STPS130 ® POWER SCHOTTKY RECTIFIER Table 1: Main Product Characteristics IF(AV) 1A VRRM 30 V Tj (max) 150°C VF(max) 0.46 V FEATURES AND BENEFITS ■ ■ ■ ■ SMA (JEDEC DO-214AC) STPS130A Very low forward voltage drop for less power dissipation Optimized conduction/reverse losses trade-off which means the highest yield in the applications Surface mount miniature packages Avalanche capability specified Table 2: Order Codes Part Number STPS130A STPS130U DESCRIPTION Single Schottky rectifier suited to Switched Mode Power Supplies and high frequency DC to DC converters. Packaged in SMA and SMB, this device is especially intended for use in parallel with MOSFETs in synchronous rectification and low voltage secondary rectification. SMB (JEDEC DO-214AA) STPS130U Marking S130 G12 Table 3: Absolute Ratings (limiting values) Symbol Parameter VRRM Repetitive peak reverse voltage IF(RMS) RMS forward voltage Value 30 Unit V 7 A IF(AV) Average forward current TL = 130°C δ = 0.5 1 A IFSM Surge non repetitive forward current tp = 10ms sinusoidal 45 A IRRM Repetitive peak reverse current tp = 2µs F = 1kHz square 1 A IRSM Non repetitive peak reverse current tp = 100µs square 1 A PARM Repetitive peak avalanche power tp = 1µs Tj = 25°C 1200 W -65 to + 150 °C 150 10000 °C V/µs Tstg Tj dV/dt Storage temperature range Maximum operating junction temperature * Critical rate of rise of reverse voltage 1 dPt ot * : --------------- > -------------------------- thermal runaway condition for a diode on its own heatsink Rth ( j – a ) dTj August 2004 REV. 5 1/7 STPS130 Table 4: Thermal Resistance Symbol Parameter Rth(j-l) Value 30 23 SMA SMB Junction to lead Unit °C/W Table 5: Static Electrical Characteristics Symbol Parameter Tests conditions Tj = 25°C VR = VRRM Reverse leakage current Tj = 125°C IR * Tj = 25°C VF ** Tj = 125°C Forward voltage drop Tj = 25°C Tj = 125°C Min. Typ Max. 10 Unit µA 1.5 10 mA 0.55 IF = 1A 0.37 0.46 V 0.63 IF = 2A 0.45 0.55 * tp = 380 µs, δ < 2% Pulse test: ** tp = 5 ms, δ < 2% 2 To evaluate the conduction losses use the following equation: P = 0.37 x IF(AV) + 0.090 I F (RMS) Figure 1: Average forward power dissipation versus average forward current Figure 2: Average forward current versus ambient temperature (δ = 0.5) IF(AV)(A) PF(AV)(W) 1.2 0.6 δ = 0.05 δ = 0.2 δ = 0.1 δ = 0.5 Rth(j-a)=Rth(j-I) 1.0 0.5 0.8 δ=1 0.4 Rth(j-a)=100°C/W 0.6 0.3 0.2 0.4 T T 0.1 0.2 IF(AV)(A) δ=tp/T 0.0 tp δ=tp/T 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Figure 3: Normalized avalanche derating versus pulse duration 1.2 power 0 Tamb(°C) tp 25 50 75 100 125 Figure 4: Normalized avalanche derating versus junction temperature PARM(tp) PARM(1µs) 150 power PARM(tp) PARM(25°C) 1 1.2 1 0.1 0.8 0.6 0.4 0.01 0.2 0.001 0.01 2/7 Tj(°C) tp(µs) 0.1 1 0 10 100 1000 25 50 75 100 125 150 STPS130 Figure 5: Non repetitive surge peak forward current versus overload duration (maximum values) (SMA) Figure 6: Non repetitive surge peak forward current versus overload duration (maximum values) (SMB) IM(A) IM(A) 8 8 7 7 6 6 5 Ta=50°C 5 Ta=75°C 4 Ta=50°C 4 Ta=75°C 3 3 Ta=100°C 2 2 IM 1 t t t(s) δ=0.5 0 1.0E-3 t(s) δ=0.5 1.0E-2 1.0E-1 1.0E+0 Figure 7: Relative variation of thermal impedance junction to ambient versus pulse duration (epoxy printed circuit board, e(Cu)=35µm, recommended pad layout) (SMA) 0 1.0E-3 1.0E-2 1.0E-1 1.0E+0 Figure 8: Relative variation of thermal impedance junction to ambient versus pulse duration (epoxy printed circuit board, e(Cu)=35µm, recommended pad layout) (SMB) Zth(j-c)/Rth(j-c) Zth(j-c)/Rth(j-c) 1.0 1.0 0.8 0.8 0.6 Ta=100°C IM 1 0.6 δ = 0.5 δ = 0.5 0.4 0.4 δ = 0.2 0.2 δ = 0.2 T 0.2 δ = 0.1 Single pulse δ=tp/T tp(s) 0.0 1E-2 1E-1 1E+0 1E+1 1E+2 T δ = 0.1 Single pulse tp 1E+3 Figure 9: Reverse leakage current versus reverse voltage applied (typical values) 0.0 1.0E-2 δ=tp/T tp(s) 1.0E-1 1.0E+0 1.0E+1 tp 1.0E+2 1.0E+3 Figure 10: Junction capacitance versus reverse voltage applied (typical values) C(pF) IR(µA) 500 5E+3 F=1MHz Tj=25°C Tj=125°C 1E+3 200 1E+2 Tj=70°C 100 1E+1 50 Tj=25°C 1E+0 20 VR(V) VR(V) 1E-1 0 5 10 15 10 20 25 30 1 2 5 10 20 30 3/7 STPS130 Figure 11: Forward voltage drop versus forward current (maximum values) Figure 12: Thermal resistance junction to ambient versus copper surface under each lead (Epoxy printed circuit board FR4, copper thickness: 35µm) (SMA) IFM(A) Rth(j-a)(°C/W) 10.00 120 P=1.5W 100 Tj=75°C 1.00 80 Tj=25°C Tj=125°C 60 40 0.10 20 S(Cu)(cm²) VFM(V) 0 0.01 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Figure 13: Thermal resistance junction to ambient versus copper surface under each lead (Epoxy printed circuit board FR4, copper thickness: 35µm) (SMB) Rth(j-a)(°C/W) 140 P=1.5W 120 100 80 60 40 20 S(Cu)(cm²) 0 0 4/7 1 2 3 4 5 0 1 2 3 4 5 STPS130 Figure 14: SMA Package Mechanical Data DIMENSIONS REF. E1 D E A1 A2 C L b Millimeters Inches Min. Max. Min. Max. A1 1.90 2.03 0.075 0.080 A2 0.05 0.20 0.002 0.008 b 1.25 1.65 0.049 0.065 c 0.15 0.41 0.006 0.016 E 4.80 5.60 0.189 0.220 E1 3.95 4.60 0.156 0.181 D 2.25 2.95 0.089 0.116 L 0.75 1.60 0.030 0.063 Figure 15: SMA Foot Print Dimensions (in millimeters) 1.65 1.45 2.40 1.45 5/7 STPS130 Figure 16: SMB Package Mechanical Data DIMENSIONS REF. E1 D Millimeters Inches Min. Max. Min. Max. A1 1.90 2.45 0.075 0.096 A2 0.05 0.20 0.002 0.008 b 1.95 2.20 0.077 0.087 c 0.15 0.41 0.006 0.016 E 5.10 5.60 0.201 0.220 E1 4.05 4.60 0.159 0.181 D 3.30 3.95 0.130 0.156 L 0.75 1.60 0.030 0.063 E A1 A2 C L b Figure 17: SMB Foot Print Dimensions (in millimeters) 2.3 1.52 6/7 2.75 1.52 STPS130 Table 6: Ordering Information Ordering type STPS130A STPS130U ■ ■ Marking S130 G12 Package SMA SMB Weight 0.068 g 0.107 g Base qty 5000 2500 Delivery mode Tape & reel Tape & reel Band indicates cathode Epoxy meets UL94, V0 Table 7: Revision History Date Jul-2003 Revision 4A Aug-2004 5 Description of Changes Last update. SMA package dimensions update. Reference A1 max. changed from 2.70mm (0.106inc.) to 2.03mm (0.080). Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 7/7