STMICROELECTRONICS STPS130

STPS130
®
POWER SCHOTTKY RECTIFIER
Table 1: Main Product Characteristics
IF(AV)
1A
VRRM
30 V
Tj (max)
150°C
VF(max)
0.46 V
FEATURES AND BENEFITS
■
■
■
■
SMA
(JEDEC DO-214AC)
STPS130A
Very low forward voltage drop for less power
dissipation
Optimized conduction/reverse losses trade-off
which means the highest yield in the
applications
Surface mount miniature packages
Avalanche capability specified
Table 2: Order Codes
Part Number
STPS130A
STPS130U
DESCRIPTION
Single Schottky rectifier suited to Switched Mode
Power Supplies and high frequency DC to DC
converters.
Packaged in SMA and SMB, this device is
especially intended for use in parallel with
MOSFETs in synchronous rectification and low
voltage secondary rectification.
SMB
(JEDEC DO-214AA)
STPS130U
Marking
S130
G12
Table 3: Absolute Ratings (limiting values)
Symbol
Parameter
VRRM Repetitive peak reverse voltage
IF(RMS) RMS forward voltage
Value
30
Unit
V
7
A
IF(AV)
Average forward current
TL = 130°C δ = 0.5
1
A
IFSM
Surge non repetitive forward current
tp = 10ms sinusoidal
45
A
IRRM
Repetitive peak reverse current
tp = 2µs F = 1kHz square
1
A
IRSM
Non repetitive peak reverse current
tp = 100µs square
1
A
PARM
Repetitive peak avalanche power
tp = 1µs Tj = 25°C
1200
W
-65 to + 150
°C
150
10000
°C
V/µs
Tstg
Tj
dV/dt
Storage temperature range
Maximum operating junction temperature *
Critical rate of rise of reverse voltage
1
dPt ot
* : --------------- > -------------------------- thermal runaway condition for a diode on its own heatsink
Rth ( j – a )
dTj
August 2004
REV. 5
1/7
STPS130
Table 4: Thermal Resistance
Symbol
Parameter
Rth(j-l)
Value
30
23
SMA
SMB
Junction to lead
Unit
°C/W
Table 5: Static Electrical Characteristics
Symbol
Parameter
Tests conditions
Tj = 25°C
VR = VRRM
Reverse leakage current
Tj = 125°C
IR *
Tj = 25°C
VF **
Tj = 125°C
Forward voltage drop
Tj = 25°C
Tj = 125°C
Min.
Typ
Max.
10
Unit
µA
1.5
10
mA
0.55
IF = 1A
0.37
0.46
V
0.63
IF = 2A
0.45
0.55
* tp = 380 µs, δ < 2%
Pulse test:
** tp = 5 ms, δ < 2%
2
To evaluate the conduction losses use the following equation: P = 0.37 x IF(AV) + 0.090 I F (RMS)
Figure 1: Average forward power dissipation
versus average forward current
Figure 2: Average forward current versus
ambient temperature (δ = 0.5)
IF(AV)(A)
PF(AV)(W)
1.2
0.6
δ = 0.05
δ = 0.2
δ = 0.1
δ = 0.5
Rth(j-a)=Rth(j-I)
1.0
0.5
0.8
δ=1
0.4
Rth(j-a)=100°C/W
0.6
0.3
0.2
0.4
T
T
0.1
0.2
IF(AV)(A)
δ=tp/T
0.0
tp
δ=tp/T
0.0
0.0
0.2
0.4
0.6
0.8
1.0
Figure 3: Normalized avalanche
derating versus pulse duration
1.2
power
0
Tamb(°C)
tp
25
50
75
100
125
Figure 4: Normalized avalanche
derating versus junction temperature
PARM(tp)
PARM(1µs)
150
power
PARM(tp)
PARM(25°C)
1
1.2
1
0.1
0.8
0.6
0.4
0.01
0.2
0.001
0.01
2/7
Tj(°C)
tp(µs)
0.1
1
0
10
100
1000
25
50
75
100
125
150
STPS130
Figure 5: Non repetitive surge peak forward
current versus overload duration (maximum
values) (SMA)
Figure 6: Non repetitive surge peak forward
current versus overload duration (maximum
values) (SMB)
IM(A)
IM(A)
8
8
7
7
6
6
5
Ta=50°C
5
Ta=75°C
4
Ta=50°C
4
Ta=75°C
3
3
Ta=100°C
2
2
IM
1
t
t
t(s)
δ=0.5
0
1.0E-3
t(s)
δ=0.5
1.0E-2
1.0E-1
1.0E+0
Figure 7: Relative variation of thermal
impedance junction to ambient versus pulse
duration (epoxy printed circuit board,
e(Cu)=35µm, recommended pad layout) (SMA)
0
1.0E-3
1.0E-2
1.0E-1
1.0E+0
Figure 8: Relative variation of thermal
impedance junction to ambient versus pulse
duration (epoxy printed circuit board,
e(Cu)=35µm, recommended pad layout) (SMB)
Zth(j-c)/Rth(j-c)
Zth(j-c)/Rth(j-c)
1.0
1.0
0.8
0.8
0.6
Ta=100°C
IM
1
0.6
δ = 0.5
δ = 0.5
0.4
0.4
δ = 0.2
0.2
δ = 0.2
T
0.2
δ = 0.1
Single pulse
δ=tp/T
tp(s)
0.0
1E-2
1E-1
1E+0
1E+1
1E+2
T
δ = 0.1
Single pulse
tp
1E+3
Figure 9: Reverse leakage current versus
reverse voltage applied (typical values)
0.0
1.0E-2
δ=tp/T
tp(s)
1.0E-1
1.0E+0
1.0E+1
tp
1.0E+2
1.0E+3
Figure 10: Junction capacitance versus
reverse voltage applied (typical values)
C(pF)
IR(µA)
500
5E+3
F=1MHz
Tj=25°C
Tj=125°C
1E+3
200
1E+2
Tj=70°C
100
1E+1
50
Tj=25°C
1E+0
20
VR(V)
VR(V)
1E-1
0
5
10
15
10
20
25
30
1
2
5
10
20
30
3/7
STPS130
Figure 11: Forward voltage drop versus
forward current (maximum values)
Figure 12: Thermal resistance junction to
ambient versus copper surface under each
lead (Epoxy printed circuit board FR4, copper
thickness: 35µm) (SMA)
IFM(A)
Rth(j-a)(°C/W)
10.00
120
P=1.5W
100
Tj=75°C
1.00
80
Tj=25°C
Tj=125°C
60
40
0.10
20
S(Cu)(cm²)
VFM(V)
0
0.01
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Figure 13: Thermal resistance junction to
ambient versus copper surface under each
lead (Epoxy printed circuit board FR4, copper
thickness: 35µm) (SMB)
Rth(j-a)(°C/W)
140
P=1.5W
120
100
80
60
40
20
S(Cu)(cm²)
0
0
4/7
1
2
3
4
5
0
1
2
3
4
5
STPS130
Figure 14: SMA Package Mechanical Data
DIMENSIONS
REF.
E1
D
E
A1
A2
C
L
b
Millimeters
Inches
Min.
Max.
Min.
Max.
A1
1.90
2.03
0.075
0.080
A2
0.05
0.20
0.002
0.008
b
1.25
1.65
0.049
0.065
c
0.15
0.41
0.006
0.016
E
4.80
5.60
0.189
0.220
E1
3.95
4.60
0.156
0.181
D
2.25
2.95
0.089
0.116
L
0.75
1.60
0.030
0.063
Figure 15: SMA Foot Print Dimensions
(in millimeters)
1.65
1.45
2.40
1.45
5/7
STPS130
Figure 16: SMB Package Mechanical Data
DIMENSIONS
REF.
E1
D
Millimeters
Inches
Min.
Max.
Min.
Max.
A1
1.90
2.45
0.075
0.096
A2
0.05
0.20
0.002
0.008
b
1.95
2.20
0.077
0.087
c
0.15
0.41
0.006
0.016
E
5.10
5.60
0.201
0.220
E1
4.05
4.60
0.159
0.181
D
3.30
3.95
0.130
0.156
L
0.75
1.60
0.030
0.063
E
A1
A2
C
L
b
Figure 17: SMB Foot Print Dimensions
(in millimeters)
2.3
1.52
6/7
2.75
1.52
STPS130
Table 6: Ordering Information
Ordering type
STPS130A
STPS130U
■
■
Marking
S130
G12
Package
SMA
SMB
Weight
0.068 g
0.107 g
Base qty
5000
2500
Delivery mode
Tape & reel
Tape & reel
Band indicates cathode
Epoxy meets UL94, V0
Table 7: Revision History
Date
Jul-2003
Revision
4A
Aug-2004
5
Description of Changes
Last update.
SMA package dimensions update. Reference A1 max.
changed from 2.70mm (0.106inc.) to 2.03mm (0.080).
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
7/7