Freescale Semiconductor Technical Data Document Number: MWE6IC9100N Rev. 3, 12/2008 RF LDMOS Wideband Integrated Power Amplifiers The MWE6IC9100N wideband integrated circuit is designed with on - chip matching that makes it usable from 869 to 960 MHz. This multi - stage structure is rated for 26 to 32 Volt operation and covers all typical cellular base station modulations. Final Application • Typical GSM Performance: VDD = 26 Volts, IDQ1 = 120 mA, IDQ2 = 950 mA, Pout = 100 Watts CW, f = 960 MHz Power Gain — 33.5 dB Power Added Efficiency — 54% GSM EDGE Application • Typical GSM EDGE Performance: VDD = 28 Volts, IDQ1 = 230 mA, IDQ2 = 870 mA, Pout = 50 Watts Avg., Full Frequency Band (869 - 960 MHz) Power Gain — 35.5 dB Power Added Efficiency — 39% Spectral Regrowth @ 400 kHz Offset = - 63 dBc Spectral Regrowth @ 600 kHz Offset = - 81 dBc EVM — 2% rms • Capable of Handling 10:1 VSWR, @ 32 Vdc, 960 MHz, 3 dB Overdrive, Designed for Enhanced Ruggedness • Stable into a 5:1 VSWR. All Spurs Below - 60 dBc @ 1 mW to 120 W CW Pout. Features • Characterized with Series Equivalent Large - Signal Impedance Parameters and Common Source S - Parameters • On - Chip Matching (50 Ohm Input, DC Blocked) • Integrated Quiescent Current Temperature Compensation with Enable/Disable Function (1) • Integrated ESD Protection • 225°C Capable Plastic Package • RoHS Compliant • In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel. VDS1 RFin RFout/VDS2 VGS1 Quiescent Current Temperature Compensation (1) VGS2 VDS1 MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 960 MHz, 100 W, 26 V GSM/GSM EDGE RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS CASE 1618 - 02 TO - 270 WB - 14 PLASTIC MWE6IC9100NR1 CASE 1621 - 02 TO - 270 WB - 14 GULL PLASTIC MWE6IC9100GNR1 CASE 1617 - 02 TO - 272 WB - 14 PLASTIC MWE6IC9100NBR1 NC VDS1 NC NC NC RFin RFin NC VGS1 VGS2 VDS1 NC 1 2 3 4 5 6 7 8 9 10 11 12 14 RFout /VDS2 13 RFout /VDS2 (Top View) Note: Exposed backside of the package is the source terminal for the transistors. Figure 1. Functional Block Diagram Figure 2. Pin Connections 1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987. © Freescale Semiconductor, Inc., 2007-2008. All rights reserved. RF Device Data Freescale Semiconductor MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 1 Table 1. Maximum Ratings Symbol Value Unit Drain - Source Voltage Rating VDSS - 0.5, +66 Vdc Gate - Source Voltage VGS - 0.5, +6 Vdc Storage Temperature Range Tstg - 65 to +150 °C TC 150 °C TJ 225 °C Symbol Value (2,3) Unit Case Operating Temperature Operating Junction Temperature (1,2) Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case RθJC °C/W GSM Application (Pout = 100 W CW) Stage 1, 26 Vdc, IDQ1 = 120 mA Stage 2, 26 Vdc, IDQ2 = 950 mA 1.82 0.38 GSM EDGE Application (Pout = 50 W Avg.) Stage 1, 28 Vdc, IDQ1 = 230 mA Stage 2, 28 Vdc, IDQ2 = 870 mA 1.77 0.44 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 2 (Minimum) Machine Model (per EIA/JESD22 - A115) B (Minimum) Charge Device Model (per JESD22 - C101) III (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Per JESD 22 - A113, IPC/JEDEC J - STD - 020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 66 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 10 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 35 μAdc) VGS(th) 1.5 2 3.5 Vdc Gate Quiescent Voltage (VDS = 26 Vdc, ID = 120 mAdc) VGS(Q) — 2.7 — Vdc Fixture Gate Quiescent Voltage (VDD = 26 Vdc, ID = 120 mAdc, Measured in Functional Test) VGG(Q) 6 9.4 12 Vdc Stage 1 — Off Characteristics Stage 1 — On Characteristics 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. (continued) MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 2 RF Device Data Freescale Semiconductor Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 66 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 10 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 290 μAdc) VGS(th) 1.5 2 3.5 Vdc Gate Quiescent Voltage (VDS = 26 Vdc, ID = 950 mAdc) VGS(Q) — 2.7 — Vdc Fixture Gate Quiescent Voltage (VDD = 26 Vdc, ID = 950 mAdc, Measured in Functional Test) VGG(Q) 6 8.6 12 Vdc Drain - Source On - Voltage (VGS = 10 Vdc, ID = 1 Adc) VDS(on) 0.05 0.4 0.8 Vdc Stage 2 — Off Characteristics Stage 2 — On Characteristics Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 26 Vdc, Pout = 100 W CW, IDQ1 = 120 mA, IDQ2 = 950 mA, f = 960 MHz Power Gain Gps 31 33.5 36 dB Input Return Loss IRL — - 15 - 10 dB Power Added Efficiency PAE 52 54 — % Pout @ 1 dB Compression Point, CW P1dB 100 112 — W Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) VDD = 28 Vdc, Pout = 50 W Avg., IDQ1 = 230 mA, IDQ2 = 870 mA, 869-894 MHz and 920-960 MHz EDGE Modulation Gps — 35.5 — Power Added Efficiency PAE — 39 — % Error Vector Magnitude EVM — 2 — % rms Spectral Regrowth at 400 kHz Offset SR1 — - 63 — dBc Spectral Regrowth at 600 kHz Offset SR2 — - 81 — dBc Power Gain dB MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 3 C8 1 NC VDD1 C17 RF INPUT C22 4 NC VGG1 VGG2 Z4 Z5 6 C1 Z6 Z7 C2 Z17 9 10 C13 11 Quiescent Current Temperature Compensation 14 Z8 Z10 Z14 C4 Z15 RF OUTPUT C6 Z11 C9 12 NC C19 C23 C5 8 NC R2 C16 C3 Z9 7 R1 C15 C20 Z16 13 5 NC Z3 C7 3 NC C11 Z2 Z1 + DUT 2 + VDD2 Z13 Z12 C14 C10 C12 C24 C21 C18 VDD1 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 0.089″ 0.157″ 0.157″ 0.139″ 0.024″ 0.352″ 0.039″ 0.555″ 0.343″ x 0.083″ Microstrip x 0.315″ Microstrip x 0.397″ Microstrip x 0.060″ Microstrip x 0.386″ Microstrip x 0.902″ Microstrip x 0.607″ Microstrip x 1.102″ Microstrip x 0.083″ Microstrip Z10 Z11 Z12 Z13 Z14 Z15 Z16, Z17 PCB 0.117″ x 0.083″ Microstrip 0.067″ x 0.431″ Microstrip 0.067″ x 0.084″ Microstrip 0.381″ x 0.067″ Microstrip 0.418″ x 0.084″ Microstrip 0.421″ x 0.084″ Microstrip 2.550″ x 0.157″ Microstrip Taconic TLX8 - 0300, 0.030″, εr = 2.55 Figure 3. MWE6IC9100NR1(GNR1)(NBR1) Test Circuit Schematic Table 6. MWE6IC9100NR1(GNR1)(NBR1) Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C2 10 pF Chip Capacitors ATC100B100GT500XT ATC C3, C4, C5 3.9 pF Chip Capacitors ATC100B3R9BT500XT ATC C6 0.5 pF Chip Capacitor ATC100B0R5BT500XT ATC C7, C8, C9, C10, C11, C12, C13, C14 33 pF Chip Capacitors ATC100B330JT500XT ATC C15, C16, C17, C18, C19, C20, C21 6.8 μF Chip Capacitors C4532X5R1H685MT TDK C22, C23 470 μF, 63 V Electrolytic Capacitors, Radial 222212018470 Vishay C24 330 pF Chip Capacitor ATC100B331JT200XT ATC R1, R2 4.7 kΩ, 1/8 W Chip Resistors CRCW08054701FKEA Vishay MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 4 RF Device Data Freescale Semiconductor MWE6IC9100N Rev. 4 VDD1 C17 C7 C8 C22 VDD2 C20 C11 C1 C23 C3 C13 VGG1 C14 R1 C15 C12 C19 R2 C16 CUT OUT AREA C5 C6 C4 C2 C21 C24 VGG2 C10 C9 C18 Figure 4. MWE6IC9100NR1(GNR1)(NBR1) Test Circuit Component Layout MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS 70 Gps, POWER GAIN (dB) 34 64 58 30 PAE 26 52 22 VDD = 26 Vdc, Pout = 100 W CW IDQ1 = 120 mA, IDQ2 = 950 mA IRL 46 18 40 14 34 10 840 0 28 860 880 900 920 940 960 −4 −8 −12 −16 −20 −24 IRL, INPUT RETURN LOSS (dB) Gps PAE, POWER ADDED EFFICIENCY (%) 38 −28 980 f, FREQUENCY (MHz) Figure 5. Power Gain, Input Return Loss and Power Added Efficiency versus Frequency @ Pout = 100 Watts CW 46 30 40 PAE 26 34 VDD = 28 Vdc, Pout = 50 W Avg. IDQ1 = 230 mA, IDQ2 = 870 mA 22 28 IRL 18 22 14 16 10 10 880 860 900 940 920 960 −8 −12 −16 −20 −24 −28 IRL, INPUT RETURN LOSS (dB) Gps, POWER GAIN (dB) 34 840 −4 52 Gps PAE, POWER ADDED EFFICIENCY (%) 38 −30 980 f, FREQUENCY (MHz) Figure 6. Power Gain, Input Return Loss and Power Added Efficiency versus Frequency @ Pout = 50 Watts Avg. 36 36 Gps, POWER GAIN (dB) 35 IDQ1 = 180 mA IDQ1 = 150 mA IDQ2 = 1190 mA 35 IDQ2 = 950 mA Gps, POWER GAIN (dB) IDQ2 = 1420 mA 34 33 IDQ2 = 590 mA 32 IDQ2 = 470 mA VDD = 26 Vdc f = 945 MHz 34 IDQ1 = 120 mA 33 IDQ1 = 90 mA 32 31 IDQ1 = 60 mA 31 VDD = 26 Vdc f = 945 MHz 30 1 10 100 200 1 100 10 Pout, OUTPUT POWER (WATTS) CW Pout, OUTPUT POWER (WATTS) CW Figure 7. Power Gain versus Output Power @ IDQ1 = 120 mA Figure 8. Power Gain versus Output Power @ IDQ2 = 950 mA 200 MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 6 RF Device Data Freescale Semiconductor VDD = 26 Vdc IDQ1 = 120 mA, IDQ2 = 950 mA f1 = 945 MHz, f2 = 945.1 MHz 100 kHz Tone Spacing −20 −30 3rd Order −40 5th Order −50 7th Order −60 −70 −80 1 10 100 VDD = 26 Vdc, Pout = 100 W (PEP), IDQ1 = 150 mA IDQ2 = 1 A, Two−Tone Measurements (f1 + f2)/2 = Center Frequency of 945 MHz 3rd Order −20 −30 −40 5th Order −50 −60 −70 7th Order −80 200 100 10 TWO−TONE SPACING (MHz) Figure 9. Intermodulation Distortion Products versus Output Power Figure 10. Intermodulation Distortion Products versus Tone Spacing 38 P6dB = 51.95 dBm (156 W) 57 −30_C 25_C TC = −30_C Ideal 36 56 Gps, POWER GAIN (dB) P3dB = 51.5 dBm (140 W) 55 54 P1dB = 50.9 dBm (123 W) 53 52 Actual 51 50 VDD = 26 Vdc, IDQ1 = 120 mA, IDQ2 = 950 mA Pulsed CW, 12 μsec(on), 1% Duty Cycle f = 945 MHz 49 48 14 15 16 17 18 19 20 21 22 23 24 30 30 20 26 1 10 60 50 TC = −30_C 85_C 40 25_C 32 30 85_C 30 20 PAE 28 10 26 1 10 100 0 300 100 Pout, OUTPUT POWER (WATTS) CW Figure 13. Power Gain and Power Added Efficiency versus Output Power @ 880 MHz 0 300 34 33 Gps, POWER GAIN (dB) −30_C PAE, POWER ADDED EFFICIENCY (%) 34 10 Figure 12. Power Gain and Power Added Efficiency versus Output Power @ 945 MHz 25_C Gps VDD = 26 Vdc IDQ1 = 120 mA IDQ2 = 950 mA f = 945 MHz PAE 70 36 40 Pout, OUTPUT POWER (WATTS) CW 40 38 50 85_C Figure 11. Pulsed CW Output Power versus Input Power VDD = 26 Vdc, IDQ1 = 120 mA IDQ2 = 950 mA, f = 880 MHz 25_C 32 28 25 60 85_C Gps 34 Pin, INPUT POWER (dBm) Gps, POWER GAIN (dB) 1 0.1 Pout, OUTPUT POWER (WATTS) PEP 58 Pout, OUTPUT POWER (dBc) −10 PAE, POWER ADDED EFFICIENCY (%) −10 IMD, INTERMODULATION DISTORTION (dBc) IMD, INTERMODULATION DISTORTION (dBc) TYPICAL CHARACTERISTICS 32 31 32 V 30 24 V 29 VDD = 20 V IDQ1 = 120 mA IDQ2 = 950 mA f = 945 MHz 28 0 50 100 150 200 Pout, OUTPUT POWER (WATTS) CW Figure 14. Power Gain versus Output Power MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 7 EVM, ERROR VECTOR MAGNITUDE (% ms) 6 VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 870 mA 5 Pout = 63 W Avg. 4 3 55 W Avg. 2 25 W Avg. 1 0 880 900 920 940 960 980 f, FREQUENCY (MHz) SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) TYPICAL CHARACTERISTICS −50 SR @ 400 kHz −55 −60 55 W Avg. −65 25 W Avg. −70 −75 SR @ 600 kHz 55 W Avg. −85 860 880 63 W Avg. 900 920 940 f, FREQUENCY (MHz) 960 980 Figure 16. Spectral Regrowth at 400 kHz and 600 kHz versus Frequency −40 −50 −55 85_C −60 TC = −30_C 25_C −65 −70 VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 870 mA f = 945 MHz, EDGE Modulation −75 SPECTRAL REGROWTH @ 400 kHz (dBc) −45 SPECTRAL REGROWTH @ 400 kHz (dBc) 25 W Avg. VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 870 mA f = 920 MHz, EDGE Modulation −80 Figure 15. EVM versus Frequency −80 −45 25_C −50 −55 −60 TC = −30_C −65 −70 VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 870 mA f = 880 MHz, EDGE Modulation 85_C −75 −80 0 20 40 60 80 100 0 120 20 40 60 80 100 120 Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) Figure 17. Spectral Regrowth at 400 kHz versus Output Power @ 945 MHz Figure 18. Spectral Regrowth at 400 kHz versus Output Power @ 880 MHz −50 SPECTRAL REGROWTH @ 600 kHz (dBc) −60 SPECTRAL REGROWTH @ 600 kHz (dBc) Pout = 63 W Avg. VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 870 mA f = 945 MHz, EDGE Modulation −65 −70 −75 TC = −30_C −80 85_C −85 25_C −90 VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 870 mA f = 880 MHz, EDGE Modulation −55 −60 25_C −65 85_C −70 −75 TC = −30_C −80 −85 0 20 40 60 80 100 120 Pout, OUTPUT POWER (WATTS) Figure 19. Spectral Regrowth at 600 kHz versus Output Power @ 945 MHz 0 20 40 60 80 100 120 Pout, OUTPUT POWER (WATTS) Figure 20. Spectral Regrowth at 600 kHz versus Output Power @ 880 MHz MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 8 RF Device Data Freescale Semiconductor 10 50 VDD = 28 Vdc IDQ1 = 230 mA IDQ2 = 870 mA f = 945 MHz 8 40 6 30 85_C PAE 4 20 2 −30_C 10 TC = 25_C EVM 0 1 PAE, POWER ADDED EFFICIENCY (%) EVM, ERROR VECTOR MAGNITUDE (% ms) TYPICAL CHARACTERISTICS 0 100 10 Pout, OUTPUT POWER (WATTS) AVG. 10 50 VDD = 28 Vdc IDQ1 = 230 mA IDQ2 = 870 mA f = 880 MHz 8 40 6 30 85_C PAE 4 20 2 10 25_C EVM TC = −30_C 0 1 PAE, POWER ADDED EFFICIENCY (%) EVM, ERROR VECTOR MAGNITUDE (% ms) Figure 21. EVM and Power Added Efficiency versus Output Power @ 945 MHz 0 100 10 Pout, OUTPUT POWER (WATTS) AVG. Figure 22. EVM and Power Added Efficiency versus Output Power @ 880 MHz 40 0 38 S21 TC = −30_C 10 −15 S11 −20 0 VDD = 26 Vdc IDQ1 = 120 mA, IDQ2 = 950 mA 600 800 1000 1200 1400 f, FREQUENCY (MHz) Figure 23. Broadband Frequency Response −25 1600 S11 (dB) S21 (dB) −10 20 Gps, POWER GAIN (dB) −5 30 −10 400 36 25_C 34 85_C 32 30 VDD = 26 Vdc, Pout = 60 W CW IDQ1 = 120 mA, IDQ2 = 950 mA 28 26 820 840 860 880 900 920 940 960 980 f, FREQUENCY (MHz) Figure 24. Power Gain versus Frequency MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 9 TYPICAL CHARACTERISTICS 108 MTTF (HOURS) 107 106 2nd Stage 1st Stage 105 104 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 26 Vdc, Pout = 100 W CW, and PAE = 54%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 25. MTTF versus Junction Temperature GSM TEST SIGNAL −10 −20 Reference Power VWB = 30 kHz Sweep Time = 70 ms RBW = 30 kHz −30 −40 (dB) −50 −60 −70 −80 400 kHz 400 kHz 600 kHz 600 kHz −90 −100 −110 Center 1.96 GHz 200 kHz Span 2 MHz Figure 26. EDGE Spectrum MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 10 RF Device Data Freescale Semiconductor Zo = 50 Ω f = 820 MHz Zsource f = 980 MHz f = 980 MHz f = 820 MHz Zload VDD = 26 Vdc, IDQ1 = 120 mA, IDQ2 = 950 mA, Pout = 100 W CW f MHz Zsource W Zload W 820 35.40 + j21.50 0.516 - j0.365 840 35.00 + j18.00 0.638 - j0.172 860 35.00 + j15.50 0.768 - j0.010 880 34.50 + j12.20 0.874 + j0.071 900 34.00 + j9.00 1.030 + j0.133 920 34.30 + j7.20 1.101 + j0.082 940 38.50 + j6.00 1.088 + j0.037 960 42.00 + j7.40 1.011 + j0.018 980 45.55 + j12.75 0.872 + j0.051 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 27. Series Equivalent Source and Load Impedance MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 11 Table 7. Common Source Scattering Parameters (VDD = 26 V, 50 ohm system, IDQ1 = 120 mA, IDQ2 = 950 mA) S11 S21 S12 S22 f MHz |S11| ∠φ |S21| ∠φ |S12| ∠φ |S22| ∠φ 750 0.230 95 5.81 - 87 0.0007 - 119 0.989 - 180 760 0.188 93 6.48 - 97 0.0007 - 116 0.987 180 770 0.149 92 7.18 - 107 0.0007 - 111 0.985 180 780 0.114 92 7.88 - 117 0.0007 - 110 0.983 180 790 0.085 96 8.56 - 128 0.0008 - 109 0.981 180 800 0.063 104 9.22 - 139 0.0008 - 108 0.979 180 810 0.047 117 9.82 - 150 0.0009 - 109 0.978 180 820 0.037 134 10.37 - 161 0.0009 - 110 0.978 - 180 830 0.031 156 10.85 - 172 0.0009 - 111 0.977 - 180 840 0.029 - 177 11.27 178 0.0010 - 113 0.977 - 180 850 0.033 - 152 11.60 167 0.0010 - 114 0.978 - 180 860 0.041 - 134 11.87 156 0.0010 - 117 0.978 - 180 870 0.052 - 123 12.07 146 0.0010 - 119 0.979 - 180 880 0.063 - 116 12.20 135 0.0010 - 122 0.979 - 180 890 0.074 - 112 12.25 125 0.0010 - 123 0.979 180 900 0.084 - 109 12.23 115 0.0010 - 126 0.980 180 910 0.094 - 106 12.15 106 0.0010 - 129 0.979 180 920 0.104 - 103 12.01 96 0.0010 - 131 0.978 180 930 0.113 - 99 11.82 86 0.0009 - 133 0.978 180 940 0.125 - 95 11.57 77 0.0009 - 135 0.977 180 950 0.141 - 91 11.28 68 0.0008 - 138 0.976 180 960 0.160 - 88 10.97 59 0.0008 - 136 0.976 180 970 0.183 - 86 10.62 50 0.0007 - 135 0.976 180 980 0.209 - 85 10.23 42 0.0006 - 133 0.976 180 990 0.238 - 85 9.83 34 0.0006 - 130 0.975 180 1000 0.268 - 86 9.41 26 0.0006 - 125 0.975 180 MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 12 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 13 MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 14 RF Device Data Freescale Semiconductor MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 15 MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 16 RF Device Data Freescale Semiconductor MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 17 MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 18 RF Device Data Freescale Semiconductor MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 19 MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 20 RF Device Data Freescale Semiconductor MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 21 PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes • AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages • AN1955: Thermal Measurement Methodology of RF Power Amplifiers • AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family • AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 Feb. 2007 • Initial Release of Data Sheet 1 May 2007 • Changed Device box to 960 MHz to reflect functional test frequency, p. 1 • Added Power Added Efficiency to GSM EDGE Application Typical Performances, p. 1 • Changed “5:1 VSWR, @ 28 Vdc” to “10:1 VSWR, @ 32 Vdc” in the Capable of Handling bullet, p. 1 • Added Footnote (1) to Quiescent Current Thermal Tracking bullet under Features section and to Quiescent Current Temperature Compensation in Fig. 1, Functional Block Diagram, p. 1 • Added top - level, 2 - stage block diagram depiction to Fig. 2, Pin Connections; updated Note, p. 1 • Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 2 • Added Stage 1 and Stage 2 DC Electrical Characteristics tables, p. 2, 3 • In Table 6, Component Designations and Values, corrected Part Number ATC100B331JT500XT to ATC100B331JT200XT for C24 capacitor, p. 4 • Updated Figs. 7 and 8, Power Gain versus Output Power, to remove non - variable IDQ value, p. 6 • Updated Fig. 9, Intermodulation Distortion Products versus Output Power, to show PEP and not CW; corrected frequency value to show 100 kHz Tone Spacing, p. 7 • Updated graphical representation of Ideal/Actual in Fig. 11, Pulsed CW Output Power versus Input Power, to show correct 3 and 6 dB compression points, p. 7 2 June 2007 • Removed Case Operating Temperature from Maximum Ratings table, p. 2. Case Operating Temperature rating will be added to the Maximum Ratings table when parts’ Operating Junction Temperature is increased to 225°C. 3 Dec. 2008 • Changed full frequency band in Typical GSM Performance bullet to f = 960 MHz to match actual production test, p. 1 • Changed Storage Temperature Range in Max Ratings table from - 65 to +200 to - 65 to +150 for standardization across products, p. 2 • Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 2 • Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table, related “Continuous use at maximum temperature will affect MTTF” footnote added and changed 200°C to 225°C in Capable Plastic Package bullet, p. 1, 2 • Corrected Z10 from 1.17” to 0.117” in the Test Circuit Schematic Z list, p. 4 • Updated Part Numbers in Table 6, Component Designations and Values, to latest RoHS compliant part numbers, p. 4 • Replaced Case Outline 1617 - 01 with 1617 - 02, Issue A, p. 1, 13 - 15. Revised cross - hatched area for exposed heat spreader. Added pin numbers 1, 12, 13, and 14 to Sheets 1 and 2. Corrected mm Min and Max values for dimension A1 to 0.99 and 1.09, respectively. • Replaced Case Outline 1618 - 01 with 1618 - 02, Issue A, p. 1, 16 - 18. Added pin numbers 1, 12, 13, and 14 and Pin 1 Index designation to Sheet 1. Corrected dimensions e and e1 on Sheet 1. Removed Pin 5 designation from Sheet 2. • Replaced Case Outline 1621 - 01 with 1621 - 02, Issue A, p. 1, 19 - 21. Added pin numbers 1, 12, 13, and 14 and Pin 1 Index designation to Sheet 1. Corrected dimensions e and e1 on Sheets 1 and 3. Removed Pin 5 designation from Sheet 2. • Added Product Documentation and Revision History, p. 22 MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 22 RF Device Data Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140 Fax: +1 - 303 - 675 - 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007-2008. All rights reserved. MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 Document Number: RF Device Data MWE6IC9100N Rev. 3, 12/2008 Freescale Semiconductor 23