STMICROELECTRONICS STPS3L60U

STPS3L60/Q/U
®
POWER SCHOTTKY RECTIFIER
MAIN PRODUCT CHARACTERISTICS
IF(AV)
3A
VRRM
60 V
Tj (max)
150°C
VF (max)
0.61 V
DO-15
STPS3L60Q
DO-201AD
STPS3L60
FEATURES AND BENEFITS
NEGLIGIBLE SWITCHING LOSSES
LOW THERMAL RESISTANCE
AVALANCHE CAPABILITY SPECIFIED
■
■
■
DESCRIPTION
Axial and Surface Mount Power Schottky rectifier
suited for Switch Mode Power Supplies and high
frequency DC to DC converters. Packaged in
DO-201AD, DO-15 and SMB, this device is
intended for use in low voltage, high frequency
inverters and small battery chargers.
For applications where there are space
constraints, e.g Telecom battery charger.
SMB
STPS3L60U
ABSOLUTE RATINGS (limiting values)
Symbol
Parameter
Value
Unit
VRRM
Repetitive peak reverse voltage
60
V
IF(RMS)
RMS forward current
10
A
3
A
IF(AV)
Average forward current
TL = 105°C δ = 0.5
(DO-201AD, SMB)
TL = 75°C δ = 0.5
(DO-15)
IFSM
Surge non repetitive forward current
tp = 10 ms Sinusoidal
100
A
PARM
Repetitive peak avalanche power
tp = 1µs
2000
W
- 65 to + 150
°C
150
°C
10000
V/µs
Tstg
Tj
dV/dt
* :
Storage temperature range
Tj = 25°C
Maximum operating junction temperature *
Critical rate of rise of reverse voltage
dPtot
1
thermal runaway condition for a diode on its own heatsink
<
dTj
Rth( j − a )
July 2003 - Ed: 5A
1/6
STPS3L60/Q/U
THERMAL RESISTANCES
Symbol
Rth(j-l)
Parameter
Junction to leads
Lead length = 10 mm
Value
Unit
DO-201AD
20
°C/W
SMB
20
DO-15
35
STATIC ELECTRICAL CHARACTERISTICS
Symbol
IR *
VF *
Parameter
Tests conditions
Reverse leakage current
Typ.
Max.
150
Unit
µA
Tj = 100°C
4
15
mA
Tj = 125°C
14
30
Tj = 25°C
Forward voltage drop
Tj = 25°C
Min.
VR = VRRM
0.62
IF = 3 A
Tj = 100°C
0.53
0.61
Tj = 125°C
0.51
0.59
Tj = 25°C
V
0.79
IF = 6 A
Tj = 100°C
0.62
0.71
Tj = 125°C
0.6
0.69
Pulse test : * tp = 380 µs, δ < 2%
To evaluate the maximum conduction losses use the following equation:
P = 0.44 x IF(AV) + 0.05 x IF2(RMS)
Fig. 1: Average forward power dissipation versus
average forward current.
Fig. 2-1: Average forward current versus ambient
temperature (δ = 0.5) (DO-201AD, SMB).
PF(AV)(W)
IF(AV)(A)
2.5
δ = 0.05
δ = 0.1
3.5
δ = 0.2
Rth(j-a)=Rth(j-I)
δ = 0.5
3.0
2.0
2.5
δ=1
1.5
2.0
1.0
Rth(j-a)=80°C/W
1.5
T
1.0
T
0.5
δ=tp/T
IF(AV)(A)
0.0
0.0
2/6
0.5
1.0
1.5
2.0
0.5
2.5
3.0
tp
3.5
4.0
δ=tp/T
0.0
0
Tamb(°C)
tp
25
50
75
100
125
150
STPS3L60/Q/U
Fig. 2-2: Average forward current versus ambient
temperature (δ = 0.5) (DO-15).
Fig. 3: Normalized avalanche power derating
versus pulse duration.
IF(AV)(A)
PARM(tp)
PARM(1µs)
3.5
Rth(j-a)=Rth(j-I)
1
3.0
2.5
0.1
2.0
1.5
Rth(j-a)=100°C/W
0.01
1.0
T
0.5
δ=tp/T
0.0
Tamb(°C)
tp
0.01
0
25
50
75
100
125
0.1
1
10
100
1000
150
Fig. 4: Normalized avalanche power derating
versus junction temperature.
1.2
tp(µs)
0.001
Fig. 5-1: Non repetitive surge peak forward
current versus overload duration (maximum
values) (DO-201AD, SMB).
IM(A)
PARM(tp)
PARM(25°C)
12
10
1
Ta=25°C
8
0.8
0.6
6
0.4
4
0.2
2
Ta=50°C
Ta=100°C
IM
Tj(°C)
0
25
50
75
t(s)
t
0
100
125
150
Fig. 5-2: Non repetitive surge peak forward
current versus overload duration (maximum
values) (DO-15).
0
1E-3
δ=0.5
1E-2
1E-1
1E+0
Fig. 6-1: Relative variation of thermal impedance
junction to ambient versus pulse duration
(DO-201AD, SMB).
IM(A)
Zth(j-a)/Rth(j-a)
11
1.0
10
0.9
9
0.8
8
0.7
7
Ta=25°C
0.6
6
0.5
δ = 0.5
5
Ta=50°C
4
0.3
3
2
1
Ta=100°C
IM
0.2
δ = 0.2
T
δ = 0.1
0.1
t
t(s)
δ=0.5
0.0
0
1.E-03
0.4
1E-1
1.E-02
Single pulse
1E+0
tp(s)
1E+1
δ=tp/T
1E+2
tp
1E+3
1.E-01
3/6
STPS3L60/Q/U
Fig. 6-2: Relative variation of thermal impedance
junction to ambient versus pulse duration (DO-15).
Fig. 7: Reverse leakage current versus reverse
voltage applied (typical values).
Zth(j-a)/Rth(j-a)
IR(mA)
1.0
5E+1
0.9
Tj=125°C
1E+1
0.8
Tj=100°C
0.7
0.6
1E+0
δ = 0.5
0.5
1E-1
0.4
0.3
δ = 0.2
0.2
δ = 0.1
T
0.1
tp(s)
Single pulse
δ=tp/T
0.0
1.E-01
1.E+00
1.E+01
Tj=25°C
1E-2
tp
1.E+02
VR(V)
1E-3
0
1.E+03
Fig. 8: Junction capacitance versus reverse
voltage applied (typical values).
5
10
15
20
25
30
35
40
45
50
55
60
Fig. 9-1: Forward voltage drop versus forward
current (high level, maximum values).
IFM(A)
C(pF)
30
500
Tj=100°C
(maximum values)
F=1MHz
Tj=25°C
200
Tj=25°C
Tj=100°C
(typical values)
10
100
50
20
VR(V)
VFM(V)
1
10
1
10
100
Fig. 9-2: Forward voltage drop versus forward
current (low level, maximum values).
0.0
0.5
1.0
1.5
2.0
2.5
Fig. 10: Thermal resistance junction to ambient
versus copper surface under each lead (Epoxy
printed circuit board FR4, Cu: 35µm) (SMB).
IFM(A)
Rth(j-)(°C/W)
5
120
4
100
Tj=100°C
(maximum values)
Tj=25°C
3
80
Tj=100°C
(typical values)
60
2
40
1
20
S(Cu)(cm²)
VFM(V)
0
0
0.0
0.0
4/6
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
STPS3L60/Q/U
PACKAGE MECHANICAL DATA
DO-15 plastic
C
C
A
D
B
DIMENSIONS
REF.
Millimeters
Inches
Min.
Max.
Min.
Max.
A
6.05
6.75
0.238
0.266
B
2.95
3.53
0.116
0.139
C
26
31
1.024
1.220
D
0.71
0.88
0.028
0.035
PACKAGE MECHANICAL DATA
DO-201AD plastic
B
note 1
A
E
B
E
ØD
ØC
note 1
ØD
note 2
DIMENSIONS
REF.
Millimeters
Min.
A
B
Max.
Inches
Min.
9.50
25.40
NOTES
Max.
0.374
1 - The lead diameter ∅ D is not controlled over zone E
2 - The minimum axial length within which the device
may be placed with its leads bent at right angles is
0.59"(15 mm)
1.000
∅C
5.30
0.209
∅D
1.30
0.051
E
1.25
0.049
5/6
STPS3L60/Q/U
PACKAGE MECHANICAL DATA
SMB (JEDEC DO-214AA)
DIMENSIONS
E1
REF.
D
E
A1
Millimeters
Inches
Min.
Max.
Min.
Max.
A1
1.90
2.45
0.075
0.096
A2
0.05
0.20
0.002
0.008
b
1.95
2.20
0.077
0.087
c
0.15
0.41
0.006
0.016
E
5.10
5.60
0.201
0.220
E1
4.05
4.60
0.159
0.181
D
3.30
3.95
0.130
0.156
L
0.75
1.60
0.030
0.063
A2
C
L
b
FOOT PRINT DIMENSIONS (in millimeters)
2.3
1.52
■
■
2.75
1.52
Ordering type
Marking
STPS3L60
STPS3L60
STPS3L60RL
STPS3L60
STPS3L60Q
STPS3L60
STPS3L60QRL
STPS3L60
STPS3L60U
G36
White band indicates cathode
Epoxy meets UL94,V0
Package
DO-201AD
DO-201AD
DO-15
DO-15
SMB
Weight
1.12g
1.12g
0.4 g
0.4 g
0.107 g
Base qty
600
1900
1000
6000
2500
Delivery mode
Ammopack
Tape & Reel
Ammopack
Tape & Reel
Tape & Reel
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of
use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written
approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore
Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com
6/6