STPS3L60/Q/U ® POWER SCHOTTKY RECTIFIER MAIN PRODUCT CHARACTERISTICS IF(AV) 3A VRRM 60 V Tj (max) 150°C VF (max) 0.61 V DO-15 STPS3L60Q DO-201AD STPS3L60 FEATURES AND BENEFITS NEGLIGIBLE SWITCHING LOSSES LOW THERMAL RESISTANCE AVALANCHE CAPABILITY SPECIFIED ■ ■ ■ DESCRIPTION Axial and Surface Mount Power Schottky rectifier suited for Switch Mode Power Supplies and high frequency DC to DC converters. Packaged in DO-201AD, DO-15 and SMB, this device is intended for use in low voltage, high frequency inverters and small battery chargers. For applications where there are space constraints, e.g Telecom battery charger. SMB STPS3L60U ABSOLUTE RATINGS (limiting values) Symbol Parameter Value Unit VRRM Repetitive peak reverse voltage 60 V IF(RMS) RMS forward current 10 A 3 A IF(AV) Average forward current TL = 105°C δ = 0.5 (DO-201AD, SMB) TL = 75°C δ = 0.5 (DO-15) IFSM Surge non repetitive forward current tp = 10 ms Sinusoidal 100 A PARM Repetitive peak avalanche power tp = 1µs 2000 W - 65 to + 150 °C 150 °C 10000 V/µs Tstg Tj dV/dt * : Storage temperature range Tj = 25°C Maximum operating junction temperature * Critical rate of rise of reverse voltage dPtot 1 thermal runaway condition for a diode on its own heatsink < dTj Rth( j − a ) July 2003 - Ed: 5A 1/6 STPS3L60/Q/U THERMAL RESISTANCES Symbol Rth(j-l) Parameter Junction to leads Lead length = 10 mm Value Unit DO-201AD 20 °C/W SMB 20 DO-15 35 STATIC ELECTRICAL CHARACTERISTICS Symbol IR * VF * Parameter Tests conditions Reverse leakage current Typ. Max. 150 Unit µA Tj = 100°C 4 15 mA Tj = 125°C 14 30 Tj = 25°C Forward voltage drop Tj = 25°C Min. VR = VRRM 0.62 IF = 3 A Tj = 100°C 0.53 0.61 Tj = 125°C 0.51 0.59 Tj = 25°C V 0.79 IF = 6 A Tj = 100°C 0.62 0.71 Tj = 125°C 0.6 0.69 Pulse test : * tp = 380 µs, δ < 2% To evaluate the maximum conduction losses use the following equation: P = 0.44 x IF(AV) + 0.05 x IF2(RMS) Fig. 1: Average forward power dissipation versus average forward current. Fig. 2-1: Average forward current versus ambient temperature (δ = 0.5) (DO-201AD, SMB). PF(AV)(W) IF(AV)(A) 2.5 δ = 0.05 δ = 0.1 3.5 δ = 0.2 Rth(j-a)=Rth(j-I) δ = 0.5 3.0 2.0 2.5 δ=1 1.5 2.0 1.0 Rth(j-a)=80°C/W 1.5 T 1.0 T 0.5 δ=tp/T IF(AV)(A) 0.0 0.0 2/6 0.5 1.0 1.5 2.0 0.5 2.5 3.0 tp 3.5 4.0 δ=tp/T 0.0 0 Tamb(°C) tp 25 50 75 100 125 150 STPS3L60/Q/U Fig. 2-2: Average forward current versus ambient temperature (δ = 0.5) (DO-15). Fig. 3: Normalized avalanche power derating versus pulse duration. IF(AV)(A) PARM(tp) PARM(1µs) 3.5 Rth(j-a)=Rth(j-I) 1 3.0 2.5 0.1 2.0 1.5 Rth(j-a)=100°C/W 0.01 1.0 T 0.5 δ=tp/T 0.0 Tamb(°C) tp 0.01 0 25 50 75 100 125 0.1 1 10 100 1000 150 Fig. 4: Normalized avalanche power derating versus junction temperature. 1.2 tp(µs) 0.001 Fig. 5-1: Non repetitive surge peak forward current versus overload duration (maximum values) (DO-201AD, SMB). IM(A) PARM(tp) PARM(25°C) 12 10 1 Ta=25°C 8 0.8 0.6 6 0.4 4 0.2 2 Ta=50°C Ta=100°C IM Tj(°C) 0 25 50 75 t(s) t 0 100 125 150 Fig. 5-2: Non repetitive surge peak forward current versus overload duration (maximum values) (DO-15). 0 1E-3 δ=0.5 1E-2 1E-1 1E+0 Fig. 6-1: Relative variation of thermal impedance junction to ambient versus pulse duration (DO-201AD, SMB). IM(A) Zth(j-a)/Rth(j-a) 11 1.0 10 0.9 9 0.8 8 0.7 7 Ta=25°C 0.6 6 0.5 δ = 0.5 5 Ta=50°C 4 0.3 3 2 1 Ta=100°C IM 0.2 δ = 0.2 T δ = 0.1 0.1 t t(s) δ=0.5 0.0 0 1.E-03 0.4 1E-1 1.E-02 Single pulse 1E+0 tp(s) 1E+1 δ=tp/T 1E+2 tp 1E+3 1.E-01 3/6 STPS3L60/Q/U Fig. 6-2: Relative variation of thermal impedance junction to ambient versus pulse duration (DO-15). Fig. 7: Reverse leakage current versus reverse voltage applied (typical values). Zth(j-a)/Rth(j-a) IR(mA) 1.0 5E+1 0.9 Tj=125°C 1E+1 0.8 Tj=100°C 0.7 0.6 1E+0 δ = 0.5 0.5 1E-1 0.4 0.3 δ = 0.2 0.2 δ = 0.1 T 0.1 tp(s) Single pulse δ=tp/T 0.0 1.E-01 1.E+00 1.E+01 Tj=25°C 1E-2 tp 1.E+02 VR(V) 1E-3 0 1.E+03 Fig. 8: Junction capacitance versus reverse voltage applied (typical values). 5 10 15 20 25 30 35 40 45 50 55 60 Fig. 9-1: Forward voltage drop versus forward current (high level, maximum values). IFM(A) C(pF) 30 500 Tj=100°C (maximum values) F=1MHz Tj=25°C 200 Tj=25°C Tj=100°C (typical values) 10 100 50 20 VR(V) VFM(V) 1 10 1 10 100 Fig. 9-2: Forward voltage drop versus forward current (low level, maximum values). 0.0 0.5 1.0 1.5 2.0 2.5 Fig. 10: Thermal resistance junction to ambient versus copper surface under each lead (Epoxy printed circuit board FR4, Cu: 35µm) (SMB). IFM(A) Rth(j-)(°C/W) 5 120 4 100 Tj=100°C (maximum values) Tj=25°C 3 80 Tj=100°C (typical values) 60 2 40 1 20 S(Cu)(cm²) VFM(V) 0 0 0.0 0.0 4/6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 STPS3L60/Q/U PACKAGE MECHANICAL DATA DO-15 plastic C C A D B DIMENSIONS REF. Millimeters Inches Min. Max. Min. Max. A 6.05 6.75 0.238 0.266 B 2.95 3.53 0.116 0.139 C 26 31 1.024 1.220 D 0.71 0.88 0.028 0.035 PACKAGE MECHANICAL DATA DO-201AD plastic B note 1 A E B E ØD ØC note 1 ØD note 2 DIMENSIONS REF. Millimeters Min. A B Max. Inches Min. 9.50 25.40 NOTES Max. 0.374 1 - The lead diameter ∅ D is not controlled over zone E 2 - The minimum axial length within which the device may be placed with its leads bent at right angles is 0.59"(15 mm) 1.000 ∅C 5.30 0.209 ∅D 1.30 0.051 E 1.25 0.049 5/6 STPS3L60/Q/U PACKAGE MECHANICAL DATA SMB (JEDEC DO-214AA) DIMENSIONS E1 REF. D E A1 Millimeters Inches Min. Max. Min. Max. A1 1.90 2.45 0.075 0.096 A2 0.05 0.20 0.002 0.008 b 1.95 2.20 0.077 0.087 c 0.15 0.41 0.006 0.016 E 5.10 5.60 0.201 0.220 E1 4.05 4.60 0.159 0.181 D 3.30 3.95 0.130 0.156 L 0.75 1.60 0.030 0.063 A2 C L b FOOT PRINT DIMENSIONS (in millimeters) 2.3 1.52 ■ ■ 2.75 1.52 Ordering type Marking STPS3L60 STPS3L60 STPS3L60RL STPS3L60 STPS3L60Q STPS3L60 STPS3L60QRL STPS3L60 STPS3L60U G36 White band indicates cathode Epoxy meets UL94,V0 Package DO-201AD DO-201AD DO-15 DO-15 SMB Weight 1.12g 1.12g 0.4 g 0.4 g 0.107 g Base qty 600 1900 1000 6000 2500 Delivery mode Ammopack Tape & Reel Ammopack Tape & Reel Tape & Reel Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 2003 STMicroelectronics - Printed in Italy - All rights reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com 6/6