off-State Blocking Current TC = +25oC, Unless Otherwise Specified SYMBOL IDRM On-State Voltage VTM TEST CONDITIONS MIN TYP MAX UNITS VKA = -600V TC = +150oC - - 5 mA VGA = +18V TC = +25oC - - 200 µA IK = IK115 TC = +150oC - - 1.35 V VGA = -7V TC = +25oC - - 1.4 V Gate-Anode Leakage Current IGAS VGA = ±20V - - 100 nA Input Capacitance CISS VKA = -20V, TJ = +25oC VGA = +18V - 5 - nF L = 200µH, IK = IK115 RG = 1Ω, VGA = +18V, -7V TJ = +125oC VKA = -300V - 140 - ns - 180 - ns tD(OFF)I - 640 - ns Current Fall Time tFI - 1.1 1.4 µs Turn-Off Energy EOFF - 5.6 - mJ Thermal Resistance (MCT) RθJC - .6 .7 oC/W Thermal Resistance (Diode) RθJC - 1.1 1.2 oC/W Diode Forward Voltage VKA IKA = 35A - - 1.4 V Diode Reverse Recovery Time tRR IKA = 35A, di/dt = 100A/µs - - 600 ns Current Turn-On Delay Time tD(ON)I Current Rise Time tRI Current Turn-Off Delay Time Typical Performance Curves 100 TJ = +150oC PULSE TEST PULSE DURATION = 250µs DUTY CYCLE < 2% IK, DC CATHODE CURRENT (A) IK, CATHODE CURRENT (A) 50 100 30 20 TJ = -40oC 10 TJ = +150oC TJ = +25oC 5 3 2 0 0.5 1.0 1.5 VTM, CATHODE VOLTAGE (V) PACKAGE LIMIT 60 2.0 MCT 40 DIODE 20 0 20 1 MCT SWITCHING LIMIT 80 40 60 80 100 120 140 160 TC , CASE TEMPERATURE (oC) FIGURE 1. CATHODE CURRENT vs SATURATION VOLTAGE (TYPICAL) FIGURE 2. MAXIMUM CONTINUOUS CATHODE CURRENT 2-9 MCTV35P60F1D Typical Performance Curves (Continued) TJ = +150oC, RG = 1Ω, L = 200µH tD(OFF)I, TURN-OFF DELAY (ns) tD(ON)I, TURN-ON DELAY (ns) TJ = +150oC, RG = 1Ω, L = 200µH 1100 200 175 VKA = -200V 150 125 VKA = -300V 100 75 50 1000 900 700 600 10 20 30 40 IK, CATHODE CURRENT (A) 50 VKA = -200V 500 400 0 VKA = -300V 800 60 0 10 20 TJ = +150oC, RG = 1Ω, L = 200mH tFI, FALL TIME (µs) tRI,RISE TIME (ns) VKA = -200V VKA = -300V 10 20 30 40 50 VKA = -200V 1.25 1 VKA = -300V 0.75 0.5 0 60 0 10 FIGURE 5. TURN-ON RISE TIME vs CATHODE CURRENT (TYPICAL) EOFF, TURN-OFF SWITCHING LOSS (mJ) EON,TURN-ON SWITCHING LOSS (mJ) VKA= -200V 1 0 10 20 30 40 IK, CATHODE CURRENT (A) 40 50 60 TJ = +150oC, RG = 1Ω, L = 200µH VKA = -300V 2 30 FIGURE 6. TURN-OFF FALL TIME vs CATHODE CURRENT (TYPICAL) TJ = +150oC, RG = 1Ω, L = 200µH 3 0.5 20 IK, CATHODE CURRENT (A) IK, CATHODE CURRENT (A) 5 60 TJ = +150oC, RG = 1Ω, L = 200µH 1.5 50 0 50 FIGURE 4. TURN-OFF DELAY vs CATHODE CURRENT (TYPICAL) 200 100 40 IK, CATHODE CURRENT (A) FIGURE 3. TURN-ON DELAY vs CATHODE CURRENT (TYPICAL) 150 30 50 60 FIGURE 7. TURN-ON ENERGY LOSS vs CATHODE CURRENT (TYPICAL) 2-10 10 5 VKA = -300V VKA = -200V 1 0.5 0.1 0 10 30 40 20 IK, CATHODE CURRENT (A) 50 60 FIGURE 8. TURN-OFF ENERGY LOSS vs CATHODE CURRENT (TYPICAL) MCTV35P60F1D TC = +90oC, L = 200µH 100 50 VKA = -200V 30 20 VKA = -300V 10 fMAX1 = 0.05/ tD(ON)I + tD(OFF)I) fMAX2 = (PD - PC) / ESWITCH PD: ALLOWABLE DISSIPATION PC: CONDUCTION DISSIPATION (PC DUTY FACTOR = 50%) RθJC = 0.7oC/W 5 3 2 TJ = +150oC, VGA = 18V, L = 100µH 60 PEAK CATHODE CURRENT (A) fMAX, MAX OPERATING FREQUENCY (kHz) Typical Performance Curves (Continued) 1 50 40 30 10 0 5 10 20 30 50 100 TURN-OFF SAFE OPERATING AREA 20 0 -100 IK, CATHODE CURRENT (A) 200 CS = 0.1µF, TJ = +150oC -725 100 VSPIKE, SPIKE VOLTAGE (V) -700 -675 -650 -625 -600 -575 -550 -525 -500 -475 CS = 0.1µF, TJ = +25oC CS = 1µF, TJ = +150oC 50 20 10 CS = 2µF, TJ = +150oC CS = 1µF, TJ = +25oC 5 CS = 2µF, TJ = +25oC -450 -425 2 0.1 1 10 100 dv/dt (V/µs) 1000 0 10000 FIGURE 11. BLOCKING VOLTAGE vs dv/dt 5 10 15 20 25 di/dt (A/µs) tRR, REVERSE RECOVERY TIMES (ns) IKA, CATHODE-ANODE CURRENT (A) 30 20 TJ = -40oC 10 5 TJ = +25oC 2 1 0 0.5 1 1.5 VAK, ANODE-CATHODE VOLTAGE (V) 35 40 TJ = +25oC, di/dt = 100A/µs 1,000 PULSE TEST PULSE DURATION = 250µs DUTY CYCLE < 2% TJ = +150oC 30 FIGURE 12. SPIKE VOLTAGE vs di/dt (TYPICAL) 100 3 -600 FIGURE 10. TURN-OFF CAPABILITY vs ANODE-CATHODE VOLTAGE TJ = +150oC, VGA = 18V 50 -500 -400 VKA, PEAK TURN OFF VOLTAGE (V) FIGURE 9. OPERATING FREQUENCY vs CATHODE CURRENT (TYPICAL) VDRM, BREAKDOWN VOLTAGE (V) -300 -200 300 tA 200 100 50 tB 30 20 10 2 tRR 500 0 10 20 30 40 IKA , CATHODE-ANODE CURRENT (A) FIGURE 13. DIODE CATHODE-ANODE CURRENT vs VOLTAGE (TYPICAL) FIGURE 14. DIODE REVERSE RECOVERY TIMES vs CURRENT (TYPICAL) 2-11 MCTV35P60F1D Test Circuits VG + 200µH 1Ω VK 9V + - IK VA 500Ω + - 9V - + - 10kΩ 20V 4.7kΩ CS + DUT DUT FIGURE 15. SWITCHING TEST CIRCUIT IK FIGURE 16. VSPIKE TEST CIRCUIT MAXIMUM RISE AND FALL TIME OF VG IS 200ns VG VG 90% di/dt 10% -VKA IK VSPIKE 90% IK VTM 10% tRI tD(OFF)I tFI tD(ON)I VAK FIGURE 17. SWITCHING TEST WAVEFORMS FIGURE 18. VSPIKE TEST WAVEFORMS Operating Frequency Information Operating frequency information for a typical device (Figure 9) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs cathode current (IAK) plots are possible using the information shown for a typical unit in Figures 3 to 8. The operating frequency plot (Figure 9) of a typical device shows fMAX1 or fMAX2 whichever is lower at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature. fMAX1 is defined by fMAX1 = 0.05 / (tD(ON)I + tD(OFF)I). tD(ON)I + tD(OFF)I deadtime (the denominator) has been arbitrarily held to 10% of the on-state time for a 50% duty factor. Other definitions are possible. tD(ON)I is defined as the 10% point of the leading edge of the input pulse and the point where the cathode current rises to 10% of its maximum value. tD(OFF)I is defined as the 90% point of the trailing edge of the input pulse and the point where the cathode current falls to 90% of its maximum value. Device delay can establish an additional frequency limiting condition for an application other than TJMAX. tD(OFF)I is important when controlling output ripple under a lightly loaded condition. fMAX2 is defined by fMAX2 = (PD - PC) / (EON+EOFF). The allowable dissipation (PD) is defined by PD = (TJMAX - TC) / RθJC. The sum of device switching and conduction losses must not exceed PD. A 50% duty factor was used (Figure 9) and the conduction losses (PC) are approximated by PC = (VAK • IAK) / (duty factor/100). EON is defined as the sum of the instantaneous power loss starting at the leading edge of the input pulse and ending at the point where the anodecathode voltage equals saturation voltage (VAK = VTM). EOFF is defined as the sum of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the cathode current equals zero (IK = 0). 2-12