Revised April 2003 MSX532 532 Port Digital Crosspoint Switch with LVTTL I/O’s General Description Features The MSX family of SRAM-based bit-oriented switching devices offer flow-through NRZ data rates of up to 150Mb/s and registered clock frequencies of up to 75MHz. The I/O buffers are individually configurable. The I/O buffers can be connected to each other through the switch matrix, which supports One-to-One and One-to-Many connections. ■ SRAM-based, in-system programmable The proprietary RapidConfigure parallel interface allows fast configuration of both the I/O buffers and switch matrix. It also allows readback of the device for test and verification purposes. The MSX devices also support the industry standard JTAG (IEEE 1149.1) interface for boundary scan testing. The JTAG interface can also be used to download configuration data to the device. A functional block diagram of the MSX architecture is shown in Figure 1. ■ Configurable I/O Ports • Individually programmable as input, output, bi-directional, or Bus Repeater mode • Control Signals per I/O port: 2 input enables, 2 output enables, 2 Global Clock inputs and Next Neighbor Clock option • Output data inversion: capable of inverting output signals in flow through mode ■ Non-blocking switch matrix • One-to-One and One-to-Many connections Double-buffered configuration RAM cells simultaneous global updates for ■ Registered and flow-through data modes • Up to 75 MHz clock frequency in registered mode • Up to 150 Mb/s in flow-through mode ■ 20 ns propagation delay in flow-through mode ■ 8 mA output current ■ Dedicated RapidConfigure parallel interface or JTAG serial interface available for configuration and readback of MSX devices ■ 3.3V operation, LVTTL I/O's (5V tolerant) ■ MSX532 is offered in a 792 TBGA package Applications • Telecom and datacom switching • Video switches and servers • Test equipment Ordering Code: Order Number MSX532TB792 Package Number Package Description BGA792A 792-Ball Thermally-Enhanced Ball Grid Array (TBGA), JEDEC MO-149, 1.0mm pitch, 40mm Square MSX, Bus Repeater, and RapidConfigure are trademarks of Fairchild Semiconductor Corporation. © 2003 Fairchild Semiconductor Corporation DS500746 www.fairchildsemi.com MSX532 532 Port Digital Crosspoint Switch with LVTTL I/O’s June 2002 MSX532 FIGURE 1. MSX532 Functional Block Diagram Introduction without affecting the current configuration of the switch. When the UPDATE signal is asserted HIGH, the entire switch matrix would be reconfigured simultaneously. If the UPDATE signal is asserted continuously, all crosspoint programming commands (generated by JTAG or RapidConfigure programming cycles) will take effect immediately, since the Loading SRAM cell’s contents will be transferred directly to the Active SRAM cell. Switch Matrix The MSX family are SRAM-based, bit-oriented switching devices. The main functional block of the device is a Switch Matrix as shown in Figure 1. The Switch Matrix is an x-y routing structure (or grid). Each horizontal signal trace is hardwired to a corresponding vertical signal trace as shown by the junction dots. An I/O Port pin connects to this horizontal-vertical trace pair through a programmable buffer. Signal paths through the Switch Matrix are well balanced, resulting in predictable and uniform pin-to-pin delays. The two SRAM cells (shown in Figure 2) are arranged so that a double buffered scheme can be employed. The Active SRAM cells are responsible for establishing connections in the switch matrix by turning ON a pass transistor, while the Loading SRAM cell can be used to store a second configuration that can be transferred to the Active SRAM cell at any time. If the UPDATE signal is asserted HIGH, the contents of the Loading SRAM cell are transferred to the Active SRAM cell and the switch matrix connection is either made or broken. The UPDATE signal can be used to control when the switch matrix is reconfigured. For instance, as long as the UPDATE signal is de-asserted (held LOW), the Loading SRAM cells for the entire switch matrix could be changed www.fairchildsemi.com FIGURE 2. MSX Switch Matrix Diagram 2 (Continued) Input and Output Buffers (I/O buffers) array side for each I/O Port and control pin is used to pull unused or non-driven circuits to a stable HIGH level. Figure 3 shows a basic block diagram of an I/O buffer with the sources for the three control signals (IE, OE and CLK). For any given port number, these three control signals can be selected from one of two sources. The control signals are explained in more detail in the following section. Each signal in the switch matrix is connected to a programmable I/O buffer, which is independently configured through either the RapidConfigure or JTAG Interface. The I/O buffer attributes include its signal direction (input, output or bi-directional) and data flow mode (flow-through or registered). The signal can also be inverted at the output. Trickle current source (normally 15 µA) on the pin side and VDD IE { CLK Sources { Next Neighbor CLK_IN IN BR Switch Matrix I/O Port OUT CLK Sources { Next Neighbor CLK_OUT OE { VSS FIGURE 3. MSX I/O Buffer Block Diagram I/O Port Function Mode Next-Neighbor Clocking The following legend describes the various modes of the Input or Output Ports and the specification used by the Fairchild Development System Software for bitstream generation. Included among the clocking options in MSX532 is the ability to use an adjacent port as a clock source. This is referred to as a Next-Neighbor Clock. In the MSX532, Port 0 can be clocked by Port 1, which can be clocked by Port 2, which can be clocked by Port 3, etc. In turn, Port 531 can be clocked by Port 0. Since each I/O buffer can be programmed as an input or an output (among other options) there are four ways to utilize the next neighbor clock option. Legend: Ax = Switch Matrix Signal Px = I/O Port Signal IE = Input Enable OE = Output Enable (Active LOW) CLK = Clock 3 www.fairchildsemi.com MSX532 Introduction MSX532 Introduction (Continued) Option 1: Registered Input with Next-Neighbor Clock as Input Option 2: Registered Output with Next-Neighbor Clock as Input www.fairchildsemi.com 4 MSX532 Introduction (Continued) Option 3: Registered Input with Next-Neighbor Clock as Output Option 4: Registered Output with Next-Neighbor Clock as Output 5 www.fairchildsemi.com MSX532 Introduction (Continued) TABLE 1. Summary for Programmable I/O Attributes for MSX Devices Symbol I/O Port Function Mnemonic Input The external signal is buffered from the Input Port pin to the corresponding Switch Matrix line. IN Output The internal signal is buffered from the corresponding Switch Matrix line to the Output Port pin. In this mode an optional output enable (OE) can be selected. The default level is logic 0. The output data inversion mode is available to invert the output signal. OP Registered Input The external signal at the I/O Port is registered into an edgetriggered register within the I/O Port. A clock source is required in this mode. An input enable (IE) is available but not required. RI Registered Output The internal signal on the Switch Matrix line is registered by an edge-triggered register within the I/O Port. A clock source is required in this mode. An output enable (OE) is available but not required. RO The output data inversion mode is NOT available to invert the output signal. Bidirectional Transceiver In this mode, the I/O buffer acts as a bidirectional transceiver between the I/O Port pin and the corresponding Switch Matrix line. This mode requires an input enable (IE) and output enable (OE). BT The output data inversion mode is available to invert the output signal. Bus Repeater In the Bus Repeater mode, the I/O Port behaves as a wire (with a non-zero propagation delay). This unique feature patented by Fairchild incorporates as self-sensing circuit to determine signal direction and does not require a direction control signal. BR When multiple I/O Ports, configured as “Bus Repeater”, are connected together through the Switch Matrix to form a single internal node, any (open collector or 3-STATABLE) LOW (logic “0”) external signal appearing at any one of the I/O Ports gets repeated (or broadcast) to other I/O Ports. For more details, refer to the Technical Note: “The Bus Repeater Mode” www.fairchildsemi.com Pin Side Force 0 In this output mode, the I/O Port pin is forced LOW (logic 0), regardless of the signal on the corresponding switch Matrix line. In this mode an optional output enable (OE) can be selected. F0 Pin Side Force 1 In this output mode, the I/O Port pin is forced HIGH (logic 1), regardless of the signal on the corresponding Switch Matrix line. In this mode an optional output enable (OE) can be selected. F1 No Connect In this mode, the I/O Port pin is isolated from the Switch Matrix. This is done by 3-STATING both the input and output part of the I/O buffer. NC Array Side Force 0 In this input mode, the Switch Matrix line is forced LOW (logic 0), regardless of the signal on the corresponding I/O Port. In this mode an optional input enable (IE) can be selected. A0 6 (Continued) IE OE Px D Ax Q Array Side Force 1 In this input mode, the Switch Matrix line is forced HIGH (logic 1), regardless of the signal on the corresponding I/O Port. In this mode an optional input enable (IE) can be selected. A1 Bidirectional Transceiver with Register Input This mode combines Registered Input and buffered Output (OP). This mode requires a clock source (CLK), and input enable (IE) and output enable (OE). BT & RI Bidirectional Transceiver with Register Output This mode combines Registered Output (RO) and buffered Input (IE). This mode requires a clock source (CLK), and input enable (IE) and output enable (OE). BT & RO CLK IE Ax D Px Q CLK OE IE Px The output data inversion mode is NOT available to invert the output signal. D1 Q1 CLK_IN Q0 Bidirectional Transceiver with CLK_OP Register I/O Ax This mode combines Registered Input (RI) and Registered Output (RO). This mode requires a clock source (CLK), and input enable (IE) and output enable (OE). BT, RI & RO The output data inversion mode is NOT available to invert the output signal. D0 OE 7 www.fairchildsemi.com MSX532 Introduction MSX532 Introduction (Continued) Control Signals four global input enables (IE_0 through IE_3), and four global output enables (OE_0 through OE_3). Each global control signal is available to half of the ports on the MSX device. Table 2 below shows the global control signals that are available to each port. Every port on the MSX devices has two available global clock inputs, input enables, and output enables. However, not all ports have access to the same global control signals. There are four global clocks (CLK_0 through CLK_3), TABLE 2. MSX Global Control Signals MSX340 Port Number MSX532 Port Input/Output Input Output Input Input Number Clock Source 1 Clock Source 2 Enable 1 Enable 2 Ports 0-84 Ports 0-132 CLK_0 CLK_1 IE_0 Ports 85-169 Ports 133-265 CLK_1 CLK_2 IE_1 Ports 170-254 Ports 266-398 CLK_2 CLK_3 Ports 255-339 Ports 399-531 CLK_3 CLK_0 RapidConfigure Interface Output Enable 2 IE_1 OE_0 OE_1 IE_2 OE_1 OE_2 IE_2 IE_3 OE_2 OE_3 IE_3 IE_0 OE_3 OE_0 RCI[1:0] are dedicated inputs. RC_RDY is a dedicated output. The MSX family of Digital Crosspoint Switches can be configured in either of two ways. Both the JTAG serial programming interface and the RapidConfigure (RC) parallel interface can assign crosspoint connections and configure I/O buffers, but JTAG is a serial input and is slower. JTAG runs reliably up to 8 MHz and requires over twenty cycles to program a single command. The RapidConfigure interface can run at up to 40 MHz and can send a new command on every clock cycle. Systems requiring frequent reconfiguration should be designed to use the RapidConfigure interface. The RC_CLK signal is the strobe that latches write data into the MSX device. It synchronizes the signals driven on to the RC interface and determines the rate at which commands can be loaded into the MSX device. The MSX device latches command data on the falling edge of RC_CLK when RC_EN is asserted. RC Write operations can be repeated on consecutive clocks simply by keeping the RC_EN signal asserted and providing new commands on the RCA, RCB, RCC, and RCI signals. RC Read operations require four AC clock cycles and cannot be performed on back-to-back clocks. RapidConfigure is a 29 signal parallel interface that effectively flattens the serial JTAG bitstream. Rather than consecutively shifting in twenty or so bits of data to configure an I/O buffer or make a crosspoint connection, all of these bits are driven on the RC lines simultaneously and then latched in by the MSX device in a single cycle. Additionally, the MSX RapidConfigure interface has been enhanced to enable reading back of configuration data from the device. RC_EN is an Active LOW signal that enables an RC operation. Back-to-back RC Write operations may be performed by keeping the RC_EN signal asserted. During RC Read operations RC_EN must remain asserted until the cycle is complete. Back-to-back RC Read operations can be executed simply by keeping RC_EN asserted. The MSX device asserts RC_RDY when it has entered the final stage of a read and data out is ready. RC_RDY is asserted on the falling edge of RC_CLK, and de-asserted on the next falling edge. The MSX device will be driving valid read data on the RC interface when RC_RDY is asserted HIGH. RCA[9:0] = RapidConfigure Address A RCB[9:0] = RapidConfigure Address B RCC[3:0] = RapidConfigure Program Variable C RCI[1:0] Output Enable 1 = RapidConfigure Instruction Bits RC_CLK = RapidConfigure Clock RC_EN = RapidConfigure Cycle Enable RC_RDY = Read out I/O buffer and connect/disconnect status Signal Description The RC interface supports four types of operations. Two are write operations to the MSX (I/O buffer configuration or crosspoint programming) and two are read operations (I/O buffer and crosspoint configuration read). The RC signals serve different purposes depending upon the type of operation being performed. Most of the signals on the MSX device’s RC interface are bi-directional. These signals receive data during write operations. During read operations these pins receive data during the first part of the cycle, and then drive the interface in the final part of the cycle. RCA[9:0], RCB[9:0], and RCC[0] are bi-directional pins. RCC[3:1], RC_CLK, RC_EN, and www.fairchildsemi.com FIGURE 4. MSX Switch Configuration Signals The RC interface specifies that the RCI signals be used to determine the type of operation being performed. 8 MSX532 Introduction (Continued) TABLE 3. RapidConfigure Input RCI [1:0] Description 00 Force Testing Command. Force commands can force a port to drive either a one or a zero to either the pad or crosspoint array. These commands are generally only used for diagnostic testing. 01 I/O Buffer Programming Command. These commands are used to configure a port as an input or output, registered or not, etc. 10 Crosspoint Array Programming Command. Crosspoint connections can be made or broken, or an individual port can be reset. 11 Read and Reset Commands. This setting is used to read back configuration data from an I/O buffer or crosspoint connection information. It can also be used to reset all of the I/O buffers and the crosspoint array. Read and Reset Commands When RCI[1:0] are equal to 11 a Read or Reset command is executed (see Table 4: Reset Commands). Reset Commands RCI[1:0] 1 0 RCC[3:0] 3 2 1 RCB[9:0] 9 0 1 1 0 8 7 5 6 4 RCA[9:0] 3 1 2 0 9 7 8 6 5 3 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Cmd Options Reset Command Read/Reset Cmd TABLE 4. Reset Commands (Continued) RCC [2:1] 00 Description Reserved. This is not a valid command. 01 Reserved. This is not a valid command. 10 Crosspoint Array Reset. This command will reset the entire crosspoint array, breaking any previously existing connections. 11 Crosspoint Array and I/O Buffer Reset. This command resets both the I/O buffers and the crosspoint array as described above. RCC[0], RCB[9:0], and RCA[9:0] have no function during a reset command and must be written as zeroes. The MSX device uses RCC[0] to show whether the two ports are connected. It drives RCC[0] HIGH if the two ports are connected, and pulls RCC[0] LOW if the two ports are not connected. Crosspoint Read Commands A crosspoint read is used to check whether two ports are connected through the crosspoint array. The two ports are addressed using RCA[9:0] and RCB[9:0] RCI[1:0] 1 0 RCC[3:0] 3 2 1 RCB[9:0] 9 0 8 7 6 1 1 1 0 0 0 5 4 RCA[9:0] 3 2 1 0 9 7 8 6 Port #1 5 3 4 2 1 0 Port #2 Cross Point Read Read Command Read/Reset Cmd I/O Buffer Read Commands using RCA[9:0]. The MSX device uses RCA[9:0] and RCB[9:0] to return all of the configuration data for the particular I/O buffer. I/O Buffer reads are more complicated (see Table 5: I/O Buffer read Commands). The port to be read is addressed RCI[1:0] 1 0 RCC[3:0] 3 2 1 0 RCB[9:0] 9 8 7 6 5 4 3 RCA[9:0] 2 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9 8 7 6 5 4 3 2 1 0 I/O Buffer Address I/O Buffer Config Read Read Command Read/Reset Command 9 www.fairchildsemi.com MSX532 Introduction (Continued) TABLE 5. I/O Buffer Read Commands Signal RCA[0] Description RCA[0] is set to one if the I/O buffer is an input. It is zero if the I/O buffer is not configured as an input. Note that an I/O buffer can be configured as an Input, Output, Input and Output (in bi-directional mode), or No Connect. All I/O buffers default to inputs at power-on reset or following a global I/O buffer Reset command, so RCA[0] will read as a one at reset. RCA[0] RCA[1] I/O buffer not set to input 1 I/O buffer set to input (default) RCA[1] is set to a one if the I/O buffer is an output. It is zero if the I/O buffer is not configured as an output. If RCA[1:0] equal 00 the I/O buffer is configured as a No Connect. A No Connect means that the I/O pin of the MSX device is not connected to the crosspoint array. RCA[1] will read as a zero at reset. RCA[1] RCA[2] I/O buffer not set to output (default) 1 I/O buffer set to output RCA[2] is set to a one if the I/O buffer is configured in Bus Repeater Mode. It is zero if the I/O buffer is not in Bus Repeater Mode. Bus Repeater Mode will be disabled by default at reset, so RCA[2] will read as a zero. I/O buffer not set to Bus Repeater Mode (default) 1 I/O buffer set to Bus Repeater Mode RCA[3] is set to a one if the I/O buffer is configured as a registered input and is assigned to use its Input Clock 1. It is zero if the I/O buffer is not using Input Clock 1. Input Clock 1 for each I/O buffer will vary depending upon the quadrant of the device in which it resides. RCA[3] will read as a zero at reset. I/O buffer not set to registered input mode (default) 1 I/O buffer set to registered input mode RCA[4] is set to a one if the I/O buffer is configured as a registered input and is assigned to use its Input Clock 2. It is zero if the I/O buffer is not using Input Clock 2. As with Input Clock 1, the source changes depending upon the quadrant of the device in which the I/O buffer resides. RCA[4] will read as a zero at reset. I/O buffer not using Input Clock Source 2 in RI mode (default) 1 I/O buffer using Input Clock Source 2 in RI mode RCA[5] is set to a one if the I/O buffer is configured as a registered input and assigned to use Next Neighbor Clocking. It is zero if Next Neighbor Clocking is disabled. Next Neighbor Clocking allows the I/O buffer to be registered using the next higher numbered Port number signal as its input clock source. Port 100 on the MSX devices can use the signal from Port 101 for its input clock if this mode is enabled. Port 531’s Next Neighbor is Port 0. Next Neighbor Clocking will be disabled by default at reset, so RCA[5] will read as a zero. Function 0 I/O buffer not using Next Neighbor Clock in RI mode (default) 1 I/O buffer using Next Neighbor Clock in RI mode RCA[6] is set to a one if the I/O buffer is configured as a registered output and is assigned to use its Output Clock 1. It is zero if the I/O buffer is not using Output Clock 1. As with Input Clock 1 and 2, the Output Clocks will vary depending upon the quadrant of the device in which the I/O buffer resides. In the case of the MSX devices, the Output Clock 1 and Input Clock 1 for each I/O buffer have the same source, and the Output Clock 2 and Input Clock 2 do as well. RCA[6] will read as a zero at reset. RCA[6] RCA[7] Function 0 RCA[5] RCA[6] Function 0 RCA[4] RCA[5] Function 0 RCA[3] RCA[4] Function 0 RCA[2] RCA[3] Function 0 Function 0 I/O buffer not using Output Clock Source 1 in RO mode (default) 1 I/O buffer using Output Clock Source 1 in RO mode RCA[7] is set to a one if the I/O buffer is configured as a registered output and is assigned to use its Output Clock 2. It is zero if the I/O buffer is not using Output Clock 2. As with Output Clock 1, the source changes depending upon the quadrant of the device in which the I/O buffer resides. RCA[7] will read as a zero at reset. RCA[7] Function 0 I/O buffer not using Output Clock Source 2 in RO mode (default) 1 I/O buffer using Output Clock Source 2 in RO mode I/O Buffer Read Commands (Continued) www.fairchildsemi.com 10 Signal RCA[8] RCA[8] is set to a one if the I/O buffer is configured as a registered output and is assigned to use Next Neighbor Clocking. It is zero if Next Neighbor Clocking is disabled. Next Neighbor Clocking allows the I/O buffer to be registered using the next higher numbered Port number signal as its output clock source. Port 100 on the MSX devices can use the signal from Port 101 for its output clock if this mode is enabled. Port 531’s Next Neighbor is Port 0. Next Neighbor Clocking will be disabled by default at reset, so RCA[8] will read as a zero. RCA[8] RCA[9] I/O buffer not using Next Neighbor Clock in RO mode (default) 1 I/O buffer using Next Neighbor Clock in RO mode RCA[9] is set to a one if the I/O buffer is assigned to use Input Enable 1. It is zero if the I/O buffer is not using Input Enable 1. All bi-directional I/O buffers must use one of the dedicated input enable pins (IE_0, IE_1, IE_2, or IE_3) to enable the I/O buffer to drive data into the crosspoint array. As with the dedicated clock pins, each I/O buffer can access two input enable signals, which will vary depending upon the quadrant of this chip in which the I/O buffer resides. RCA[9] will read as a zero at reset. I/O buffer not using Input Enable Source 1 (default) 1 I/O buffer using Input Enable Source 1 RCB[0] is set to a one if the I/O buffer is assigned to use Input Enable 2. It is zero if the I/O buffer is not using Input Enable 2. RCB[0] will read as a zero at reset. Function 0 I/O buffer not using Input Enable Source 2 (default) 1 I/O buffer using Input Enable Source 2 RCB[1] is set to a one if the I/O buffer is assigned to use Output Enable 1. It is zero if the I/O buffer is not using Output Enable 1. All bi-directional I/O buffers must use one of the dedicated output enable pins (OE_0, OE_1, OE_2, or OE_3) to enable the I/O buffer to drive the pin of the device. As with the dedicated clock pins, each I/O buffer can access two output enable signals, which will vary depending upon the quadrant of the chip in which the I/O buffer resides. RCB[1] will read as a zero at reset. RCB[1] RCB[2] Function 0 RCB[0] RCB[1] Function 0 RCA[9] RCB[0] (Continued) Description Function 0 I/O buffer not using Output Enable Source 1 (default) 1 I/O buffer using Output Enable Source 1 RCB[2] is set to a one if the I/O buffer is assigned to use Output Enable 2. It is zero if the I/O buffer is not using Output Enable 2. RCB[2] will read as a zero at reset. RCB[2] Function 0 I/O buffer not using Output Enable Source 2 (default) 1 I/O buffer using Output Enable Source 2 RCB[6:3] RCB[6:3] are reserved. RCB[7] RCB[7] is set to a one if the I/O buffer is configured as an inverted output. It is zero if the I/O buffer is not configured as an inverted output. The output of any I/O buffer may be inverted so long as it is not a registered output or running in Bus Repeater Mode. RCB[7] will read as a zero at reset. RCB[7] RCB[8] I/O buffer not configured as inverted output (default) 1 I/O buffer configured as inverted output RCB[8] is set to a one if the I/O buffer is configured as a registered input and is using an inverted input clock source. It is zero if it is not using an inverted input clock. Inputs can use any of the three clock sources described above and may invert that clock if desired. RCB[8] will read as a zero at reset. RCB[8] RCB[9] Function 0 Function 0 I/O buffer not using inverted clock source in RI mode (default) 1 I/O buffer using inverted clock source in RI mode RCB[9] is set to a one if the I/O buffer is configured as a registered output and is using an inverted output clock source. It is zero if it is not using an inverted output clock. Outputs can use any of the three clock sources described above and may invert that clock if desired. RCB[9] will read as a zero at reset. RCB[9] Function 0 I/O buffer not using inverted clock source in RO mode (default) 1 I/O buffer using inverted clock source in RO mode 11 www.fairchildsemi.com MSX532 Introduction MSX532 Introduction (Continued) Crosspoint Programming using RCA[9:0] and RCB[9:0]. RCC[1] controls whether a connection is made or broken. The two ports are connected when RCC[1] is set to zero, and disconnected when RCC[1] is set to one Connections between ports through the crosspoint array can be quickly made or broken using the RC interface. The two ports to be connected or disconnected are addressed RCI[1:0] 1 0 RCC[3:0] 3 2 1 1 0 0 1 RCB[9:0] 9 0 8 7 6 0 5 4 RCA[9:0] 3 2 1 0 9 8 7 6 Port #1 5 4 3 2 1 0 Port #2 Connect/Disconnect (0-Connect, 1-Disconnect) Crosspoint Program The UPDATE signal can be used to control when the switch matrix connections are reconfigured. Unlike I/O buffer programming commands, which take effect immediately upon execution of the command, crosspoint connections will only be made if the UPDATE signal is asserted HIGH. The crosspoint programming command loads the Loading SRAM cell in the selected crosspoint array location with a one (in the case of a new connection) or a zero (to break an existing connection). If the UPDATE signal is asserted, the Loading SRAM cells contents are immediately transferred to the Active SRAM cell and the connection is made or broken. However, if the UPDATE signal is held LOW, the new connection will not be made. RCI[1:0] 1 0 RCC[3:0] 3 2 1 0 I/O Buffer Configuration Programming Each port can be fully configured in a single RapidConfigure cycle. The figure below shows how an I/O buffer is programmed using all of the signals on the RC interface. The following table shows how each control bits (RCC[3:0] and RCB[9:0]) are used. During an I/O buffer programming command the RCA[9:0] signals address the port to be programmed (see Table 6: I/O buffer Programming Commands) RCB[9:0] 9 8 7 6 5 4 3 RCA[9:0] 2 1 0 1 0 9 8 7 6 5 4 3 2 1 0 I/O Buffer Address Inverted Output Clock Inverted Input Clock Invert Output Input Clock Source Output Clock Source Input Enable Select Output Enable Select Input/Output Select Bus Repeater Enable I/O Buffer Configuration www.fairchildsemi.com 12 MSX532 Introduction (Continued) TABLE 6. I/O Buffer Programming Commands Signal RCC[3] Description Bus Repeater Enable. Setting this bit to a one enables the I/O buffer to operate in Bus Repeater Mode, a special bi-directional mode. When zero the I/O buffer will not operate in Bus Repeater Mode. When programming an I/O buffer to use Bus Repeater Mode, all of the other control bits must be set to zeroes. Attempting to combine other I/O buffer options with Bus Repeater Mode may lead to unpredictable results. RCC[2:1] Input/Output Select. These two bits are used to configure the I/O buffer as an input, output, input/output (bidirectional mode), or no connect. When operating in bi-directional mode it is critical that the port be assigned input and output enables so that it can be 3-STATED appropriately to avoid contention. RCC[2:1] RCC[0] and RCB[9] Function 00 No Connect 01 Input 10 Output 11 Input / Output for Bi-Directional Mode Output Enable Select. These two bits are used to select from the two available active LOW global output enables. The output will be allowed to drive when its assigned output enable is asserted. An output port will be 3STATED when its assigned output enable is de-asserted. When both output enables are selected, the two available active LOW output enable signals are AND’ed together to form the port’s combined output enable signal. RCC[0], RCB[9] Function 00 No Output Enable Selected 01 Output Enable 1 10 Output Enable 2 11 Both Output Enables RCB[8:7] Input Enable Select. These bits are used to assign a port one of the two available global input enable signals. An input port will drive into the crosspoint array when its assigned input enable is asserted. When both input enables are selected, the two available input enable signals are OR’ed together to form the port’s combined input enable signal. RCB[8:7] Function 00 No Input Enable Selected 01 Input Enable 1 10 Input Enable 2 11 Both Input Enables RCB[6:5] Output Clock Source. These bits are used to select a clock source for a registered output port. Each I/O buffer can select from one of two global clock inputs, or can use Next Neighbor Clocking. Next Neighbor Clocking uses the signal on the next higher numbered port as a clock source. If no clock source is assigned to an output port, it will operate in flow-through mode. RCB[6:5] Function 00 No Output Clock Source Selected 01 Output Clock Source 1 10 Output Clock Source 2 11 Next Neighbor Output Clock Source RCB[4:3] Input Clock Source. These bits are used to select a clock source for a registered input port. Each I/O buffer can select from one of two global clock inputs, or can use Next Neighbor Clocking. Next Neighbor Clocking uses the signal on the next higher numbered port as a clock source. If no clock source is assigned to an input port, it will operate in flow-through mode. RCB[6:5] Function 00 No Input Clock Source Selected 01 Input Clock Source 1 10 Input Clock Source 2 11 Next Neighbor Input Clock Source RCB[2] Invert Output. If an output port is programmed with this bit set to a one, the output of the port will be inverted. If this bit is zero, the output will not be inverted. Outputs may not be inverted when operating in Bus Repeater Mode or in registered output mode. RCB[1] Inverted Input Clock. When this bit is set to a one, the registered input port’s selected clock source will be inverted. When zero the input clock source will not be inverted. 13 www.fairchildsemi.com MSX532 Introduction (Continued) Signal RCB[0] Description Inverted Output Clock. When this bit is set to a one, the registered output port’s selected clock source will be inverted. When zero the output clock source will not be inverted. JTAG Interface I/O Buffer Programming The dedicated JTAG TAP interface is designed in compliance with the IEEE-1149.1. The standard interface has five pins: Test Data Out (TDO), Test Mode Select (TMS), Test Data In (TDI), Test Reset (TRST), and Test Clock (TCK) which allow Boundary Scan Testing as well as device configuration and verification. Data on the TDI and TMS pins are clocked into the device on the rising edge of the TCK signal, while the valid data appears on the TDO pin after the falling edge of TCK. For more detailed information on JTAG programming, refer to the MSX Family Register Programming Manual. The JTAG I/O Buffer Data Register where data is held, is used to program the I/O buffer. This register is used with the JTAG interface only. The JTAG I/O buffer data register is 20 bits wide. Power on reset, RapidConfigure reset, Hardware reset, and JTAG reset programs all Ports as inputs. JTAG can be reset via the TRST pin or by clocking five consecutive ones to the TMS pin. The HW_RST (hardware reset) pin resets and breaks all connections in the Crosspoint Array to all no-connects, and the I/O buffers to inputs. Table 7 lists the bits and their function in JTAG mode. These are internal bits as shifted into the I/O buffer data register for I/O buffer programming. TABLE 7. I/O Buffer Programming Bit Functions Bit Number I/O Buffer Function Description 0 Input (IN) Input Pin Data to Drive Array 1 Output (OP) Output Array Data to Pin 2 Bus Repeater (BR) Low Array Signal, Drive Pin LOW Low Pin Signal, Drive Array LOW 3 Reg In Clock 1 Selects Reg. In I/O Buffer, Clock 1 4 Reg In Clock 2 Selects Reg. In I/O Buffer, Clock 2 5 Reg In Clock Neighbor Selects Reg. In I/O Buffer, Neighbor 6 Reg Out Clock 1 Selects Reg. Out I/O Buffer, Clock 1 7 Reg Out Clock 1 Selects Reg. Out I/O Buffer, Clock 2 8 Reg Out Clock Neighbor Selects Reg. Out I/O Buffer, Neighbor 9 Input Enable 1 (IE_1) Select Input Enable 1 (Note 1) 10 Input Enable 2 (IE_2) Select Input Enable 2 (Note 1) 11 Output Enable 1 (OE_1) Select Output Enable 1 (Note 2) 12 Output Enable 2 (OE_2) Select Output Enable 2 (Note 2) 13 Force 1 14 Force 0 Force I/O Buffer Output Pin to a 0 15 Array 1 Force I/O Buffer Array to a 1 16 Array 0 Force I/O Buffer Array to a 0 17 Invert Output Output data is inverted. This operation is invalid in Bus Repeater mode and Register Output mode 18 Invert Input Clock Invert the Clock to the Input Register 19 Invert Output Clock Invert the Clock to the Output Register Force I/O Buffer Output Pin to a 1 Note 1: If both IE_1 and IE_2 are selected, the two are assigned an OR function to form the IE. Either can be “1” to enable the input. Note 2: If both OE_1 and OE_2 are selected, active LOW signals are assigned an AND function to form the resulting OE. Either can be “0” to enable the output. www.fairchildsemi.com 14 MSX532 Introduction (Continued) JTAG Architecture and Shift Registers FIGURE 5. MSX JTAG Architecture FIGURE 6. JTAG State Machine 15 www.fairchildsemi.com MSX532 Introduction (Continued) TABLE 8. JTAG Input Format Instruction Control Address Bit Number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit Name 13 12 11 10 C1 C0 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 TABLE 9. JTAG Instructions 15 14 13 12 1 Instruction 1 Bypass Description 1 1 Places device in a mode to pass TDI data to TDO with one clock delay. Used for programming and testing devices through serial connected JTAG controls. 1 1 1 0 Control Bit Sets and clears the control bit A0 (LSB) 1 1 0 1 IO Buffer and Crosspoint Array Reset, Device ID out Resets I/O buffers for the Ports to Input and clear all Ports to Disconnect. The device ID is serialized out to TDO. The Instruction serialized out is the RESET Instruction during the Instruction phase. Update is forced to the crosspoint array 1 1 0 0 Device ID out Serialize the device ID and revision history out to TDO. ID for the MSX is 0x0000A89F. 1 0 1 1 Set the JTAG Address Register Set the 10-bit JTAG Address Register with the lower ten bits of the JTAG Instruction Register. The lower ten bits of the JTAG Address Register become the ’B’ Address for Crosspoint Access. 1 0 1 0 Access the Crosspoint Array and Update Array Read or Write the crosspoint addressed by the lower ten bits of the JTAG Instruction (A Address) and the JTAG Address Register or Address Counter (B Address). Read data is shifted out on TDO. C1 C0 = 0 0 Read Switch with A and B Address. Increment ’B’ address with each ShiftDR. C1 C0 = 0 1 Connect switch at location Addressed with A and B. Increment ’B’ address with each ShiftDR. Activate with UpdateDR. C1 C0 = 1 0 Disconnect switch at location Addressed with A and B. Increment ’B’ address with each ShiftDR. Activate with UpdateDR. C1 C0 = 1 1 Force update of Switch Array Shadow register. Activate with UpdateDR. 1 0 0 1 Disconnect a Port in the Crosspoint Array Disconnect all Ports from the Port Addressed by the lower ten bits of the JTAG Instruction. The addressed port is reset to disconnect. The programmed state of the I/O buffer is not changed. 1 0 0 0 Clear the Crosspoint Array Clear the crosspoint array at no-connect. Leave the I/O buffers unchanged. 0 1 1 1 Shift the IO Buffer Data Register Shift twenty bits of data into and out of the I/O buffer Data register. The data is used to program the I/O buffers. Parallel shift twenty bits into I/O buffer Copy Register. 0 1 1 0 Shift out the I/O buffer Copy Register Shifts twenty bits of data out of the I/O buffer Copy Register. Data is either the I/O buffer Data register shifted in by instruction 0111 or the last JTAG I/O buffer Read Data. 0 1 0 1 Access an I/O buffer Read or write the I/O buffer addressed with the lower ten bits of the JTAG Instruction. Read data is placed in the twenty-bit I/O buffer Copy Register. Write Data for the I/O buffer is from the I/O buffer Data Register. C1 C0 = 0 0 Read an I/O buffer date into the Copy Register. C1 C0 = 0 1 Write an I/O buffer with data in I/O buffer Data Register. 0 1 0 0 0 0 1 1 Test mode only Fairchild only - internal test mode to test RapidConfigure through JTAG. for programming device with RapidConfigure through JTAG 0 0 1 0 Crosspoint Array Write Testing, Instruction Address = Lower Limit = A, Address Register = Upper Limit = B. Write one location per ShiftDR C1 = 1, C0 = 1 Connect all ports in address range C1 = 1, C0 = 0 Connect Pattern=A[1] XOR B[1] C1 = 0, C0 = 0 Connect Pattern=A[4] C1 = 0, C0 = 1 Connect Pattern = NOT (A[1] XOR B[1]). Compliment address limits, Address is complimented to test A-High Port to B-Low Port connections. Other three patterns test opposite. The number of cycles = (Sum of (X = 1), where X = Low Limit to X = High Limit) - 1 0 0 0 0 Sample/Preload EXTEST External scan tests for interconnect testing. 0 0 0 1 Sample/Preload EXTEST External scan tests for interconnect testing. www.fairchildsemi.com Not used. 16 (Continued) Device Reset Options signal is required to complete the operation and set the Active SRAM cells to No Connect. At power-on, all MSX532 I/O buffers are set as flowthrough inputs (IN) with input enable ON, and the switch matrix set to all No Connects (NC). The JTAG interface can be reset via the TRST pin or by clocking five consecutive one to the TMS pin. The hardware reset pin can be done accomplished through the HW_RST pin (Active LOW). RC reset can be accomplished by applying the RC Instruction 1101 to the RCI[3:0] pins. The RapidConfigure reset, hardware reset, and JTAG reset functions will program the I/O buffers to flow-through input (IN) mode with input enable ON, and each Loading SRAM cell in the Switch Matrix is set to No Connect. An UPDATE Device Reset Options Programming Reset I/O Switch RCE Mode JTAG Interface Method Port Matrix Control TAP IN NC Hardware Reset Power-on Reset HW_RST (Low Pulse) JTAG Reset IN 1 (RC Enabled) TLR (Note 3) NC (Note 4) 1 (RC Enabled) 1. Low Pulse on TRST Unchanged Unchanged Unchanged 2. TMS High for 5 SCLK Cycles Unchanged Unchanged Unchanged 3. Device Reset (Instruction 1101) IN NC (Note 3) 1 (RC Enabled) 4. Reset Crosspoint Array (Instruction 1101) Unchanged NC (Note 3) RapidConfigure Reset 1. Device Reset (Instruction 1101) IN Unchanged NC (Note 3) 1 (RC Enabled) 2. Reset Crosspoint Array (Instruction 0010) Unchanged NC (Note 3) Unchanged TLR TLR TLR TLR Unchanged Unchanged Unchanged Note 3: NC = No Connect. Each Loading SRAM cell in the Switch Matrix is updated to No Connect. An UPDATE signal is required to complete the operation and set the Active SRAM cells to No Connect. Note 4: TLR = Test Logic Reset State. 17 www.fairchildsemi.com MSX532 Introduction MSX532 Pin Description Pin Name Type Description P[531:000] Bi-directional Input/Output Signals. OE[3:0] IE[3:0] Input Input UPDATE Input CLK[3:0] Input Global Output Enables. Each output enable can control two of the four I/O banks. Signal MSX532 Connected I/O’s OE_0 P399-P531, P000-P132 OE_1 P000-P132, P133-P265 OE_2 P133-P265, P266-P398 OE_3 P266-P398, P399-P531 Global Input Enables. Each input enable can control two of the four I/O banks. Signal MSX532 Connected I/O’s IE_0 P399-P531, P000-P132 IE_1 P000-P132, P133-P265 IE_2 P133-P265, P266-P398 IE_3 P266-P398, P399-P531 Global Update Global Clocks. Each clock can control two of the four I/O banks. Signal MSX532 Connected I/O’s CLK_0 P399-P531, P000-P132 CLK_1 P000-P132, P133-P265 CLK_2 P133-P265, P266-P398 CLK_3 P266-P398, P399-P531 HW_RST Input Hardware Reset. RCE Input RapidConfigure Mode Select Programing mode is determined at power up or HW_RST 0 = JTAG Mode (RapidConfigure Disabled) 1 = RapidConfigure Mode (JTAG, I/O buffer, Crosspoint Programming Disabled) Note: Device can be reconfigured from JTAG to RC or from RC to JTAG in the JTAG mode without HW_RST or power up. In RapidConfigure mode the programming of the I/O buffers and crosspoint array through JTAG is disabled, but the JTAG port can still be used for boundary scan testing. RC Pins RC_CLK Input RapidConfigure Clock. RC_EN Input RapidConfigure Cycle Enable. RCA[9:0] Bi-directional RapidConfigure Address A. RCB[9:0] Bi-directional RapidConfigure Address B. RCC[0] Bi-directional RapidConfigure Program Variable C. RCC[3:1] Input RapidConfigure Program Variable C. RCI[1:0] Input RapidConfigure Instruction Bits. RC_RDY Output Read Out I/O Buffer and Connect/Disconnect Status. TCK Input JTAG Test Clock. TDI Input JTAG Test Data In. TDI Output JTAG Test Data Out. TMS Input JTAG Test Mode Select. TRST Input JTAG Test and JTAG Scan Reset. VDD Power +3.3V power for the chip. VSS Ground Ground for the chip. Tie these pins to system ground. JTAG Pins Power and Ground Pins www.fairchildsemi.com 18 Supply Voltage VDD Recommended Operating Conditions -0.3V to +3.6 V Supply Voltage (Inputs) VIN +3.0V to +3.6V Supply Voltage VDD (Note 6)(Note 7) -0.3V to +5.5V Junction Temperature TJ Operating Temperature TA +150°C Storage Temperature TSTG -65°C to +150°C Maximum Power Dissipation PMAX 10.5W Electrostatic Discharge ESD (Note 8) 1500V 0°C to +70°C Note 5: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The “Recommended Operating Conditions” table will define the conditions for actual device operation. Note 6: A maximum undershoot of 2V for a maximum duration of 20 ns is acceptable. Overshoot to 5.5V is acceptable. Note 7: All inputs are 5V tolerant with the VDD pin at 3.3V. Note 8: Measured using Human Body Model. Pin Capacitance (Note 9) Symbol Parameter Limits Units CCLK Input Capacitance 10.0 pF CPORT I/O Signal Port Capacitance 8.0 pF Note 9: Capacitance measured at 25°C. Sample tested only. DC Electrical Characteristics (TA = 0°C to 70°C, VDD = 3.3V ±10%) Min Max Units VIH Symbol HIGH Level Input Parameter Ports are 5V Tolerant Conditions 2.1 5.25 V VIL LOW Level Input Ports are 5V Tolerant -0.3 0.8 V VOH HIGH Level Output VDD = Min 2.4 VDD + 0.3 V 0.4 V VDD = 3.00 IOH = -4 mA VOL LOW Level Output VDD = Min VDD = 3.00 IOL = 8 mA ILIH, ILIL ILOZ IOSH IOSL Input Leakage VDD = Max +5.0 for Non-programmable I/O pins 0.0 < In < VDD -600 VDD = Max +5.0 0.0 < In < VDD -100 3-STATE Leakage Output OFF State Short Circuit Current, VDD = Max Out = HIGH V0 = GND µA µA -80.0 mA 80.0 mA Short Circuit Current, VDD = Max Out = LOW V0 = VDD IDDQ Quiescent Supply Current VDD = Max 96.0 mA QDDD Dynamic Supply Current VDD = Max. No Load, 0.375 mA/MHz Supply Current (Note 10) One Input Cycling @ 50% Duty Cycle Note 10: See Power Consumption section for dynamic power consumption calculation. 19 www.fairchildsemi.com MSX532 Absolute Maximum Ratings(Note 5) MSX532 AC Electrical Characteristics (TA = 0°C to 70°C, VDD = 3.3V ±10%) Max Units RDATA Symbol NRZ Data Rate Parameter Min 150 Mb/s fRIO Registered Input/Output Clock Frequency 75.0 MHz tW_RIO Registered Clock Pulse Width, HIGH or LOW 3.0 tS_RI Registered Input Setup Time to Clock 5.0 ns tS_RO Registered Output Setup Time to Clock 9.5 ns tH_RI Registered Input Clock to Hold Data 0.0 ns tH_RO Registered Output Clock to Hold Data 0.0 tCO_RO Registered Output Clock to Data Out Valid 11.0 ns tCO_RI Registered Input Clock to Data Out Valid 24.0 ns tPHL, tPLH One Way Signal Propagation Delay, Fanout = 1 20.0 ns tMC Delta Additional Delay Per Output Multicast (MC) Mode 2.0 ns tW+ Input Flow-through Positive Pulse Width 6.0 tW- Input Flow-through Negative Pulse Width 6.0 tSK Skew 4.0 ns tPZH_IT, Input Enable to Valid Data 20.0 ns Output Enable to Valid Data 7.5 ns Output Enable to High Z State 7.5 ns ns ns tPZL_IT tPZH_OT, tPZL_OT tPZH_OT, tPZL_OT tRC RapidConfigure Clock Period 20.0 ns tW+_RC RapidConfigure Clock Pulse Width 8.0 ns tW-_RC tS_RC RapidConfigure Address Setup to RC Clock 1.0 ns tH_RC RapidConfigure Address Hold Time to RC Clock 4.0 ns tP_RC Read Back Access Time 9.0 ns tP_RD RC_RDY to Readback Data 4.0 ns tP_UD Update of Crosspoint to Data Out 10.0 ns fJTAG JTAG Clock Frequency (TCK) 8.0 MHz tW_JTAG JTAG Clock Pulse Width (TCK) at 8 MHz Cycle 48.0 tS_JTAG JTAG Setup Time 4.0 tH_JTAG JTAG Hold Time 0.0 tP_JTAG JTAG Clock to Output Data Valid (TDO) 20 ns ns ns 10.0 Refer to Figure 7 for AC test conditions. www.fairchildsemi.com 72.0 ns MSX532 Test Circuit and Timing Diagrams FIGURE 7. Test Circuit and Waveform Definition FIGURE 8. Registered Input and Registered Output Mode Timing (ICLK and OCLK Synchronized) FIGURE 9. Registered Input Timing Mode FIGURE 10. Registered Output Timing Mode 21 www.fairchildsemi.com MSX532 Test Circuit and Timing Diagrams (Continued) FIGURE 11. I/O Port Timing (Flow-through Mode) FIGURE 12. Input Enable Timing (Flow-through Mode) FIGURE 13. Output Enable Timing FIGURE 14. JTAG Timing www.fairchildsemi.com 22 MSX532 Test Circuit and Timing Diagrams (Continued) FIGURE 15. RapidConfigure I/O Buffer or Crosspoint Read and Write Cycles 23 www.fairchildsemi.com MSX532 Test Circuit and Timing Diagrams (Continued) tH_RC RC_CLK RC_EN RC_RDY RC Read Cmd latched on falling edge of RC_CLK RCI[1:0] Reset Cmd Data RCC[3:0] Reset Cmd Data RCB[9:0] Cmd Data RCA[9:0] Cmd Data FIGURE 16. RapidConfigure Reset Command Cycle www.fairchildsemi.com 24 MSX532 Package and Pinout MSX532 [792 TBGA Package] Pinout 1 2 Vss A Vss Vss B Vss Vss 3 4 5 6 7 TRST # P00 Vss HW_RS 0 Vss T# P00 CLK_ 1 0 IE_0 Vss Vss Vss Vss P00 P00 7 2 P00 P00 6 3 P00 4 TCK C Vss Vss Vss D TMS Vss RC_R P00 DY TDO 5 RCA6 Vss RCA0 OE_0 Vss Vdd RCA3 RCB1 RCA2 # TDI RCA5 RCA1 E 8 Vss F RCA4 RCA8 Vss 9 P01 2 P01 3 P01 0 12 Vss 0 P011 P01 4 P008 P00 9 11 P016 P02 2 P017 P02 P015 Vdd Vdd 10 P02 1 P01 8 Vdd P02 6 P02 4 P02 5 P02 3 13 P03 3 P03 1 P03 0 P02 8 P02 9 14 16 17 18 P050 19 20 Vss 21 22 Vss 23 24 25 26 Vss P075 27 28 P092 29 30 Vss 31 32 33 34 Vss P112 P041 P055 P051 P065 P061 P071 P064 P095 P085 P074 P098 P089 P080 P109 P102 P119 36 37 38 Vss P113 Vss P125 39 Vss P123 P128 Vss Vss Vss B P045 P054 P048 P060 P058 P070 P091 P081 P077 P066 P100 P094 P084 P108 P104 P118 P115 Vss P131 P126 Vss P133 P122 P03 P063 P072 P083 P130 P052 P042 P090 P101 P111 P120 5 P067 P076 P059 P049 P096 P105 P039 Vss P114 P124 P087 P03 P062 P073 P082 P132 P053 P093 P103 P110 P043 P121 2 P038 P069 P079 P056 P047 P097 P107 P117 P127 P086 Vss Vss C Vss Vss Vss Vss D IE_1 Vss P134 P142 E P027 P057 P046 P036 Vdd Vdd Vdd Vdd Vdd P078 P068 Vdd Vdd P099 P088 Vdd P106 Vdd P116 Vss P135 P129 P137 OE_1# CLK_1 P145 F Vdd Vdd Vdd Vdd Vdd Vdd Vdd Vdd Vdd Vdd Vdd Vdd Vdd RCA9 RCB2 35 Vss A P040 P03 4 P044 Vdd Vdd P019 15 Vss P03 7 P139 P136 P143 P141 P146 G G RCB0 RCB3 RCB7 P138 RCA7 P144 P140 P149 Vdd Vdd RCB5 P151 H H RCB4 RCB6 Vss Vdd Vdd P155 P152 RCB9 RCC1 P148 P147 Vss J K L J RCC0 RCC2 RCB8 RCE RCI0 RC_CLK RC_E RCI1 RCC3 P526 N# P529 P530 UPDAT P531 P528 E P521 P525 P522 P150 P524 Vss K L P512 P520 Vdd P515 P P514 P513 Vss P169 P170 M Vdd P171 P168 P174 P173 Vss N P172 P176 P175 P179 Vdd P181 P Vdd Vdd P510 P180 P511 P509 P167 P165 Vdd MSX532 in 792 TBGA P527 P519 P166 P164 P162 P518 P516 P160 P159 P163 N P517 P161 P158 P156 P157 M P523 P154 P153 P178 P177 P184 P183 P187 R R P508 P506 P502 Vdd P505 P185 P182 P189 Vdd P191 T T P507 P504 Vss Vdd Vdd P503 P190 Vdd Vdd P493 P200 P500 P498 P188 P186 P195 P192 Vss U U P501 P499 P495 Vdd Vdd P496 P194 P193 P198 P196 V V P497 P494 P488 Vss P202 P201 P492 P491 P199 P197 W W P490 P489 P485 P205 P203 P207 Vdd Vdd P486 P208 Y Y P487 P484 Vss Vdd Vdd P480 P213 Vdd Vdd P469 P223 P211 P212 P481 P478 P204 P206 Vss AA AA P483 P482 P479 P216 Vdd Vdd P477 P209 P210 P215 AB AB P474 P476 P475 P218 P220 P471 P472 P214 P217 Vss AC AC P470 P473 P468 AD P465 P466 P462 Vss P225 P222 AD Top View Vdd P219 P221 Vdd Vdd P467 Vdd P224 P227 P229 P231 P460 Vss AE AE P463 P464 P457 P458 P461 P230 Vdd Vdd Vss P240 Vdd Vdd P235 Vdd Vdd P226 P228 P232 AF AF P456 P459 P455 P450 P236 P238 P453 P233 P234 Vss AG AG P452 P454 P448 P451 P242 Vdd Vdd P237 P239 P241 AH AH P446 P449 P444 P443 P243 P245 P247 P248 P442 Vss AJ AJ P445 P447 P438 P441 Vss P249 Vdd Vdd Vss P258 Vdd Vdd P252 Vdd Vdd P244 P246 P251 AK AK P439 P440 P437 P433 P256 P259 P435 P250 P253 P255 AL AL P434 P436 P431 P432 P263 Vdd Vdd P254 P257 P261 AM AM P428 P430 P426 Vss P260 P262 P267 P268 P425 Vss AN AN P424 P429 P420 P427 Vdd P423 P413 P398 P380 P391 P373 P353 P363 P341 P321 P331 P290 P303 P310 IE_2 P271 Vdd P269 P272 P264 P265 AP AP P419 P422 Vss P411 Vss P418 P404 Vdd Vdd P389 P399 Vdd Vdd Vdd P370 P381 Vdd Vdd P340 P352 P361 Vdd Vdd Vdd Vdd P296 P293 P302 P312 P323 P330 Vdd Vdd P283 P270 P274 P266 P277 Vss AR AR Vss P421 Vss AT Vss OE_3 # Vss Vss P405 IE_3 Vss P409 P388 P396 Vdd Vdd Vdd Vdd P371 P378 Vdd Vdd P343 P350 P360 Vdd Vdd Vdd Vdd P292 P304 P313 P322 P332 P297 Vdd P279 P282 P273 Vss Vss Vss Vss AT Vss P402 P416 P417 P408 P386 P397 P367 P376 P385 P395 P369 P379 P346 P357 P342 P351 P358 P316 P327 P336 P286 P295 P305 P315 P325 P333 P299 P306 P281 P285 P275 Vss Vss P276 Vss AU AU Vss Vss Vss AV Vss Vss P403 P414 P415 Vss P406 P393 P394 P374 P384 Vss P377 P347 P356 P364 P368 P359 P348 CLK_ P412 P401 P392 P382 P375 P365 P354 3 Vss P410 Vss Vss P387 Vss P366 Vss P314 P324 P335 P298 P309 P319 P326 P337 P344 P307 P289 P294 P280 P287 Vss Vss P278 Vss Vss AV P349 Vss P339 Vss P318 P328 P317 Vss P334 P308 P301 Vss P288 Vss Vss OE_2# Vss CLK_2 Vss Vss Vss AW AW Vss 1 2 P407 Vss 3 4 5 6 P400 7 8 P390 9 10 P383 11 12 P372 13 14 P362 15 16 P355 17 18 P345 19 20 25 P338 21 22 P320 P329 23 24 25 26 P311 27 28 P300 29 30 P291 31 32 Vss P284 33 34 35 36 Vss 37 38 39 www.fairchildsemi.com MSX532 Package and Pinout (Continued) TABLE 10. MSX532 Pinout By Ball Sequence Ball Ball Name Ball Ball Name Ball Ball Name Ball Ball Name Ball Ball Name Ball Ball Name A1 VSS B1 VSS C1 VSS D1 VSS E1 RCA6 F1 RCB1 A2 VSS B2 VSS C2 VSS D2 RCA1 E2 RCA3 F2 RCA8 A3 VSS B3 VSS C3 VSS D3 VSS E3 RCA0 F3 RCA5 A4 VSS B4 CLK_0 C4 VSS D4 VSS E4 VSS F4 RCA4 A5 TRST B5 HW_RST C5 IE_0 D5 VSS E5 VSS F5 RCA2 A6 P000 B6 P001 C6 TMS D6 RC_RDY E6 OE_0 F6 VDD A7 VSS B7 P002 C7 P003 D7 TCK E7 TDO F7 TDI A8 P007 B8 P006 C8 P004 D8 P005 E8 VDD F8 VDD P009 A9 P012 B9 P013 C9 P010 D9 P011 E9 P008 F9 A10 P016 B10 P017 C10 P015 D10 P014 E10 VDD F10 VDD A11 VSS B11 P022 C11 P020 D11 P021 E11 P018 F11 P019 A12 P026 B12 P024 C12 P025 D12 P023 E12 VDD F12 VDD A13 P033 B13 P031 C13 P030 D13 P028 E13 P029 F13 P027 A14 P037 B14 P034 C14 P035 D14 P032 E14 VDD F14 VDD A15 VSS B15 P040 C15 P041 D15 P039 E15 P038 F15 P036 A16 P044 B16 P045 C16 P042 D16 P043 E16 VDD F16 VDD A17 P050 B17 P051 C17 P048 D17 P049 E17 P047 F17 P046 A18 P055 B18 P054 C18 P052 D18 P053 E18 VDD F18 VDD A19 VSS B19 P061 C19 P058 D19 P059 E19 P056 F19 P057 A20 P065 B20 P060 C20 P063 D20 P062 E20 VDD F20 VDD A21 VSS B21 P064 C21 P066 D21 P067 E21 P069 F21 P068 A22 P071 B22 P070 C22 P072 D22 P073 E22 VDD F22 VDD A23 P075 B23 P074 C23 P077 D23 P076 E23 P079 F23 P078 A24 P080 B24 P081 C24 P083 D24 P082 E24 VDD F24 VDD A25 VSS B25 P085 C25 P084 D25 P087 E25 P086 F25 P088 A26 P089 B26 P091 C26 P090 D26 P093 E26 VDD F26 VDD A27 P092 B27 P095 C27 P094 D27 P096 E27 P097 F27 P099 A28 P098 B28 P100 C28 P101 D28 P103 E28 VDD F28 VDD A29 VSS B29 P102 C29 P104 D29 P105 E29 P107 F29 P106 A30 P109 B30 P108 C30 P111 D30 P110 E30 VDD F30 VDD A31 P112 B31 P113 C31 P115 D31 P114 E31 P117 F31 P116 A32 P119 B32 P118 C32 P120 D32 P121 E32 VDD F32 VDD A33 VSS B33 P123 C33 P122 D33 P124 E33 P127 F33 P129 A34 P125 B34 P126 C34 P130 D34 P132 E34 P135 F34 VDD A35 VSS B35 P128 C35 P133 D35 VSS E35 VSS F35 P137 A36 VSS B36 P131 C36 VSS D36 VSS E36 VSS F36 P136 A37 VSS B37 VSS C37 VSS D37 VSS E37 P134 F37 CLK_1 A38 VSS B38 VSS C38 VSS D38 IE_1 E38 OE_1 F38 P139 A39 VSS B39 VSS C39 VSS D39 VSS E39 P142 F39 P145 www.fairchildsemi.com 26 (Continued) Ball Ball Name Ball Ball Name Ball Ball Name Ball Ball Name Ball Ball Name Ball G1 VSS H1 RCB7 J1 VSS K1 RCE L1 P526 M1 Ball Name P521 G2 RCB3 H2 RCB6 J2 RCC2 K2 RC_EN L2 P528 M2 P523 G3 RCB2 H3 RCB5 J3 RCC1 K3 RC_CLK L3 P529 M3 P522 G4 RCB0 H4 RCB4 J4 RCC0 K4 RCI1 L4 P531 M4 P524 G5 RCA9 H5 VDD J5 RCB9 K5 RCI0 L5 P530 M5 P525 G6 RCA7 H6 VDD J6 RCB8 K6 RCC3 L6 UPDATE M6 P527 G34 P138 H34 VDD J34 P150 K34 P157 L34 P163 M34 VDD G35 P141 H35 VDD J35 P152 K35 P156 L35 P162 M35 VDD G36 P140 H36 P147 J36 P153 K36 P159 L36 P165 M36 P168 G37 P143 H37 P149 J37 P155 K37 P158 L37 P164 M37 P169 G38 P144 H38 P148 J38 P154 K38 P160 L38 P167 M38 P171 G39 P146 H39 P151 J39 VSS K39 P161 L39 P166 M39 P170 N1 VSS P1 P512 R1 VSS T1 P502 U1 VSS V1 P495 N2 P517 P2 P513 R2 P506 T2 P504 U2 P499 V2 P494 N3 P516 P3 P515 R3 P509 T3 P505 U3 P498 V3 P496 N4 P519 P4 P514 R4 P508 T4 P507 U4 P501 V4 P497 N5 P518 P5 VDD R5 P511 T5 VDD U5 P500 V5 VDD N6 P520 P6 VDD R6 P510 T6 VDD U6 P503 V6 VDD N34 P172 P34 VDD R34 P180 T34 VDD U34 P190 V34 VDD N35 P173 P35 VDD R35 P183 T35 VDD U35 P192 V35 VDD N36 P175 P36 P177 R36 P182 T36 P186 U36 P193 V36 P197 N37 P174 P37 P179 R37 P184 T37 P189 U37 P195 V37 P196 N38 P176 P38 P178 R38 P185 T38 P188 U38 P194 V38 P199 N39 VSS P39 P181 R39 P187 T39 P191 U39 VSS V39 P198 W1 P488 Y1 P485 AA1 VSS AB1 P479 AC1 P475 AD1 P468 W2 P489 Y2 P484 AA2 P482 AB2 P476 AC2 P473 AD2 P466 W3 P491 Y3 P486 AA3 P478 AB3 P477 AC3 P472 AD3 P467 W4 P490 Y4 P487 AA4 P483 AB4 P474 AC4 P470 AD4 P465 W5 P492 Y5 VDD AA5 P481 AB5 VDD AC5 P471 AD5 VDD W6 P493 Y6 VDD AA6 P480 AB6 VDD AC6 P469 AD6 VDD W34 P200 Y34 VDD AA34 P213 AB34 VDD AC34 P223 AD34 VDD W35 P201 Y35 VDD AA35 P212 AB35 VDD AC35 P220 AD35 VDD W36 P203 Y36 P206 AA36 P210 AB36 P217 AC36 P221 AD36 P227 W37 P202 Y37 P207 AA37 P211 AB37 P216 AC37 P218 AD37 P225 W38 P205 Y38 P204 AA38 P209 AB38 P214 AC38 P219 AD38 P224 W39 VSS Y39 P208 AA39 VSS AB39 P215 AC39 VSS AD39 P222 27 www.fairchildsemi.com MSX532 Package and Pinout MSX532 Package and Pinout (Continued) Ball Ball Name Ball Ball Name Ball Ball Name Ball Ball Name Ball Ball Name Ball Ball Name AE1 VSS AF1 P458 AG1 P450 AH1 P451 AJ P443 AK1 P441 AE2 P464 AF2 P459 AG2 P454 AH2 P449 AJ2 P447 AK2 P440 AE3 P462 AF3 P457 AG3 P455 AH3 P448 AJ3 P444 AK3 P438 AE4 P463 AF4 P456 AG4 P452 AH4 P446 AJ4 P445 AK4 P439 AE5 P460 AF5 VDD AG5 P453 AH5 VDD AJ5 P442 AK5 VDD AE6 P461 AF6 VDD AG6 VSS AH6 VDD AJ6 VSS AK6 VDD AE34 P230 AF34 VDD AG34 P240 AH34 VDD AJ34 P249 AK34 VDD AE35 P231 AF35 VDD AG35 P238 AH35 VDD AJ35 P248 AK35 VDD AE36 P228 AF36 P234 AG36 P239 AH36 P245 AJ36 P246 AK36 P253 AE37 P229 AF37 P235 AG37 P236 AH37 P242 AJ37 P247 AK37 P252 AE38 P226 AF38 P233 AG38 P237 AH38 P243 AJ38 P244 AK38 P250 AE39 VSS AF39 P232 AG39 VSS AH39 P241 AJ39 VSS AK39 P251 AL1 P433 AM1 P432 AN1 VSS AL2 P436 AM2 P430 AN2 P429 AL3 P437 AM3 P431 AN3 P426 AL4 P434 AM4 P428 AN4 P427 AL5 P435 AM5 VDD AN5 P425 AL6 VSS AM6 VDD AN6 P423 AL34 P258 AM34 VDD AN34 P271 AL35 P259 AM35 VDD AN35 P268 AL36 P257 AM36 P262 AN36 P269 AL37 P256 AM37 P263 AN37 P267 AL38 P254 AM38 P260 AN38 P264 AL39 P255 AM39 P261 AN39 VSS www.fairchildsemi.com 28 (Continued) Ball Ball Name Ball Ball Name Ball Ball Name Ball Ball Name Ball Ball Name Ball Ball Name AP1 P424 AR1 VSS AT1 VSS AU1 VSS AV1 VSS AW1 VSS AP2 P422 AR2 P421 AT2 OE_3 AU2 VSS AV2 VSS AW2 VSS AP3 P420 AR3 P418 AT3 VSS AU3 VSS AV3 VSS AW3 VSS AP4 P419 AR4 VSS AT4 VSS AU4 VSS AV4 CLK_3 AW4 VSS AP5 VDD AR5 VSS AT5 VSS AU5 P417 AV5 P415 AW5 P410 P407 AP6 VDD AR6 IE_3 AT6 P416 AU6 P414 AV6 P412 AW6 AP7 P413 AR7 P411 AT7 P409 AU7 P408 AV7 P406 AW7 VSS AP8 P404 AR8 P405 AT8 P402 AU8 P403 AV8 P401 AW8 P400 AP9 P398 AR9 P399 AT9 P396 AU9 P397 AV9 P394 AW9 VSS AP10 VDD AR10 VDD AT10 P395 AU10 P393 AV10 P392 AW10 P390 AP11 P391 AR11 P389 AT11 P388 AU11 P386 AV11 VSS AW11 P387 AP12 VDD AR12 VDD AT12 P385 AU12 P384 AV12 P382 AW12 P383 AP13 P380 AR13 P381 AT13 P378 AU13 P379 AV13 P377 AW13 VSS AP14 VDD AR14 VDD AT14 P376 AU14 P374 AV14 P375 AW14 P372 AP15 P373 AR15 P370 AT15 P371 AU15 P369 AV15 P368 AW15 P366 AP16 VDD AR16 VDD AT16 P367 AU16 P364 AV16 P365 AW16 P362 AP17 P363 AR17 P361 AT17 P360 AU17 P358 AV17 P359 AW17 VSS AP18 VDD AR18 VDD AT18 P357 AU18 P356 AV18 P354 AW18 P355 AP19 P353 AR19 P352 AT19 P350 AU19 P351 AV19 P348 AW19 VSS AP20 VDD AR20 VDD AT20 P346 AU20 P347 AV20 P349 AW20 P345 AP21 P341 AR21 P340 AT21 P343 AU21 P342 AV21 P344 AW21 VSS AP22 VDD AR22 VDD AT22 P336 AU22 P337 AV22 P339 AW22 P338 AP23 P331 AR23 P330 AT23 P332 AU23 P333 AV23 P335 AW23 P334 AP24 VDD AR24 VDD AT24 P327 AU24 P326 AV24 P328 AW24 P329 AP25 P321 AR25 P323 AT25 P322 AU25 P325 AV25 P324 AW25 VSS AP26 VDD AR26 VDD AT26 P316 AU26 P319 AV26 P318 AW26 P320 AP27 P310 AR27 P312 AT27 P313 AU27 P315 AV27 P314 AW27 P317 AP28 VDD AR28 VDD AT28 P306 AU28 P309 AV28 P308 AW28 P311 AP29 P303 AR29 P302 AT29 P304 AU29 P305 AV29 P307 AW29 VSS AP30 P296 AR30 P297 AT30 P299 AU30 P298 AV30 P301 AW30 P300 AP31 P290 AR31 P293 AT31 P292 AU31 P295 AV31 P294 AW31 VSS AP32 VDD AR32 VDD AT32 P286 AU32 P289 AV32 P288 AW32 P291 AP33 IE_2 AR33 P283 AT33 P282 AU33 P285 AV33 P287 AW33 VSS AP34 VDD AR34 P279 AT34 P281 AU34 P280 AV34 OE_2 AW34 P284 AP35 VDD AR35 VSS AT35 VSS AU35 P276 AV35 P278 AW35 CLK_2 AP36 P274 AR36 VSS AT36 VSS AU36 VSS AV36 VSS AW36 VSS AP37 P272 AR37 P277 AT37 VSS AU37 VSS AV37 VSS AW37 VSS AP38 P270 AR38 P273 AT38 P275 AU38 VSS AV38 VSS AW38 VSS AP39 P265 AR39 P266 AT39 VSS AU39 VSS AV39 VSS AW39 VSS 29 www.fairchildsemi.com MSX532 Package and Pinout MSX532 Package and Pinout (Continued) TABLE 11. MSX532 Pinout By Ball Name (alphabetically) Ball Name Ball Ball Name Ball Ball Name Ball Ball Name Ball Ball Name Ball CLK_0 B4 P027 F13 P067 D21 P107 E29 P147 H36 CLK_1 F37 P028 D13 P068 F21 P108 B30 P148 H38 CLK_2 AW35 P029 E13 P069 E21 P109 A30 P149 H37 CLK_3 AV4 P030 C13 P070 B22 P110 D30 P150 J34 HW_RST B5 P031 B13 P071 A22 P111 C30 P151 H39 J35 IE_0 C5 P032 D14 P072 C22 P112 A31 P152 IE_1 D38 P033 A13 P073 D22 P113 B31 P153 J36 IE_2 AP33 P034 B14 P074 B23 P114 D31 P154 J38 IE_3 AR6 P035 C14 P075 A23 P115 C31 P155 J37 OE_0 E6 P036 F15 P076 D23 P116 F31 P156 K35 OE_1 E38 P037 A14 P077 C23 P117 E31 P157 K34 OE_2 AV34 P038 E15 P078 F23 P118 B32 P158 K37 OE_3 AT2 P039 D15 P079 E23 P119 A32 P159 K36 P000 A6 P040 B15 P080 A24 P120 C32 P160 K38 P001 B6 P041 C15 P081 B24 P121 D32 P161 K39 P002 B7 P042 C16 P082 D24 P122 C33 P162 L35 P003 C7 P043 D16 P083 C24 P123 B33 P163 L34 P004 C8 P044 A16 P084 C25 P124 D33 P164 L37 P005 D8 P045 B16 P085 B25 P125 A34 P165 L36 P006 B8 P046 F17 P086 E25 P126 B34 P166 L39 P007 A8 P047 E17 P087 D25 P127 E33 P167 L38 P008 E9 P048 C17 P088 F25 P128 B35 P168 M36 P009 F9 P049 D17 P089 A26 P129 F33 P169 M37 P010 C9 P050 A17 P090 C26 P130 C34 P170 M39 M38 P011 D9 P051 B17 P091 B26 P131 B36 P171 P012 A9 P052 C18 P092 A27 P132 D34 P172 N34 P013 B9 P053 D18 P093 D26 P133 C35 P173 N35 P014 D10 P054 B18 P094 C27 P134 E37 P174 N37 P015 C10 P055 A18 P095 B27 P135 E34 P175 N36 P016 A10 P056 E19 P096 D27 P136 F36 P176 N38 P017 B10 P057 F19 P097 E27 P137 F35 P177 P36 P018 E11 P058 C19 P098 A28 P138 G34 P178 P38 P019 F11 P059 D19 P099 F27 P139 F38 P179 P37 P020 C11 P060 B20 P100 B28 P140 G36 P180 R34 P021 D11 P061 B19 P101 C28 P141 G35 P181 P39 P022 B11 P062 D20 P102 B29 P142 E39 P182 R36 P023 D12 P063 C20 P103 D28 P143 G37 P183 R35 P024 B12 P064 B21 P104 C29 P144 G38 P184 R37 P025 C12 P065 A20 P105 D29 P145 F39 P185 R38 P026 A12 P066 C21 P106 F29 P146 G39 P186 T36 www.fairchildsemi.com 30 Ball Ball Name Ball Ball Name Ball Ball Name Ball Ball Name Ball P187 R39 P227 AD36 P267 AN37 P307 AV29 P347 AU20 P188 T38 P228 AE36 P268 AN35 P308 AV28 P348 AV19 P189 T37 P229 AE37 P269 AN36 P309 AU28 P349 AV20 P190 U34 P230 AE34 P270 AP38 P310 AP27 P350 AT19 P191 T39 P231 AE35 P271 AN34 P311 AW28 P351 AU19 P192 U35 P232 AF39 P272 AP37 P312 AR27 P352 AR19 P193 U36 P233 AF38 P273 AR38 P313 AT27 P353 AP19 P194 U38 P234 AF36 P274 AP36 P314 AV27 P354 AV18 P195 U37 P235 AF37 P275 AT38 P315 AU27 P355 AW18 P196 V37 P236 AG37 P276 AU35 P316 AT26 P356 AU18 P197 V36 P237 AG38 P277 AR37 P317 AW27 P357 AT18 P198 V39 P238 AG35 P278 AV35 P318 AV26 P358 AU17 P199 V38 P239 AG36 P279 AR34 P319 AU26 P359 AV17 P200 W34 P240 AG34 P280 AU34 P320 AW26 P360 AT17 P201 W35 P241 AH39 P281 AT34 P321 AP25 P361 AR17 P202 W37 P242 AH37 P282 AT33 P322 AT25 P362 AW16 P203 W36 P243 AH38 P283 AR33 P323 AR25 P363 AP17 P204 Y38 P244 AJ38 P284 AW34 P324 AV25 P364 AU16 P205 W38 P245 AH36 P285 AU33 P325 AU25 P365 AV16 P206 Y36 P246 AJ36 P286 AT32 P326 AU24 P366 AW15 P207 Y37 P247 AJ37 P287 AV33 P327 AT24 P367 AT16 P208 Y39 P248 AJ35 P288 AV32 P328 AV24 P368 AV15 P209 AA38 P249 AJ34 P289 AU32 P329 AW24 P369 AU15 P210 AA36 P250 AK38 P290 AP31 P330 AR23 P370 AR15 P211 AA37 P251 AK39 P291 AW32 P331 AP23 P371 AT15 P212 AA35 P252 AK37 P292 AT31 P332 AT23 P372 AW14 P213 AA34 P253 AK36 P293 AR31 P333 AU23 P373 AP15 P214 AB38 P254 AL38 P294 AV31 P334 AW23 P374 AU14 P215 AB39 P255 AL39 P295 AU31 P335 AV23 P375 AV14 P216 AB37 P256 AL37 P296 AP30 P336 AT22 P376 AT14 P217 AB36 P257 AL36 P297 AR30 P337 AU22 P377 AV13 P218 AC37 P258 AL34 P298 AU30 P338 AW22 P378 AT13 P219 AC38 P259 AL35 P299 AT30 P339 AV22 P379 AU13 P220 AC35 P260 AM38 P300 AW30 P340 AR21 P380 AP13 P221 AC36 P261 AM39 P301 AV30 P341 AP21 P381 AR13 P222 AD39 P262 AM36 P302 AR29 P342 AU21 P382 AV12 P223 AC34 P263 AM37 P303 AP29 P343 AT21 P383 AW12 P224 AD38 P264 AN38 P304 AT29 P344 AV21 P384 AU12 P225 AD37 P265 AP39 P305 AU29 P345 AW20 P385 AT12 P226 AE38 P266 AR39 P306 AT28 P346 AT20 P386 AU11 31 www.fairchildsemi.com MSX532 Ball Name MSX532 Ball Name Ball Ball Name Ball Ball Name Ball Ball Name Ball Ball Name Ball P387 AW11 P427 AN4 P467 AD3 P507 T4 RCB3 G2 P388 AT11 P428 AM4 P468 AD1 P508 R4 RCB4 H4 P389 AR11 P429 AN2 P469 AC6 P509 R3 RCB5 H3 P390 AW10 P430 AM2 P470 AC4 P510 R6 RCB6 H2 P391 AP11 P431 AM3 P471 AC5 P511 R5 RCB7 H1 P392 AV10 P432 AM1 P472 AC3 P512 P1 RCB8 J6 P393 AU10 P433 AL1 P473 AC2 P513 P2 RCB9 J5 P394 AV9 P434 AL4 P474 AB4 P514 P4 RCC0 J4 P395 AT10 P435 AL5 P475 AC1 P515 P3 RCC1 J3 P396 AT9 P436 AL2 P476 AB2 P516 N3 RCC2 J2 P397 AU9 P437 AL3 P477 AB3 P517 N2 RCC3 K6 P398 AP9 P438 AK3 P478 AA3 P518 N5 RCE K1 P399 AR9 P439 AK4 P479 AB1 P519 N4 RCI0 K5 P400 AW8 P440 AK2 P480 AA6 P520 N6 RCI1 K4 P401 AV8 P441 AK1 P481 AA5 P521 M1 RC_RDY D6 P402 AT8 P442 AJ5 P482 AA2 P522 M3 TCK D7 P403 AU8 P443 AJ1 P483 AA4 P523 M2 TDI F7 P404 AP8 P444 AJ3 P484 Y2 P524 M4 TDO E7 P405 AR8 P445 AJ4 P485 Y1 P525 M5 TMS C6 A5 P406 AV7 P446 AH4 P486 Y3 P526 L1 TRST P407 AW6 P447 AJ2 P487 Y4 P527 M6 UPDATE L6 P408 AU7 P448 AH3 P488 W1 P528 L2 VDD E8 P409 AT7 P449 AH2 P489 W2 P529 L3 VDD E10 P410 AW5 P450 AG1 P490 W4 P530 L5 VDD E12 P411 AR7 P451 AH1 P491 W3 P531 L4 VDD E14 P412 AV6 P452 AG4 P492 W5 RC_CLK K3 VDD E16 P413 AP7 P453 AG5 P493 W6 RC_EN K2 VDD E18 P414 AU6 P454 AG2 P494 V2 RCA0 E3 VDD E20 P415 AV5 P455 AG3 P495 V1 RCA1 D2 VDD E22 P416 AT6 P456 AF4 P496 V3 RCA2 F5 VDD E24 P417 AU5 P457 AF3 P497 V4 RCA3 E2 VDD E26 P418 AR3 P458 AF1 P498 U3 RCA4 F4 VDD E28 P419 AP4 P459 AF2 P499 U2 RCA5 F3 VDD E30 P420 AP3 P460 AE5 P500 U5 RCA6 E1 VDD E32 P421 AR2 P461 AE6 P501 U4 RCA7 G6 VDD F6 P422 AP2 P462 AE3 P502 T1 RCA8 F2 VDD F8 P423 AN6 P463 AE4 P503 U6 RCA9 G5 VDD F10 P424 AP1 P464 AE2 P504 T2 RCB0 G4 VDD F12 P425 AN5 P465 AD4 P505 T3 RCB1 F1 VDD F14 P426 AN3 P466 AD2 P506 R2 RCB2 G3 VDD F16 www.fairchildsemi.com 32 Ball Ball Name Ball Ball Name Ball Ball Name Ball Ball Name Ball VDD F18 VDD AF6 VDD AR32 VSS E4 VSS AU3 VDD F20 VDD AF34 VSS A1 VSS E5 VSS AU4 VDD F22 VDD AF35 VSS A2 VSS E35 VSS AU36 VDD F24 VDD AH5 VSS A3 VSS E36 VSS AU37 VDD F26 VDD AH6 VSS A4 VSS G1 VSS AU38 VDD F28 VDD AH34 VSS A7 VSS J1 VSS AU39 VDD F30 VDD AH35 VSS A11 VSS J39 VSS AV1 VDD F32 VDD AK5 VSS A15 VSS N1 VSS AV2 VDD F34 VDD AK6 VSS A19 VSS N39 VSS AV3 VDD H5 VDD AK34 VSS A21 VSS R1 VSS AV11 VDD H6 VDD AK35 VSS A25 VSS U1 VSS AV36 VDD H34 VDD AM5 VSS A29 VSS U39 VSS AV37 VDD H35 VDD AM6 VSS A33 VSS W39 VSS AV38 VDD M34 VDD AM34 VSS A35 VSS AA1 VSS AV39 VDD M35 VDD AM35 VSS A36 VSS AA39 VSS AW1 VDD P5 VDD AP5 VSS A37 VSS AC39 VSS AW2 VDD P6 VDD AP6 VSS A38 VSS AE1 VSS AW3 VDD P34 VDD AP10 VSS A39 VSS AE39 VSS AW4 VDD P35 VDD AP12 VSS B1 VSS AG6 VSS AW7 VDD T5 VDD AP14 VSS B2 VSS AG39 VSS AW9 VDD T6 VDD AP16 VSS B3 VSS AJ6 VSS AW13 VDD T34 VDD AP18 VSS B37 VSS AJ39 VSS AW17 VDD T35 VDD AP20 VSS B38 VSS AL6 VSS AW19 VDD V5 VDD AP22 VSS B39 VSS AN1 VSS AW21 VDD V6 VDD AP24 VSS C1 VSS AN39 VSS AW25 VDD V34 VDD AP26 VSS C2 VSS AR1 VSS AW29 VDD V35 VDD AP28 VSS C3 VSS AR4 VSS AW31 VDD Y5 VDD AP32 VSS C4 VSS AR5 VSS AW33 VDD Y6 VDD AP34 VSS C36 VSS AR35 VSS AW36 VDD Y34 VDD AP35 VSS C37 VSS AR36 VSS AW37 VDD Y35 VDD AR10 VSS C38 VSS AT1 VSS AW38 VDD AB5 VDD AR12 VSS C39 VSS AT3 VSS AW39 VDD AB6 VDD AR14 VSS D1 VSS AT4 VDD AB34 VDD AR16 VSS D3 VSS AT5 VDD AB35 VDD AR18 VSS D4 VSS AT35 VDD AD5 VDD AR20 VSS D5 VSS AT36 VDD AD6 VDD AR22 VSS D35 VSS AT37 VDD AD34 VDD AR24 VSS D36 VSS AT39 VDD AD35 VDD AR26 VSS D37 VSS AU1 VDD AF5 VDD AR28 VSS D39 VSS AU2 33 www.fairchildsemi.com MSX532 Ball Name MSX532 Package Thermal Characteristics TABLE 12. Package Thermal Characteristics Package Pin Count θJC (°C/W) TBGA 792 0.4 θJA (°C/W) θJA (°C/W) θJA (°C/W) θJA (°C/W) Still Air 200 Ifpm 300 Ifpm 500 Ifpm 7.58 6.00 5.66 5.26 Thermal performance values are based on simulation data Power Consumption There are three components to consider when calculating power for the MSX Family of devices: 1. Steady State Component: This element equals 252 mW. 2. Connection Component: This element equals 0.006 mW x Mb/s x connections. 3. Output Drive Component: This element equals 0.013 mW x number of outputs x Mb/s x capacitive load (pF). Power Consumption = Steady State Component + Connection Component + Output Drive Component. = 252 mW + (0.006 x Mb/s x #connections) + (0.013 x Mb/s x #outputs x Cload) The following examples shows the total power consumption as determined by the above formula: Example 1 Using the MSX532 with 10 Mb/s into a 10pF load with 266 inputs connected to 266 outputs: Power Consumption = 252 mW + (0.006 x 10 x 266) + (0.013 x 266 x 10 x 10) = 252 mW + 16 mW + 346 mW = 0.614 Watts Example 2 Using the MSX532 with 150 Mb/s into a 10pF load with 266 inputs connected to 266 outputs: Power Consumption = 252 mW + (0.006 x 150 x 266) + (0.013 x 266 x 150 x 10) = 252 mW + 239.4 mW + 5187 mW = 5.68 Watts Glossary Array Side: The signal and connections between the Crosspoint Array and the I/O Buffer. RapidConfigure Enable bit can be set with a high level on the RCE pin during a reset of the circuits. Bus Repeater: A circuit operation of the I/O Buffer that enables the MSX device to pass data in both directions on an I/O device pin. The I/O Buffer is placed in a disabled output state to the pin and to the Crosspoint array. A forced LOW on either side of the I/O Buffer will be transmitted to the other side of the I/O Buffer and held until the forced LOW is changed to a force HIGH. At the change of the forcing input, the I/O Buffer will force the other side to a following high state and drive a high level out for a period of time. After the period of time, the I/O Buffer will return to the disabled state. Crosspoint: A single cell containing two N Channel transistors and two RAM bits. The RAM bits are connected in a master-slave configuration to provide an update for programming and changing program information all at once. Each cell contains both an X and Y reset to remove all ports connected to an addressed port in a single program cycle. Crosspoint Array: An array of Crosspoint used to connect any port to any other port or any combination of other ports. The array has all redundant cell removed; there is a single Crosspoint cell for each port to port connection. The reduced cell count is folded to provide a square array. The array has a diagonal line where the cells are rotated. Bypass: A JTAG instruction that connects the previous chip to the next chip through a one bit data register to speed up programming of other chips in a JTAG chain of devices. Data Bit Lines: A pair of signal lines used to write into and read out of Crosspoint Cells. The lines are pre-charged before a read and one is pulled LOW for a write. Clock: Four device corner inputs used to gate data into registers in the I/O Buffer. The Corner inputs serve two sides of the MSX. This provides two choices for each I/O Buffer register in and register out. The neighbor input can also be used as register clock and the clocks can be inverted. Device ID: A 32-bit register in the MSX device with a wired identification. The ID consists of a given number for the device and a revision history field. The identification is shifted out during JTAG reset and the DEVICE ID instruction in JTAG mode. The ID for the MSX devices is 0x0000A89F. Control Register: A programmable register used to control various functions in programming and other circuit settings. All Bits programmed in the JTAG Mode. www.fairchildsemi.com 34 (Continued) Extest: A JTAG instruction that samples I/O pin states and loads new I/O buffer states for testing device pin connections. The MSX devices use a special test mode in Extext to observe the buffer data on the pin side and the array side. A bit in the Control Register controls this mode. higher port is the selected neighbor except for Port 531, which uses Port 0. Pin Side Driver: The I/O Buffer circuit that drives the device pin associated with that buffer. Port: A name followed by a number to identify a pin on the device. Ports are numbered from 531 to 0 on the MSX device. In shifting sequence, Port P000 is shifted in first and shifted out first. I/O Buffer: The circuit that controls the driving of its associated pin and its port into and out of the Crosspoint Array. The buffer contains all the circuits to make it independent of the other I/O Buffers. Each Buffer contains registers for input and output, driving circuits for input and output, sense for Crosspoint Array input, and RAM bits to hold programmed data controlling the function of the buffer. RapidConfigure: A parallel programming method for the MSX devices. The RC mode uses 29 dedicated pins to program the Crosspoint Array and the I/O Buffers. The 29 pins consist of an enable, a strobe, two instruction bits, four variable bits, and two ten-bit address fields. Input or Output Path: The signal flow from pin to array and array to pin. Each path has a register with selectable clocks, drivers for the loaded outputs with selectable enables, and sense circuits to detect changes on either side of the I/O Buffer. RCE: A control pin of the MSX device that is sampled during reset to determine if the device becomes active in the JTAG or the RapidConfigure mode. This pin places the Control Register bit in the state to allow RC operations or not based on the voltage level of the RCE pin. The JTAG mode is always enabled and can set or clear the RC bit in the Control Register. JTAG: The Joint Test Action group is a committee to standardize scan testing of devices. The JTAG interface is referred to as IEEE 1149.1. This is a five bit serial programming and testing method. Trickle Current: A very low current (~15 microamperes) used to pull unused or non-driven circuits to a stable HIGH level. Prevents signals from drifting between CMOS thresholds and drawing currents from the power supply. In the case of Bus Repeater, the small trickle current provides a known high level on the pin and array side inputs. JTAG Sequence: The ordering of all the pins in a serial chain for driving and sensing signals on pins during Extest and Sample/Preload. All pins except power and ground and the five JTAG pins are in the serial string. Next Neighbor: Input can be selected as the clock for the I/O buffer registers for data and clock pairing. The next 35 www.fairchildsemi.com MSX532 Glossary MSX532 532 Port Digital Crosspoint Switch with LVTTL I/O’s Physical Dimensions inches (millimeters) unless otherwise noted 792-Ball Thermally-Enhanced Ball Grid Array (TBGA), JEDEC MO-149, 1.0mm pitch, 40mm Square Package Number BGA792A Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. www.fairchildsemi.com www.fairchildsemi.com 36