MOTOROLA MC74HC646

SEMICONDUCTOR TECHNICAL DATA
! "
High–Performance Silicon–Gate CMOS
The MC54/74HC646 is identical in pinout to the LS646. The device inputs
are compatible with standard CMOS outputs; with pullup resistors, they are
compatible with LSTTL outputs.
These devices are bus transceivers with D flip–flops. Depending on the
status of the Data–Source Selection pins, data may be routed to the outputs
either from the flip–flops or transmitted real–time from the inputs (see
Function Table and Application Information).
The Output Enable and the Direction pins control the transceiver’s
function. Bus A and Bus B cannot be routed as outputs to each other
simultaneously, but can be routed as inputs to the A and B flip–flops. Also,
the A and B flip–flops can be routed as outputs to Bus A and Bus B.
Additionally, when either or both of the ports are in the high–impedance
state, these I/O pins may be used as inputs to the D flip–flops for data
storage.
The user should note that because the clocks are not gated with the
Direction and Output Enable pins, data at the A and B ports may be clocked
into the storage flip–flops at any time.
•
•
•
•
•
•
Output Drive Capability: 15 LSTTL Loads
Outputs Directly Interface to CMOS, NMOS, and TTL
Operating Voltage Range: 2 to 6 V
Low Input Current: 1 µA
High Noise Immunity Characteristic of CMOS Devices
In Compliance with the Requirements Defined by JEDEC Standard
No. 7A
• Chip Complexity: 780 FETs or 195 Equivalent Gates
1
A
DATA
PORT
4
5
6
7
8
9
10
11
OUTPUT ENABLE
DIRECTION
FLIP–FLOP
CLOCKS
DATA SOURCE
SELECTION
INPUTS
A–TO–B CLOCK
B–TO–A CLOCK
A–TO–B SOURCE
B–TO–A SOURCE
20
19
18
17
16
15
14
13
B0
B1
B2
B3
B4
B5
B6
B7
1
1
ORDERING INFORMATION
MC54HCXXXJ
MC74HCXXXN
MC74HCXXXDW
A–TO–B
CLOCK
A–TO–B
SOURCE
DIRECTION
B
DATA
PORT
3
1
23
2
PIN 24 = VCC
PIN 12 = GND
3–1
Ceramic
Plastic
SOIC
PIN ASSIGNMENT
10/95
 Motorola, Inc. 1995
DW SUFFIX
SOIC PACKAGE
CASE 751E–04
24
21
22
N SUFFIX
PLASTIC PACKAGE
CASE 724–03
24
LOGIC DIAGRAM
A0
A1
A2
A3
A4
A5
A6
A7
J SUFFIX
CERAMIC PACKAGE
CASE 758–02
24
REV 6
1
24
2
23
3
22
A0
4
21
VCC
B–TO–A
CLOCK
B–TO–A
SOURCE
OUTPUT ENABLE
A1
5
20
B0
A2
6
19
B1
A3
7
18
B2
A4
8
17
B3
A5
9
16
B4
A6
10
15
B5
A7
11
14
B6
GND
12
13
B7
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MC54/74HC646
MAXIMUM RATINGS*
Symbol
VCC
Parameter
DC Supply Voltage (Referenced to GND)
Value
Unit
– 0.5 to + 7.0
V
V
Vin
DC Input Voltage (Referenced to GND)
– 1.5 to VCC + 1.5
VI/O
DC I/O Voltage (Referenced to GND)
– 0.5 to VCC + 0.5
V
Iin
DC Input Current, per Pin
± 20
mA
II/O
DC I/O Current, per Pin
± 35
mA
ICC
DC Supply Current, VCC and GND Pins
± 75
mA
PD
Power Dissipation in Still Air, Plastic or Ceramic DIP†
SOIC Package†
750
500
mW
Tstg
Storage Temperature
– 65 to + 150
_C
TL
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high–impedance circuit. For proper operation, Vin and
Vout should be constrained to the
range GND (Vin or Vout) VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
I/O pins must be connected to a
properly terminated line or bus.
v
_C
Lead Temperature, 1 mm from Case for 10 Seconds
(Plastic DIP or SOIC Package)
(Ceramic DIP)
260
300
v
* Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — Plastic DIP: – 10 mW/_C from 65_ to 125_C
Ceramic DIP: – 10 mW/_C from 100_ to 125_C
SOIC Package: – 7 mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
v
v
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
v
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
v
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
v
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
v ÎÎÎÎ
v ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
v
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
v
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
v ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
RECOMMENDED OPERATING CONDITIONS
Symbol
VCC
Vin, Vout
Parameter
Min
Max
Unit
2.0
6.0
V
DC Supply Voltage (Referenced to GND)
DC Input Voltage, Output Voltage (Referenced to GND)
TA
Operating Temperature, All Package Types
tr, tf
Input Rise and Fall Time
(Figure 1)
0
VCC
V
– 55
+ 125
_C
0
0
0
1000
500
400
ns
VCC = 2.0 V
VCC = 4.5 V
VCC = 6.0 V
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Guaranteed Limit
Symbol
Parameter
Test Conditions
VCC
V
– 55 to
25_C
85_C
125_C
Unit
VIH
Minimum High–Level Input
Voltage
Vout = 0.1 V or VCC – 0.1 V
|Iout|
20 µA
2.0
4.5
6.0
1.5
3.15
4.2
1.5
3.15
4.2
1.5
3.15
4.2
V
VIL
Maximum Low–Level Input
Voltage
Vout = 0.1 V or VCC – 0.1 V
|Iout|
20 µA
2.0
4.5
6.0
0.3
0.9
1.2
0.3
0.9
1.2
0.3
0.9
1.2
V
Minimum High–Level Output
Voltage
Vin = VIH or VIL
|Iout|
20 µA
2.0
4.5
6.0
1.9
4.4
5.9
1.9
4.4
5.9
1.9
4.4
5.9
V
4.5
6.0
3.98
5.48
3.84
5.34
3.70
5.20
2.0
4.5
6.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
4.5
6.0
0.26
0.26
0.33
0.33
0.40
0.40
6.0
± 0.1
± 1.0
± 1.0
VOH
Vin = VIH or VIL |Iout|
|Iout|
VOL
Maximum Low–Level Output
Voltage
Vin = VIH or VIL
|Iout|
20 µA
Vin = VIH or VIL |Iout|
|Iout|
Iin
MOTOROLA
Maximum Input Leakage Current
6.0 mA
7.8 mA
6.0 mA
7.8 mA
Vin = VCC or GND
(Pins 1, 2, 3, 21, 22, and 23)
3–2
V
µA
High–Speed CMOS Logic Data
DL129 — Rev 6
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
v
v
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MC54/74HC646
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
VCC
V
– 55 to
25_C
Output in High–Impedance State
Vin = VIL or VIH
Vout = VCC or GND, I/O Pins
6.0
± 0.5
± 5.0
± 10
µA
Vin = VCC or GND
Iout = 0 µA
6.0
8
80
160
µA
Symbol
Parameter
Test Conditions
IOZ
Maximum Three–State Leakage
Current
ICC
Maximum Quiescent Supply
Current (per Package)
85_C
125_C
Unit
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
High–Speed CMOS Logic Data
DL129 — Rev 6
3–3
MOTOROLA
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
v ÎÎÎÎ
v ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MC54/74HC646
AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6 ns)
Guaranteed Limit
VCC
V
– 55 to
25_C
85_C
125_C
Unit
fmax
Maximum Clock Frequency (50% Duty Cycle)
(Figures 3, 4 and 9)
2.0
4.5
6.0
6.0
30
35
4.8
24
28
4.0
20
24
MHz
tPLH,
tPHL
Maximum Propagation Delay, Input A to Output B
(or Input B to Output A)
(Figures 1, 2 and 9)
2.0
4.5
6.0
170
34
29
215
43
37
255
51
43
ns
tPLH,
tPHL
Maximum Propagation Delay, A–to–B Clock to Output B
(or B–to–A Clock to Output A)
(Figures 3, 4 and 9)
2.0
4.5
6.0
220
44
37
275
55
47
330
66
56
ns
tPLH,
tPHL
Maximum Propagation Delay, A–to–B Source to Output B
(or B–to–A Source to Output A)
(Figures 5, 6 and 9)
2.0
4.5
6.0
170
34
29
215
43
37
255
51
43
ns
tPLZ,
tPHZ
Maximum Propagation Delay, Output Enable to Output A or B
(Figures 7, 8 and 10)
2.0
4.5
6.0
175
35
30
220
44
37
265
53
45
ns
tPZL,
tPZH
Maximum Propagation Delay, Direction or Output Enable to
Output A or B
(Figures 7, 8 and 10)
2.0
4.5
6.0
175
35
30
220
44
37
265
53
45
ns
tTLH,
tTHL
Maximum Output Transition Time, Any Output
(Figures 1 and 9)
2.0
4.5
6.0
60
12
10
75
15
13
90
18
15
ns
Maximum Input Capacitance
—
10
10
10
pF
Maximum Three–State Output Capacitance
(Output in High–Impedance State)
—
15
15
15
pF
Symbol
Cin
Cout
Parameter
NOTES:
1. For propagation delays with loads other than 50 pF, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
2. Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
Typical @ 25°C, VCC = 5.0 V
CPD
Power Dissipation Capacitance (Per Channel)*
pF
60
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
v ÎÎÎÎ
v ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
* Used to determine the no–load dynamic power consumption: PD = CPD VCC 2 f + ICC VCC . For load considerations, see Chapter 2 of the
Motorola High–Speed CMOS Data Book (DL129/D).
TIMING REQUIREMENTS (Input tr = tf = 6 ns)
Guaranteed Limit
Symbol
Parameter
VCC
V
– 55 to
25_C
85_C
125_C
Unit
tsu
Minimum Setup Time, Input A to A–to–B Clock
(or Input B to B–to–A Clock)
(Figures 3 and 4)
2.0
4.5
6.0
100
20
17
125
25
21
150
30
26
ns
th
Minimum Hold Time, A–to–B Clock to Input A
(or B–to–A Clock to Input B)
(Figures 3 and 4)
2.0
4.5
6.0
5
5
5
5
5
5
5
5
5
ns
tw
Minimum Pulse Width, A–to–B Clock (or B–to–A Clock)
(Figures 3 and 4)
2.0
4.5
6.0
80
16
14
100
20
17
120
24
20
ns
Maximum Input Rise and Fall Times
(Figure 1)
2.0
4.5
6.0
1000
500
400
1000
500
400
1000
500
400
ns
tr, tf
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
MOTOROLA
3–4
High–Speed CMOS Logic Data
DL129 — Rev 6
MC54/74HC646
FUNCTION TABLE — HC646
Control Inputs
Output
Enable
Direc–
tion
H
X
A–to–B
Clock
H, L,
B–to–A
Clock
H, L,
Data Port Status
A–to–B
Source
X
X
L
X*
X*
L
B–to–A
Source
A
B
X
Input:
X
Input:
X
no change
no change
The output functions of the A and B
ports are disabled
L
H
X
X
X
X
L
H
L
H
X
X
X
X
L
H
The ports may be used as inputs to
the storage flip–flops. Data at the inputs are clocked into the flip–flops
with the rising edge of the Clocks.
Input:
Output:
X
H
H, L,
H, L,
X*
QA
QB
Description of Operation
The output mode of the B data port is
enabled and behaves according to
the following logic equation:
B = [A • (A–to–B Source)]
+ [QA • (A–to–B Source)]
L
X
L
H
L
H
no change
no change
no change
no change
1.) When A–to–B Source is low, the
data at the A data port are displayed at the B data port. The
states of the storage flip–flops are
not affected.
H
X
X
QA
no change
no change
2.) When A–to–B Source is high, the
states of the A storage flip–flops are
displayed at the B data port.
L
X
L
H
L
H
L
H
no change
no change
3.) When A–to–B Source is low, the
data at the A data port are clocked
into the A storage flip–flops by a rising–edge signal on the A–to–B
Clock.
H
X
L
H
QA
QA
L
H
no change
no change
4.) When A–to–B Source is high, the
data at the A data port are clocked
into the A storage flip–flops by a rising–edge signal on the A–to–B
Clock. The states, QA, of the storage flip–flops propagate directly to
the B data port.
Output:
Input:
L
X*
Storage Flip–
Flop States
The output mode of the A data port is
enabled and behaves according to
the following logic equation:
A = [B • (B–to–A Source)]
+ [QB • (B–to–A Source)]
X
L
L
H
L
H
no change
no change
no change
no change
1.) When B–to–A Source is low, the
data at the B data port are displayed at the A data port. The
states of the storage flip–flops are
not affected.
X
H
QB
X
no change
no change
2.) When B–to–A Source is high, the
states of the B storage flip–flops are
displayed at the A data port.
X
L
L
H
L
H
no change
no change
L
H
3.) When B–to–A Source is low, the
data at the B data port are clocked
into the B storage flip–flops by a rising–edge signal on the B–to–A
Clock.
X
H
QB
QB
L
H
no change
no change
L
H
4.) When B–to–A Source is high, the
data at the B data port are clocked
into the B storage flip–flops by a rising–edge signal on the B–to–A
Clock. The states, QB, of the storage flip–flops propagate directly to
the A data port.
* The clocks are not internally gated with either the Output Enables or the Source inputs. Therefore, data at the A and B ports may be clocked into
the storage flip–flops at any time.
High–Speed CMOS Logic Data
DL129 — Rev 6
3–5
MOTOROLA
MC54/74HC646
TYPICAL APPLICATIONS
A
FLIP–
FLOPS
BUS
A
B
FLIP–
FLOPS
BUS
B
A
FLIP–
FLOPS
BUS
A
CONTROL
LOGIC
(3)
CONTROL
PINS
(21)
(1)
BUS
B
CONTROL
LOGIC
(23)
DIRECTION OUTPUT A–TO–B B–TO–A
ENABLE CLOCK CLOCK
X
B
FLIP–
FLOPS
(2)
(22)
CONTROL
A–TO–B B–TO–A
PINS
SOURCE SOURCE
H
X
X
Data Storage From A and/or B Bus
BUS
A
(3)
(21)
(1)
(23)
DIRECTION
OUTPUT
ENABLE
A–TO–B
CLOCK
H
L
X
(2)
(22)
B–TO–A A–TO–B B–TO–A
CLOCK SOURCE SOURCE
X
L
X
Real–Time Transfer From Bus A to Bus B
A
FLIP–
FLOPS
B
FLIP–
FLOPS
BUS
B
CONTROL
LOGIC
(3)
CONTROL
PINS
(21)
DIRECTION
OUTPUT
ENABLE
L
L
(1)
(23)
A–TO–B B–TO–A
CLOCK CLOCK
X
X
(2)
(22)
A–TO–B B–TO–A
SOURCE SOURCE
X
L
Real–Time Transfer From Bus B to Bus A
MOTOROLA
3–6
High–Speed CMOS Logic Data
DL129 — Rev 6
MC54/74HC646
TIMING DIAGRAMS AND SWITCHING DIAGRAMS — HC646
VCC
OUTPUT ENABLE
GND
VCC
DIRECTION
GND
VCC
A–TO–B SOURCE
GND
VCC
B–TO–A SOURCE
GND
tr
tf
VCC
90%
50%
10%
A DATA PORT
GND
tPLH
90%
50%
10%
B DATA PORT
tPHL
tTLH
tTHL
Figure 1. A Data Port = Input, B Data Port = Output
VCC
OUTPUT ENABLE
GND
VCC
DIRECTION
GND
VCC
B–TO–A SOURCE
GND
VCC
A–TO–B SOURCE
GND
tr
tf
90%
50%
10%
B DATA PORT
VCC
GND
tPLH
tPHL
50%
A DATA PORT
Figure 2. A Data Port = Output, B Data Port = Input
NOTE:
= Don’t Care State
High–Speed CMOS Logic Data
DL129 — Rev 6
3–7
MOTOROLA
MC54/74HC646
VCC
OUTPUT ENABLE
GND
VCC
DIRECTION
GND
VCC
B–TO–A SOURCE
GND
VCC
A–TO–B SOURCE
GND
VCC
B–TO–A CLOCK
GND
VCC
50%
A DATA PORT
GND
tsu
th
VCC
50%
A–TO–B CLOCK
tw
GND
1/fmax
tPLH
tPHL
50%
B DATA PORT
Figure 3. A Data Port = Input, B Data Port = Output
VCC
OUTPUT ENABLE
GND
VCC
DIRECTION
GND
VCC
A–TO–B SOURCE
GND
VCC
B–TO–A SOURCE
GND
VCC
A–TO–B CLOCK
GND
VCC
50%
B DATA PORT
GND
tsu
th
VCC
50%
B–TO–A CLOCK
tw
A DATA PORT
GND
1/fmax
tPLH
tPHL
50%
Figure 4. B Data Port = Input, A Data Port = Output
MOTOROLA
3–8
High–Speed CMOS Logic Data
DL129 — Rev 6
MC54/74HC646
VCC
OUTPUT ENABLE
GND
VCC
DIRECTION
GND
VCC
INTERNAL QA
(FLIP–FLOP A)
GND
VCC
INTERNAL QB
(FLIP–FLOP B)
GND
VCC
A–TO–B
SOURCE
50%
GND
VCC
B–TO–A
SOURCE
GND
VCC
A DATA PORT
tPLH
GND
tPHL 3
tPLH
tPHL
50%
B DATA PORT
1
2
NOTES:
1. B Data Port (output) changes from the level of the storage flip–flop, QA, to the level of A Data Port (input).
2. B Data Port (output) changes from the level of the A Data Port (input) to the level of the storage flip–flop, QA.
3. The A storage flip–flop, A–to–B Source, and A Data Port (input) have simultaneously changed states.
Figure 5. A Data Port = Input, B Data Port = Output
High–Speed CMOS Logic Data
DL129 — Rev 6
3–9
MOTOROLA
MC54/74HC646
VCC
OUTPUT ENABLE
GND
VCC
DIRECTION
GND
VCC
INTERNAL QA
(FLIP–FLOP A)
GND
INTERNAL QB
(FLIP–FLOP B)
VCC
A–TO–B
SOURCE
VCC
GND
GND
VCC
B–TO–A
SOURCE
50%
GND
tPLH
A DATA PORT
tPHL
tPLH
tPHL
50%
1
2
VCC
B DATA PORT
GND
3
NOTES:
1. A Data Port (output) changes from the level of the storage flip–flop, QB, to the level of B Data Port (input).
2. A Data Port (output) changes from the level of the B Data Port (input) to the level of the storage flip–flop, QB.
3. The B storage flip–flop, B–to–A Source, and B Data Port (input) have simultaneously changed states for the purpose of this
3. example. A Data Port (output) is now displaying the voltage level of B Data Port (input).
Figure 6. A Data Port = Output, B Data Port = Input
PIN DESCRIPTIONS
INPUTS/OUTPUTS
Direction is high, the A data ports are inputs and the B data
ports are outputs. When Direction is low, the A data ports are
outputs and the B data ports are inputs.
A0 – A7 (Pins 4 – 11) and B0 – B7 (Pins 20 – 13)
A and B data ports. These pins may function either as inputs to or outputs from the transceivers.
A–to–B Clock, B–to–A Clock (Pins 1, 23)
Clocks for the internal D flip–flops. With a low–to–high
transition on the appropriate Clock pin, data on the A (or B)
inputs are clocked into the internal A (or B) flip–flops. These
clocks are not internally gated with the Output Enable or the
Direction pins, therefore data at the A and B pins may be
clocked into the storage flip–flops at any time.
CONTROL INPUTS
Output Enable (Pin 21)
Active–low output enable. When this pin is low, the outputs
are enabled and function normally. When this pin is high, the
A and B data ports are in high–impedance states. See the
Function Table.
A–to–B Source, B–to–A Source (Pins 2, 22)
Direction (Pin 3)
Data–source selection pins. Depending upon the states of
these pins (see the Function Table), data at the outputs may
come either from the inputs or from the D flip–flops.
Data direction control. When the Output Enable pin is low,
this control pin determines the direction of data flow. When
MOTOROLA
3–10
High–Speed CMOS Logic Data
DL129 — Rev 6
MC54/74HC646
VCC
OUTPUT ENABLE
GND
VCC
50%
DIRECTION
GND
tPZH
tPHZ
90%
VOH
50%
DATA PORT A
HIGH IMPEDANCE
tPZL
tPLZ
HIGH IMPEDANCE
DATA PORT A
50%
10%
VOL
tPHZ
tPZH
VOH
90%
50%
DATA PORT B
HIGH IMPEDANCE
tPLZ
tPZL
HIGH IMPEDANCE
DATA PORT B
50%
10%
DATA PORT A = INPUT
DATA PORT B = OUTPUT
VOL
DATA PORT A = OUTPUT
DATA PORT B = INPUT
Figure 7.
VCC
OUTPUT ENABLE
50%
GND
tPLZ
tPZL
OUTPUT A OR B
tPZH
OUTPUT A OR B
HIGH
IMPEDANCE
50%
tPHZ
10%
VOL
90%
VOH
50%
HIGH
IMPEDANCE
Figure 8.
TEST POINT
TEST POINT
OUTPUT
DEVICE
UNDER
TEST
OUTPUT
DEVICE
UNDER
TEST
CL*
* Includes all probe and jig capacitance
CL*
CONNECT TO VCC WHEN
TESTING tPLZ AND tPZL.
CONNECT TO GND WHEN
TESTING tPHZ AND tPZH.
* Includes all probe and jig capacitance
Figure 9. Test Circuit
High–Speed CMOS Logic Data
DL129 — Rev 6
1 kΩ
Figure 10. Test Circuit
3–11
MOTOROLA
MC54/74HC646
LOGIC DETAIL
D
C
C
Q
VCC
HC648
A
Q
HC646
HC646
20
A0
4
VCC
B0
TAB
TAB
SAB
CAB
CAB
HC648
Q
HC648
D
B
HC646
Q
C
C
HC646
A1
A2
A3
A4
A5
A6
A7
CBA
CBA
SBA
TBA
TBA
HC648
5
19
6
18
7
17
8
16
9
15
10
14
11
13
TBA
SBA
SAB
DIRECTION
OUTPUT ENABLE
22
2
B1
B2
B3
B4
B5
B6
B7
B–TO–A SOURCE
A–TO–B SOURCE
3
21
TBA
TAB
CBA
CBA
23
B–TO–A CLOCK
CAB
TAB
MOTOROLA
3–12
CAB
1
A–TO–B CLOCK
High–Speed CMOS Logic Data
DL129 — Rev 6
MC54/74HC646
OUTLINE DIMENSIONS
J SUFFIX
CERAMIC PACKAGE
CASE 758–02
ISSUE A
L
B
24
13
1
12
P
NOTES:
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
4. CONTROLLING DIMENSION: INCH.
5. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
J
–A–
DIM
A
B
C
D
F
G
J
K
L
N
P
N
C
–T–
K
SEATING
PLANE
G
INCHES
MIN
MAX
1.240
1.285
0.285
0.305
0.160
0.200
0.015
0.021
0.045
0.062
0.100 BSC
0.008
0.013
0.100
0.165
0.300
0.310
0.020
0.050
0.360
0.400
MILLIMETERS
MIN
MAX
31.50
32.64
7.24
7.75
4.07
5.08
0.38
0.53
1.14
1.57
2.54 BSC
0.20
0.33
2.54
4.19
7.62
7.87
0.51
1.27
9.14
10.16
F
D 24 PL
0.25 (0.010)
M
T A
M
N SUFFIX
PLASTIC PACKAGE
CASE 724–03
ISSUE D
–A–
24
13
1
12
NOTES:
1. CHAMFERED CONTOUR OPTIONAL.
2. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
4. CONTROLLING DIMENSION: INCH.
–B–
L
C
–T–
NOTE 1
K
SEATING
PLANE
N
E
G
M
J
F
D
High–Speed CMOS Logic Data
DL129 — Rev 6
0.25 (0.010)
24 PL
0.25 (0.010)
24 PL
M
T A
M
3–13
M
T B
M
DIM
A
B
C
D
E
F
G
J
K
L
M
N
INCHES
MIN
MAX
1.230
1.265
0.250
0.270
0.145
0.175
0.015
0.020
0.050 BSC
0.040
0.060
0.100 BSC
0.007
0.012
0.110
0.140
0.300 BSC
0_
15_
0.020
0.040
MILLIMETERS
MIN
MAX
31.25
32.13
6.35
6.85
3.69
4.44
0.38
0.51
1.27 BSC
1.02
1.52
2.54 BSC
0.18
0.30
2.80
3.55
7.62 BSC
0_
15_
0.51
1.01
MOTOROLA
MC54/74HC646
OUTLINE DIMENSIONS
DW SUFFIX
PLASTIC SOIC PACKAGE
CASE 751E–04
ISSUE E
–A–
24
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN
EXCESS OF D DIMENSION AT MAXIMUM
MATERIAL CONDITION.
13
–B–
12X
P
0.010 (0.25)
1
M
B
M
12
24X
D
J
0.010 (0.25)
M
T A
S
B
S
F
R
C
–T–
SEATING
PLANE
M
22X
K
G
X 45 _
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
15.25
15.54
7.40
7.60
2.35
2.65
0.35
0.49
0.41
0.90
1.27 BSC
0.23
0.32
0.13
0.29
0_
8_
10.05
10.55
0.25
0.75
INCHES
MIN
MAX
0.601
0.612
0.292
0.299
0.093
0.104
0.014
0.019
0.016
0.035
0.050 BSC
0.009
0.013
0.005
0.011
0_
8_
0.395
0.415
0.010
0.029
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
How to reach us:
USA/EUROPE: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: [email protected] –TOUCHTONE (602) 244–6609
INTERNET: http://Design–NET.com
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
MOTOROLA
◊
CODELINE
3–14
*MC54/74HC646/D*
MC54/74HC646/D
High–Speed CMOS Logic Data
DL129 — Rev 6