STPS130A/U SCHOTTKY RECTIFIER MAIN PRODUCT CHARACTERISTICS IF(AV) 1A VRRM 30 V VF (max) 0.46 V FEATURES AND BENEFITS LOW DROP FORWARD VOLTAGE FOR LESS POWER DISSIPATION AND LOW LEAKAGE OPTIMIZED CONDUCTION / REVERSE LOSSES TRADE-OFF ALLOWING THE HIGHEST EFFICIENCY IN APPLICATION SURFACE MOUNT MINIATURE PACKAGE SMA STPS130A SMB STPS130U DESCRIPTION Single Schottky rectifier suited to Switched Mode Power Supplies and high frequency DC/DC converters. Packaged in SMA or SMB(*), this device is especially intended for use in parallel with MOSFETs in synchronous rectification and low voltage secondary rectification. (*) in accordance with DO214AA and DO214AC JEDEC ABSOLUTE RATINGS (limiting values) Symbol Parameter Value Unit VRRM Repetitive peak reverse voltage 30 V IF(RMS) RMS forward current 7 A IF(AV) Average forward current TL = 135°C δ = 0.5 1 A IFSM Surge non repetitive forward current tp = 10 ms Sinusoidal 45 A IRRM Repetitive peak reverse current tp = 2 µs F = 1kHz 1 A IRSM Non repetitive peak reverse current tp = 100µs square 1 A Tstg Storage temperature range - 65 to + 150 °C Tj dV/dt Maximum junction temperature Critical rate of rise of reverse voltage July 1998 - Ed: 5A 150 10000 V/µs 1/6 STPS130A/U THERMAL RESISTANCES Symbol Parameter Junction to lead Rth (j-l) Value Unit SMA 30 °C/W SMB 25 STATIC ELECTRICAL CHARACTERISTICS Symbol Tests Conditions Tests Conditions IR * Reverse leakage current Tj = 25°C Min. VR = 30V Tj = 125°C VF ** Forward voltage drop Pulse test : Typ. 1.5 Tj = 25°C IF = 1 A Tj = 125°C IF = 1 A Tj = 25°C IF = 2 A Tj = 125°C IF = 2 A 0.37 Max. Unit 10 µA 10 mA 0.55 V 0.46 0.63 0.45 0.55 * tp = 380 µs, δ < 2% ** tp = 5ms, δ < 2% To evaluate the maximum conduction losses use the following equation : P = 0.37 x IF(AV) + 0.090 x IF2(RMS) Fig. 1: Average forward power dissipation versus average forward current. Fig. 2: Average forward current versus ambient temperature (δ=0.5) . IF(av)(A) PF(av)(W) 0.6 δ = 0.1 0.5 δ = 0.2 1.2 δ = 0.5 Rth(j-a)=Rth(j-l) 1.0 δ = 0.05 δ= 1 0.4 0.8 0.3 0.6 0.2 0.0 0.0 2/6 0.4 T 0.1 δ=tp/T IF(av) (A) 0.2 0.4 0.6 0.8 1.0 Rth(j-a)=100°C/W T 0.2 tp 1.2 0.0 δ=tp/T 0 25 Tamb(°C) tp 50 75 100 125 150 STPS130A/U Fig. 3-1: Non repetitive surge peak forward current versus overload duration (maximum values) (SMB). Fig. 3-2: Non repetitive surge peak forward current versus overload duration (maximum values) (SMA). IM(A) IM(A) 8 8 7 7 6 6 Ta=50°C Ta=50°C Ta=75°C 5 5 Ta=75°C 4 4 3 3 2 Ta=100°C IM 2 t 1 δ=0.5 1 t(s) 0 1.0E-3 1.0E-2 1.0E-1 1.0E+0 Fig. 4-1: Relative variation of thermal impedan ce junction to ambient versus pulse duration (epoxy printed circuit board, S(Cu)=35mm, recommended pad layout). (SMB) t t(s) δ=0.5 0 1.0E-3 1.0E-2 1.0E-1 1.0E+0 Fig. 4-2: Relative variation of thermal impedance junction to ambient versus pulse duration (epoxy printed circuit board, S(Cu)=35mm, recommended pad layout).(SMA ) Zth(j-a)/Rth(j-a) Zth(j-a)/Rth(j-a) 1.0 1.0 0.8 0.8 0.6 Ta=100°C IM 0.6 δ = 0.5 0.4 δ = 0.5 0.4 T δ = 0.2 0.2 Single pulse 0.0 1.0E-2 1.0E-1 δ=tp/T tp(s) 1.0E+0 1.0E+1 T δ = 0.2 0.2 δ = 0.1 δ = 0.1 tp 1.0E+2 Single pulse 1.0E+3 Fig. 5: Reverse leakage current versus reverse voltage applied (typical values). 0.0 1E-2 1E-1 δ=tp/T tp(s) 1E+0 1E+1 tp 1E+2 1E+3 Fig. 6: Junction capacitance versus reverse voltage applied (typical values). C(pF) IR(µA) 500 5E+3 1E+3 F=1MHz Tj=25°C Tj=125°C 200 1E+2 100 Tj=70°C 1E+1 50 Tj=25°C 1E+0 1E-1 20 VR(V) VR(V) 0 5 10 15 20 25 30 10 1 2 5 10 20 30 3/6 STPS130A/U Fig. 7: Forward voltage drop versus forward current (maximum values). Fig. 8-1: Thermal resistance junction to ambient versus copper surface under each lead (Epoxy printed circuit board, copper thickness: 35µm).(SMB) IFM(A) Rth(j-a) (°C/W) 10.00 120 P=1.5W 100 1.00 80 Tj=75°C 60 Tj=125°C Tj=25°C 0.10 40 20 S(Cu) (cm ) VFM(V) 0.01 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Fig. 8-2: Thermal resistance junction to ambient versus copper surface under each lead (Epoxy printed circuit board, copper thickness: 35µm).(SMA) Rth(j-a) (°C/W) 140 P=1.5W 120 100 80 60 40 20 0 4/6 S(Cu) (cm ) 0 1 2 3 4 5 0 0 1 2 3 4 5 STPS130A/U PACKAGE MECHANICAL DATA SMA DIMENSIONS REF. E A1 Inches Min. Max. Min. Max. A1 1.90 2.70 0.075 0.106 A2 0.05 0.20 0.002 0.008 b 1.25 1.65 0.049 0.065 c 0.15 0.41 0.006 0.016 E 4.80 5.60 0.189 0.220 E1 3.95 4.60 0.156 0.181 D 2.25 2.95 0.089 0.116 L 0.75 1.60 0.030 0.063 E1 D Millimeters A2 C L b FOOT PRINT (in millimeters) Marking: S130 Cathode band indicates cathode 1.65 1.45 2.40 1.45 5/6 STPS130A/U PACKAGE MECHANICAL DATA SMB DIMENSIONS REF. E1 D Millimeters Inches Min. Max. Min. Max. A1 1.90 2.45 0.075 0.096 A2 0.05 0.20 0.002 0.008 b 1.95 2.20 0.077 0.087 c 0.15 0.41 0.006 0.016 E 5.10 5.60 0.201 0.220 E1 4.05 4.60 0.159 0.181 D 3.30 3.95 0.130 0.156 L 0.75 1.60 0.030 0.063 E A1 A2 C L b FOOT PRINT (in millimeters) Marking: G12 Cathode band indicates cathode 2.3 1.52 2.75 1.52 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsIbility for the consequences of use of such informationnor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics 1998 STMicroelectronics - Printed in Italy - All rights reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. 6/6