INTERSIL MCTV35P60F1D

MCTV35P60F1D
Semiconductor
April 1999
AWN
NS
35A, 600V
ITHDR
DESIG
PART W E - NO NEW
Thyristor (MCT)
OLET
S OBS
S
PROCE
Features
P-Type MOS Controlled
with Anti-Parallel Diode
Package
• 35A, -600V
JEDEC STYLE TO-247
• VTM = -1.35V (Max) at I = 35A and +150oC
• 800A Surge Current Capability
A
• 800A/µs di/dt Capability
A
K
• MOS Insulated Gate Control
GR
G
• 50A Gate Turn-Off Capability at +150oC
• Anti-Parallel Diode
Description
The MCT is an MOS Controlled Thyristor designed for switching currents on and off by negative and positive pulsed control
of an insulated MOS gate. It is designed for use in motor controls, inverters, line switches and other power switching applications. The MCT is especially suited for resonant (zero
voltage or zero current switching) applications. The SCR like
forward drop greatly reduces conduction power loss.
Symbol
MCTs allow the control of high power circuits with very small
amounts of input energy. They feature the high peak current
capability common to SCR type thyristors, and operate at
junction temperatures up to +150oC with active switching.
This device features a discrete anti-parallel diode that shunts
current around the MCT in the reverse direction without
introducing carriers into the depletion region.
G
K
PART NUMBER INFORMATION
PART NUMBER
MCTV35P60F1D
PACKAGE
TO-247
A
BRAND
M35P60F1D
NOTE: When ordering, use the entire part number.
Formerly developmental type TA9789 (MCT) and TA49054
(diode).
Absolute Maximum Ratings
TC = +25oC, Unless Otherwise Specified
MCTV35P60F1D
Peak Off-State Voltage (See Figure 11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDRM
-600
Continuous Cathode Current (See Figure 2)
TC = +25oC (Package Limited) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IK25
60
TC = +90oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IK115
35
Non-repetitive Peak Cathode Current (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IKSM
800
Peak Controllable Current (See Figure 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IKC
50
Gate-Anode Voltage (Continuous) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGA1
±20
Gate-Anode Voltage (Peak) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGAM
±25
Rate of Change of Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dv/dt
See Figure 11
Rate of Change of Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .di/dt
800
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PT
178
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.43
Operating and Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
-55 to +150
Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
260
(0.063" (1.6mm) from case for 10s)
NOTE: 1. Maximum Pulse Width of 250µs (Half Sine) Assume TJ (Initial) = +90oC and TJ (Final) = TJ (Max) = +150oC
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures.
Copyright
© Harris Corporation 1999
2-8
UNITS
V
A
A
A
A
V
V
A/µs
W
W/oC
oC
oC
File Number
3694.4
Specifications MCTV35P60F1D
Electrical Specifications
PARAMETER
Peak Off-State
Blocking Current
TC = +25oC, Unless Otherwise Specified
SYMBOL
IDRM
On-State Voltage
VTM
TEST CONDITIONS
MIN
TYP
MAX
UNITS
VKA = -600V
TC = +150oC
-
-
5
mA
VGA = +18V
TC = +25oC
-
-
200
µA
IK = IK115
TC = +150oC
-
-
1.35
V
VGA = -7V
TC = +25oC
-
-
1.4
V
Gate-Anode
Leakage Current
IGAS
VGA = ±20V
-
-
100
nA
Input Capacitance
CISS
VKA = -20V, TJ = +25oC
VGA = +18V
-
5
-
nF
L = 200µH, IK = IK115
RG = 1Ω, VGA = +18V, -7V
TJ = +125oC
VKA = -300V
-
140
-
ns
-
180
-
ns
tD(OFF)I
-
640
-
ns
Current Fall Time
tFI
-
1.1
1.4
µs
Turn-Off Energy
EOFF
-
5.6
-
mJ
Thermal Resistance (MCT)
RθJC
-
.6
.7
oC/W
Thermal Resistance (Diode)
RθJC
-
1.1
1.2
oC/W
Diode Forward Voltage
VKA
IKA = 35A
-
-
1.4
V
Diode Reverse Recovery Time
tRR
IKA = 35A, di/dt = 100A/µs
-
-
600
ns
Current Turn-On
Delay Time
tD(ON)I
Current Rise Time
tRI
Current Turn-Off Delay Time
Typical Performance Curves
100
TJ = +150oC
PULSE TEST
PULSE DURATION = 250µs
DUTY CYCLE < 2%
IK, DC CATHODE CURRENT (A)
IK, CATHODE CURRENT (A)
50
100
30
20
TJ = -40oC
10
TJ = +150oC
TJ = +25oC
5
3
2
0
0.5
1.0
1.5
VTM, CATHODE VOLTAGE (V)
PACKAGE LIMIT
60
2.0
MCT
40
DIODE
20
0
20
1
MCT SWITCHING LIMIT
80
40
60
80
100
120
140
160
TC , CASE TEMPERATURE (oC)
FIGURE 1. CATHODE CURRENT vs SATURATION VOLTAGE
(TYPICAL)
FIGURE 2. MAXIMUM CONTINUOUS CATHODE CURRENT
2-9
MCTV35P60F1D
Typical Performance Curves (Continued)
TJ = +150oC, RG = 1Ω, L = 200µH
tD(OFF)I, TURN-OFF DELAY (ns)
tD(ON)I, TURN-ON DELAY (ns)
TJ = +150oC, RG = 1Ω, L = 200µH
1100
200
175
VKA = -200V
150
125
VKA = -300V
100
75
50
1000
900
700
600
10
20
30
40
IK, CATHODE CURRENT (A)
50
VKA = -200V
500
400
0
VKA = -300V
800
60
0
10
20
TJ = +150oC, RG = 1Ω, L = 200mH
tFI, FALL TIME (µs)
tRI,RISE TIME (ns)
VKA = -200V
VKA = -300V
10
20
30
40
50
VKA = -200V
1.25
1
VKA = -300V
0.75
0.5
0
60
0
10
FIGURE 5. TURN-ON RISE TIME vs CATHODE CURRENT
(TYPICAL)
EOFF, TURN-OFF SWITCHING LOSS (mJ)
EON,TURN-ON SWITCHING LOSS (mJ)
VKA= -200V
1
0
10
20
30
40
IK, CATHODE CURRENT (A)
40
50
60
TJ = +150oC, RG = 1Ω, L = 200µH
VKA = -300V
2
30
FIGURE 6. TURN-OFF FALL TIME vs CATHODE CURRENT
(TYPICAL)
TJ = +150oC, RG = 1Ω, L = 200µH
3
0.5
20
IK, CATHODE CURRENT (A)
IK, CATHODE CURRENT (A)
5
60
TJ = +150oC, RG = 1Ω, L = 200µH
1.5
50
0
50
FIGURE 4. TURN-OFF DELAY vs CATHODE CURRENT
(TYPICAL)
200
100
40
IK, CATHODE CURRENT (A)
FIGURE 3. TURN-ON DELAY vs CATHODE CURRENT
(TYPICAL)
150
30
50
60
FIGURE 7. TURN-ON ENERGY LOSS vs CATHODE CURRENT
(TYPICAL)
2-10
10
5
VKA = -300V
VKA = -200V
1
0.5
0.1
0
10
30
40
20
IK, CATHODE CURRENT (A)
50
60
FIGURE 8. TURN-OFF ENERGY LOSS vs CATHODE CURRENT
(TYPICAL)
MCTV35P60F1D
TC = +90oC, L = 200µH
100
50
VKA = -200V
30
20
VKA = -300V
10
fMAX1 = 0.05/ tD(ON)I + tD(OFF)I)
fMAX2 = (PD - PC) / ESWITCH
PD: ALLOWABLE DISSIPATION
PC: CONDUCTION DISSIPATION
(PC DUTY FACTOR = 50%)
RθJC = 0.7oC/W
5
3
2
TJ = +150oC, VGA = 18V, L = 100µH
60
PEAK CATHODE CURRENT (A)
fMAX, MAX OPERATING FREQUENCY (kHz)
Typical Performance Curves (Continued)
1
50
40
30
10
0
5
10
20
30
50
100
TURN-OFF
SAFE OPERATING AREA
20
0
-100
IK, CATHODE CURRENT (A)
200
CS = 0.1µF, TJ = +150oC
-725
100
VSPIKE, SPIKE VOLTAGE (V)
-700
-675
-650
-625
-600
-575
-550
-525
-500
-475
CS = 0.1µF, TJ = +25oC
CS = 1µF, TJ = +150oC
50
20
10
CS = 2µF, TJ = +150oC
CS = 1µF, TJ = +25oC
5
CS = 2µF, TJ = +25oC
-450
-425
2
0.1
1
10
100
dv/dt (V/µs)
1000
0
10000
FIGURE 11. BLOCKING VOLTAGE vs dv/dt
5
10
15
20
25
di/dt (A/µs)
tRR, REVERSE RECOVERY TIMES (ns)
IKA, CATHODE-ANODE CURRENT (A)
30
20
TJ =
-40oC
10
5
TJ = +25oC
2
1
0
0.5
1
1.5
VAK, ANODE-CATHODE VOLTAGE (V)
35
40
TJ = +25oC, di/dt = 100A/µs
1,000
PULSE TEST
PULSE DURATION = 250µs
DUTY CYCLE < 2%
TJ = +150oC
30
FIGURE 12. SPIKE VOLTAGE vs di/dt (TYPICAL)
100
3
-600
FIGURE 10. TURN-OFF CAPABILITY vs ANODE-CATHODE
VOLTAGE
TJ = +150oC, VGA = 18V
50
-500
-400
VKA, PEAK TURN OFF VOLTAGE (V)
FIGURE 9. OPERATING FREQUENCY vs CATHODE CURRENT
(TYPICAL)
VDRM, BREAKDOWN VOLTAGE (V)
-300
-200
300
tA
200
100
50
tB
30
20
10
2
tRR
500
0
10
20
30
40
IKA , CATHODE-ANODE CURRENT (A)
FIGURE 13. DIODE CATHODE-ANODE CURRENT vs VOLTAGE
(TYPICAL)
FIGURE 14. DIODE REVERSE RECOVERY TIMES vs CURRENT
(TYPICAL)
2-11
MCTV35P60F1D
Test Circuits
VG
+
200µH
1Ω
VK
9V
+
-
IK
VA
500Ω
+
-
9V
-
+
-
10kΩ
20V
4.7kΩ
CS
+
DUT
DUT
FIGURE 15. SWITCHING TEST CIRCUIT
IK
FIGURE 16. VSPIKE TEST CIRCUIT
MAXIMUM RISE AND FALL TIME OF VG IS 200ns
VG
VG
90%
di/dt
10%
-VKA
IK
VSPIKE
90%
IK
VTM
10%
tRI
tD(OFF)I
tFI
tD(ON)I
VAK
FIGURE 17. SWITCHING TEST WAVEFORMS
FIGURE 18. VSPIKE TEST WAVEFORMS
Operating Frequency Information
Operating frequency information for a typical device
(Figure 9) is presented as a guide for estimating device performance for a specific application. Other typical frequency
vs cathode current (IAK) plots are possible using the information shown for a typical unit in Figures 3 to 8. The operating
frequency plot (Figure 9) of a typical device shows fMAX1 or
fMAX2 whichever is lower at each point. The information is
based on measurements of a typical device and is bounded
by the maximum rated junction temperature.
fMAX1 is defined by fMAX1 = 0.05 / (tD(ON)I + tD(OFF)I). tD(ON)I
+ tD(OFF)I deadtime (the denominator) has been arbitrarily
held to 10% of the on-state time for a 50% duty factor. Other
definitions are possible. tD(ON)I is defined as the 10% point of
the leading edge of the input pulse and the point where the
cathode current rises to 10% of its maximum value. tD(OFF)I
is defined as the 90% point of the trailing edge of the input
pulse and the point where the cathode current falls to 90% of
its maximum value. Device delay can establish an additional
frequency limiting condition for an application other than
TJMAX. tD(OFF)I is important when controlling output ripple
under a lightly loaded condition.
fMAX2 is defined by fMAX2 = (PD - PC) / (EON+EOFF). The
allowable dissipation (PD) is defined by PD = (TJMAX - TC) /
RθJC. The sum of device switching and conduction losses
must not exceed PD. A 50% duty factor was used (Figure 9)
and the conduction losses (PC) are approximated by PC =
(VAK • IAK) / (duty factor/100). EON is defined as the sum of
the instantaneous power loss starting at the leading edge of
the input pulse and ending at the point where the anodecathode voltage equals saturation voltage (VAK = VTM). EOFF
is defined as the sum of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the
point where the cathode current equals zero (IK = 0).
2-12