STPS1L30 ® LOW DROP POWER SCHOTTKY RECTIFIER Table 1: Main Product Characteristics IF(AV) 1A VRRM 30 V Tj (max) 150°C VF(max) 0.3 V FEATURES AND BENEFITS ■ ■ ■ ■ SMA (JEDEC DO-214AC) STPS1L30A Very low forward voltage drop for less power dissipation Optimized conduction/reverse losses trade-off which means the highest yield in the applications Surface mount miniature packages Avalanche capability specified Table 2: Order Codes Part Number STPS1L30A STPS1L30U DESCRIPTION Single Schottky rectifier suited to Switched Mode Power Supplies and high frequency DC to DC converters, freewheel diode and integrated circuit latch up protection. Packaged in SMA and SMB, this device is especially intended for use in parallel with MOSFETs in synchronous rectification. SMB (JEDEC DO-214AA) STPS1L30U Marking GB3 G23 Table 3: Absolute Ratings (limiting values) Symbol Parameter VRRM Repetitive peak reverse voltage IF(RMS) RMS forward voltage Value 30 Unit V 10 A IF(AV) Average forward current TL = 135°C δ = 0.5 1 A IFSM Surge non repetitive forward current tp = 10ms sinusoidal 75 A IRRM Repetitive peak reverse current tp = 2µs F = 1kHz square 1 A IRSM Non repetitive peak reverse current tp = 100µs square 1 A PARM Repetitive peak avalanche power tp = 1µs Tj = 25°C 1500 W -65 to + 150 °C 150 10000 °C V/µs Tstg Tj dV/dt Storage temperature range Maximum operating junction temperature * Critical rate of rise of reverse voltage 1 dPtot * : --------------- > -------------------------- thermal runaway condition for a diode on its own heatsink dTj Rth ( j – a ) August 2004 REV. 6 1/7 STPS1L30 Table 4: Thermal Resistance Symbol Rth(j-l) Parameter Value Junction to lead SMA 30 SMB 25 Unit °C/W Table 5: Static Electrical Characteristics Symbol Parameter Tests conditions IR * Reverse leakage current Tj = 25°C Tj = 100°C Tj = 25°C VF * Tj = 125°C Forward voltage drop Tj = 25°C Tj = 125°C Min. Typ VR = VRRM Max. Unit 200 µA 15 mA 6 0.395 IF = 1A 0.26 0.3 V 0.445 IF = 2A 0.325 0.375 * tp = 380 µs, δ < 2% Pulse test: 2 To evaluate the conduction losses use the following equation: P = 0.225 x IF(AV) + 0.075 IF (RMS) Figure 1: Average forward power dissipation versus average forward current Figure 2: Average forward current versus ambient temperature (δ = 0.5) IF(AV)(A) PF(AV)(W) 1.2 0.50 0.45 δ = 0.05 0.40 δ = 0.1 δ = 0.2 Rth(j-a)=Rth(j-I) δ = 0.5 1.0 0.35 0.8 Rth(j-a)=120°C/W 0.30 0.25 Rth(j-a)=100°C/W 0.6 δ=1 0.20 0.4 0.15 T T 0.10 0.2 0.05 IF(AV)(A) δ=tp/T 0.00 0.0 0.2 0.4 0.6 0.8 1.0 Figure 3: Normalized avalanche derating versus pulse duration δ=tp/T tp 0.0 1.2 power 0 Tamb(°C) tp 25 50 75 100 125 Figure 4: Normalized avalanche derating versus junction temperature PARM(tp) PARM(1µs) 150 power PARM(tp) PARM(25°C) 1 1.2 1 0.1 0.8 0.6 0.4 0.01 0.2 0.001 0.01 2/7 Tj(°C) tp(µs) 0.1 1 0 10 100 1000 25 50 75 100 125 150 STPS1L30 Figure 5: Non repetitive surge peak forward current versus overload duration (maximum values) (SMA) Figure 6: Non repetitive surge peak forward current versus overload duration (maximum values) (SMB) IM(A) IM(A) 10 10 8 8 Ta=25°C 6 Ta=50°C 4 Ta=50°C 4 Ta=100°C IM 2 Ta=25°C 6 Ta=100°C IM 2 t t t(s) δ=0.5 t(s) δ=0.5 0 0 1E-3 1E-2 1E+0 1E-1 Figure 7: Relative variation of thermal impedance junction to ambient versus pulse duration (epoxy printed circuit board, e(Cu)=35µm, recommended pad layout) (SMA) 1E-1 1E+0 Figure 8: Relative variation of thermal impedance junction to ambient versus pulse duration (epoxy printed circuit board, e(Cu)=35µm, recommended pad layout) (SMB) Zth(j-c)/Rth(j-c) Zth(j-c)/Rth(j-c) 1.0 1.0 0.8 0.8 0.6 1E-2 1E-3 0.6 δ = 0.5 0.4 δ = 0.5 0.4 T δ = 0.2 0.2 δ=tp/T tp(s) Single pulse 0.0 1E-2 1E-1 1E+0 1E+1 1E+2 T δ = 0.2 0.2 δ = 0.1 δ = 0.1 Single pulse tp 5E+2 Figure 9: Reverse leakage current versus reverse voltage applied (typical values) 0.0 1E-2 δ=tp/T tp(s) 1E-1 1E+0 1E+1 tp 1E+2 5E+2 Figure 10: Junction capacitance versus reverse voltage applied (typical values) IR(mA) C(pF) 1E+2 500 Tj=150°C F=1MHz Tj=25°C Tj=125°C 1E+1 Tj=100°C 1E+0 100 1E-1 Tj=25°C 1E-2 VR(V) VR(V) 10 1E-3 0 5 10 15 20 25 30 1 2 5 10 20 30 3/7 STPS1L30 Figure 11: Forward voltage drop versus forward current (typical values, high level) Figure 12: Forward voltage drop versus forward current (maximum values, low level) IFM(A) IFM(A) 10.00 3.0 2.5 Tj=100°C Tj=125°C Tj=25°C 1.00 Tj=100°C Tj=150°C (typical values) 2.0 Tj=150°C 1.5 Tj=25°C 1.0 0.5 VFM(V) 0.10 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Figure 13: Thermal resistance junction to ambient versus copper surface under each lead (Epoxy printed circuit board FR4, copper thickness: 35µm) (SMA) 0.0 0.10 VFM(V) 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 Figure 14: Thermal resistance junction to ambient versus copper surface under each lead (Epoxy printed circuit board FR4, copper thickness: 35µm) (SMB) Rth(j-a)(°C/W) Rth(j-a)(°C/W) 140 120 120 100 100 80 80 60 60 40 40 20 20 S(Cu)(cm²) S(Cu)(cm²) 0 0 0 4/7 1 2 3 4 5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 STPS1L30 Figure 15: SMA Package Mechanical Data DIMENSIONS REF. E1 D E A1 A2 C L b Millimeters Inches Min. Max. Min. Max. A1 1.90 2.03 0.075 0.080 A2 0.05 0.20 0.002 0.008 b 1.25 1.65 0.049 0.065 c 0.15 0.41 0.006 0.016 E 4.80 5.60 0.189 0.220 E1 3.95 4.60 0.156 0.181 D 2.25 2.95 0.089 0.116 L 0.75 1.60 0.030 0.063 Figure 16: SMA Foot Print Dimensions (in millimeters) 1.65 1.45 2.40 1.45 5/7 STPS1L30 Figure 17: SMB Package Mechanical Data DIMENSIONS REF. E1 D Millimeters Inches Min. Max. Min. Max. A1 1.90 2.45 0.075 0.096 A2 0.05 0.20 0.002 0.008 b 1.95 2.20 0.077 0.087 c 0.15 0.41 0.006 0.016 E 5.10 5.60 0.201 0.220 E1 4.05 4.60 0.159 0.181 D 3.30 3.95 0.130 0.156 L 0.75 1.60 0.030 0.063 E A1 A2 C L b Figure 18: SMB Foot Print Dimensions (in millimeters) 2.3 1.52 6/7 2.75 1.52 STPS1L30 Table 6: Ordering Information Ordering type STPS1L30A STPS1L30U ■ ■ Marking GB3 G23 Package SMA SMB Weight 0.068 g 0.107 g Base qty 5000 2500 Delivery mode Tape & reel Tape & reel Band indicates cathode Epoxy meets UL94, V0 Table 7: Revision History Date Revision Jul-2003 5A Aug-2004 6 Description of Changes Last update. SMA package dimensions update. Reference A1 max. changed from 2.70mm (0.106inc.) to 2.03mm (0.080). Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 7/7