TDA7468D TWO BANDS DIGITALLY CONTROLLED AUDIO PROCESSOR WITH BASS ALC SURROUND 1 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 2 FEATURES Figure 1. Package INPUT MULTIPLEXER – 4 STEREO INPUTS – SELECTABLE INPUT GAIN FOR OPTIMAL ADAPTATION TO DIFFERENT SOURCES ONE STEREO OUTPUT BASS ALC TREBLE AND BASS CONTROL IN 2.0dB STEPS VOLUME CONTROL IN 1.0dB STEPS TWO SPEAKER ATTENUATORS: – TWO INDEPENDENT SPEAKER CONTROL IN 1.0dB STEPS FOR BALANCE FACILITY – INDEPENDENT MUTE FUNCTION ALL FUNCTION ARE PROGRAMMABLE VIA SERIAL BUS EXTERNALLY ADJUSTABLE SURROUND DESCRIPTION The TDA7468D is a volume tone (bass and treble) balance (Left/Right) processor for quality audio SO28 Table 1. Order Codes Part Number Package TDA7468D SO28 TDA7468D13TR Tape & Reel applications in Hi-Fi systems. Selectable input gain is provided. Control of all the functions is accomplished by serial bus. The AC signal setting is obtained by resistor networks and switches combined with operational amplifiers. Thanks to the used BIPOLAR/CMOS Technology, Low Distortion, Low Noise and DC stepping are obtained Figure 2. PIN CONNECTION (Top view) VS 1 28 GND MIC 2 27 CREF IN1_L 3 26 IN1_R IN2_L 4 25 IN2_R IN3_R IN3_L 5 24 IN4_L 6 23 IN4_R MUX_L 7 22 MUX_R IS_L 8 21 IS_R TREBLE_L 9 20 TREBLE_R BASSI_L 10 19 BASSI_R BASSO_L 11 18 BASSO_R OUT_L 12 17 OUT_R DGND 13 16 ALC SCL 14 15 SDA D99AU1057 June 2004 REV. 1 1/22 2/22 IN-L4 IN-L3 IN-L2 IN-L1 ALC MIC-MIX IN-R1 IN-R2 IN-R3 IN-R4 50K 50K 50K 50K 50K 50K 50K 50K D99AU1058A 6 5 4 3 16 50K 2 26 25 24 23 INPUT SELECT 0dB, 6dB 10dB, 14dB INPUT SELECT + + MUX-L 7 buffer gain: 0 to 14dB gain / 2dB step buffer gain: 0 to 14dB gain / 2dB step 22 MUX-R IS-L 8 50K 50K 0dB 6dB 9dB 12dB VARIABLE MIX non-inverting inverting HALF_WAVE RECTIFIER BASS_ALC CONTROL 0dB VARIABLE MIX 6dB 9dB 12dB non-inverting inverting 21 IS-R + + + 63dB att. /1dB step + 6dB gain 63dB att. /1dB step + 6dB gain TREBLE gm TREBLE-L 9 -14 to +14dB /2dB step gm 19 BASS -14 to +14dB /2dB step 18 BASSI-L 10 BASSO-L 11 -14 to +14dB /2dB step BASS CREF 27 SUPPLY GND 28 VREF -24 att. /8dB step -24 att. /8dB step BASSO-R I2C BUS DECODER + LATCHES TREBLE -14 to +14dB /2dB step 20 TREBLE-R BASSI-R 1 12 13 15 14 17 VS OUT-L DGND SDA SCL OUT-R TDA7468D Figure 3. BLOCK DIAGRAM TDA7468D Table 2. ABSOLUTE MAXIMUM RATINGS Symbol VS Parameter Value Unit 10.5 V 0 to 70 °C -55 to 150 °C Value Unit 85 °C/W Operating Supply Voltage Tamb Operating Ambient Temperature Tstg Storage Temperature Range Table 3. THERMAL DATA Symbol Rth j-pin Parameter Thermal Resistance Junction-pins Table 4. QUICK REFERENCE DATA Symbol Parameter Min. Typ. Max. Unit 9 10 V VS Supply Voltage 5 VCL Max. input signal handling 2 THD Total Harmonic Distortion VI = 1Vrms; f = 1KHz Vrms 0.01 Total Harmonic Distortion VI = 0.1Vrms; f = 1KHz % % 0.1 % S/N Signal to Noise Ratio Vout = 1Vrms (0dB) 100 dB SC Channel Separation f = 1KHz 90 dB Input Gain (2dB step) 0 14 dB Volume Control (1dB step) -87 0 dB Treble Control (2dB step) -14 +14 dB Bass Control (2dB step) -14 +14 dB Mute Attenuation 86 dB 3/22 TDA7468D ELECTRICAL CHARACTERISTICS (refer to the test circuit Tamb = 25°C, VS = 9V, f = 1KHz all controls flat (G = 0dB), unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit 5 9 10 V 9 mA 60 90 dB 35 50 2 2.5 Vrms dB SUPPLY VS Supply Voltage IS Supply Current SVR Ripple Rejection INPUT STAGE RIN Input Resistance VCL Clipping Level SIN Input Separation 80 100 Ginmin Minimum Input Gain -1 0 Ginmax Maximum Input Gain 14 dB Step Resolution 2 dB Gstep THD = 0.3% 65 1 KΩ dB MIC RIN Input Resistance Gmic1 Mic Input Gain 1 14 dB Gmic2 Mic Input Gain 2 10 dB 35 50 65 KΩ Gmic3 Mic Input Gain 3 6 dB Gmin4 Mic Input Gain 4 0 dB MIXmic Mixing Rate 50 % SURROUND Rin Input Resistance 35 50 65 KΩ Ginmin Minimum Input Gain -1 0 1 dB Ginmax Maximum Input Gain 12 Inverting Gain -1 Mixmin Minimum Mixing Rate 0 % Mixmax Maximum Mixing Rate 100 % GinV Crosstal k Gbuffer Crosstalk of Mux Output to 100% IS dB 40 Buffer Gain dB 6 dB 63 dB VOLUME CONTROL CRANGE1 Vol 1 Control Range AVMAX1 Vol 1 Max. Attenuation 61 63 65 dB ASTEP1 Vol 1 Step Resolution 0.5 1 1.5 dB Match1 Matching TBD CRANGE2 Vol 2 Control Range dB 24 dB AVMAX2 Vol 2 Max. Attenuation 22 24 26 dB ASTEP2 Vol 2 Step Resolution 7 8 9 dB Match2 Matching AVMAX1+ Vol 1 + Vol 2 Max Attenuation AVMAX2 4/22 TBD dB 84 dB TDA7468D ELECTRICAL CHARACTERISTICS (continua) (refer to the test circuit Tamb = 25°C, VS = 9V, f = 1KHz all controls flat (G = 0dB), unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit BASS CONTROL Gb Control Range ±12.0 ±14.0 ±16.0 dB BSTEP Step Resolution 1 2 3 dB Internal Feedback Resistance 33 44 55 KΩ RB Max. Boost/cut BASS ALC CONTROL Rattack1 Attack Time Resistor 1 12.5 KΩ Rattack2 Attack Time Resistor 2 25 KΩ Rattack3 Attack Time Resistor 3 50 KΩ Rattack4 Attack Time Resistor 4 100 KΩ Thresh1 Threshold 1 700 mVrms Thresh2 Threshold 2 485 mVrms Thresh3 Threshold 3 320 mVrms Thresh4 Threshold 4 170 mVrms TREBLE CONTROL Gt Control Range TSTEP Step Resolution Rt Max. Boost/cut +13.0 +14.0 +15.0 dB 1 2 3 dB Internal Resistance 25 KΩ 2.5 Vrms AUDIO OUTPUTS VOCL RL VOUT Clipping Level THD = 0.3% Output Load Resistance 2 2 DC Voltage Level KΩ 4.5 V 5 µV GENERAL ENO Output Noise BW = 20Hz to 20KHz; All gains 0dB; output muted S/N Signal to Noise Ratio SC Channel Separation Left/Right d Distortion 10 100 dB 90 dB AV = 0; VI = 0.1Vrms ; 0.1 AV = 0; VI = 1Vrms ; SC 15 µV flat All gains 0dB; VO = 1Vrms ; % 0.01 % Channel Separation left/right 90 dB Total Tracking Error 0 1 dB 1 V BUS INPUT VIL Input Low Voltage VIH Input High Voltage IIN Input Current VIN = 0.4V VO Output Voltage (ACK) IO = 1.6mA 2.5 V -5 0.4 5 µA 0.8 V 5/22 6/22 IN-R1 IN-R2 IN-R3 IN-R4 0.47µF 0.47µF 0.47µF 0.47µF 1M 0.47µF IN-L4 IN-L3 IN-L2 IN-L1 ALC 0.47µF MIC-MIX 0.47µF 0.47µF 0.47µF 0.47µF 50K 50K 50K 50K 50K 50K 50K 50K D99AU1059A 6 5 4 3 16 50K 2 26 25 24 23 INPUT SELECT 0dB, 6dB 10dB, 14dB INPUT SELECT + + MUX-L 7 buffer gain: 0 to 14dB gain / 2dB step buffer gain: 0 to 14dB gain / 2dB step 22 MUX-R IS-L 8 50K 50K 0dB 6dB 9dB 12dB VARIABLE MIX non-inverting inverting + VARIABLE MIX HALF_WAVE RECTIFIER BASS_ALC CONTROL 0dB 6dB 9dB 12dB non-inverting inverting 21 IS-R + + 63dB att. /1dB step + 6dB gain 63dB att. /1dB step + 6dB gain TREBLE BASS -14 to +14dB /2dB step BASSI-R 100nF 5.6K 11 BASSO-L 10 BASSI-L 9 gm -14 to +14dB /2dB step BASS TREBLE-L -14 to +14dB /2dB step gm 19 100nF GND 28 VREF 27 SUPPLY -24 att. /8dB step -24 att. /8dB step BASSO-R 18 I2C BUS DECODER + LATCHES TREBLE -14 to +14dB /2dB step 20 TREBLE-R 3.3nF 10µF CREF 1 12 13 15 14 17 VS OUT-L DGND SDA SCL OUT-R TDA7468D Figure 4. TEST CIRCUIT TDA7468D 3 APPLICATION SUGGESTIONS The first and the last stages are volume control blocks. The control range is 0 to -63dB (mute) with 1dB step resolution for this first one, 0 to 24dB (mute) with 8dB step resolution for the last one. The very high resolution allows the implementation of systems free from any noisy acoustical effect. The TDA7468D audioprocessor provides 2 bands tones control. 3.1 Bass, Stages The Bass cell has an internal resistor Ri = 44KΩ typical. Several filter types can be implemented, connecting external components to the Bass IN and OUT pins. The fig.5 refers to basic T Type Bandpass Filter starting from the filter component values (R1 internal and R2,C1,C2 external) the centre frequency Fc, the gain Av at max. boost and the filter Q factor are computed as follows: 1 F C = ----------------------------------------------------------------2 ⋅ π ⋅ R1 ⋅ R2 ⋅ C 1 ⋅ C2 R2 C2 + R2 C1 + R i C1 A V = ---------------------------------------------------------------R 2 C1 + R2 C2 R 1 ⋅ R2 ⋅ C1 ⋅ C 2 Q = -------------------------------------------------R2 C1 + R2 C2 Viceversa, once FC, AV, and Ri internal value are fixed, the external components values will be: 2 AV – 1 C1 = -----------------------------------------2 ⋅ π ⋅ FC ⋅ Ri ⋅ Q Q ⋅ C1 C2 = -----------------------------2 AV – 1 – Q 2 AV – 1 – Q R2 = ----------------------------------------------------------------------2 ⋅ π ⋅ C1 ⋅ FC ⋅ ( A V – 1 ) ⋅ Q 3.2 Treble Stage The treble stage is a high pass filter whose time constant is fixed by an internal resistor (25KΩ typical) and an external capacitor connected between treble pins and ground. 3.3 CREF The suggested 10µF reference capacitor (CREF) value can be reduced to 4.7µF if the application requires faster power ON. Figure 5. Ri internal IN OUT C1 C2 R2 D95AU313 7/22 TDA7468D 4 I2C BUS INTERFACE Data transmission from microprocessor to the TDA7468D and vice versa takes place through the 2 wires I2C BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected). 4.1 Data Validity As shown in fig. 6, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW. 4.2 Start and Stop Conditions As shown in fig.7 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH. 4.3 Byte Format Every byte transferred on the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first. 4.4 Acknowledge The master (µP) puts a restive HIGH level on the SDA line during the acknowledge clock pulse (see fig. 4). The peripheral (audio processor) that acknowledges has to pull-down (LOW) the SDA line during this clock pulse. The audio processor which has been addressed has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains at the HIGH level during the ninth clock pulse time. In this case the master transmitter can generate the STOP information in order to abort the transfer. 4.5 Transmission without Acknowledge Avoiding to detect the acknowledge of the audio processor, the µP can use a simpler transmission: simply it waits one clock without checking the slave acknowledging, and sends the new data. This approach of course is less protected from misworking. Figure 6. Data Validity on the I2CBUS SDA SCL DATA LINE STABLE, DATA VALID CHANGE DATA ALLOWED D99AU1031 Figure 7. Timing Diagram of I2CBUS SCL I2CBUS SDA D99AU1032 START STOP Figure 8. Acknowledge on the I2CBUS SCL 1 2 3 7 8 9 SDA MSB START 8/22 D99AU1033 ACKNOWLEDGMENT FROM RECEIVER TDA7468D 5 SOFTWARE SPECIFICATION Interface Protocol The interface protocol comprises: ■ ■ ■ ■ ■ A start condition (S) A chip address byte, containing the TDA7468D address A subaddress bytes A sequence of data (N byte + acknowledge) A stop condition (P) SUBADDRESS CHIP ADDRESS MSB S 1 LSB 0 0 0 1 0 0 0 DATA 1 to DATA n MSB ACK X LSB X X B DATA MSB ACK LSB DATA ACK P D96AU420 ACK = Acknowledge S = Start; P = Stop A = Address B = Auto Increment 6 EXAMPLES 6.1 No Incremental Bus The TDA7468D receives a start condition, the correct chip address, a subaddress with the B = 0 (no incremental bus), N-data (all these data concern the subaddress selected), a stop condition. CHIP ADDRESS SUBADDRESS MSB S 1 LSB 0 0 0 1 0 0 0 MSB ACK X DATA LSB MSB 0 D3 D2 D1 D0 ACK X X LSB DATA ACK P D96AU421 6.2 Incremental Bus The TDA7468D receive a start conditions, the correct chip address, a subaddress with the B = 1 (incremental bus): now it is in a loop condition with an autoincrease of the subaddress whereas SUBADDRESS from "XXX1000" to "XXX1111" of DATA are ignored. The DATA 1 concern the subaddress sent, and the DATA 2 concern the subaddress sent plus one in the loop etc, and at the end it receivers the stop condition. CHIP ADDRESS SUBADDRESS MSB S 1 LSB 0 0 0 1 0 0 0 MSB ACK X DATA 1 to DATA n LSB X MSB 1 D3 D2 D1 D0 ACK X LSB DATA ACK P D96AU422 Table 5. POWER ON RESET CONDITION MSB LSB D7 D6 D5 D4 D3 D2 D1 D0 1 1 1 1 1 1 1 0 9/22 TDA7468D 7 DATA BYTES Address = (HEX) 10001000. Table 6. FUNCTION SELECTION: First byte (subaddress) MSB LSB SUBADDRESS D7 D6 D5 D4 D3 D2 D1 D0 X X X B 0 0 0 0 INPUT SELECT & MIC X X X B 0 0 0 1 INPUT GAIN X X X B 0 0 1 0 SURROUND X X X B 0 0 1 1 VOLUME LEFT X X X B 0 1 0 0 VOLUME RIGHT X X X B 0 1 0 1 TREBLE & BASS X X X B 0 1 1 0 OUTPUT X X X B 0 1 1 1 BASS ALC B = 1: INCREMENTAL BUS; ACTIVE B = 0: NO INCREMENTAL BUS X = INDIFFERENT 0/1 Table 7. INPUT SELECTION & MIC MSB D7 LSB D6 D5 D4 D3 D2 D1 D0 INPUT SELECT 0 0 0 IN1 0 0 1 IN2 0 1 0 IN3 0 1 1 IN4 MUTE (IN5) 1 ON (IN5) 0 OFF MIC 10/22 0 0 Gain: 14dB 0 1 Gain: 10dB 1 0 Gain: 6dB 1 1 Gain: 0dB 1 OFF 0 ON TDA7468D Table 8. INPUT GAIN SELECTION MSB D7 D6 D5 D4 D3 LSB INPUT GAIN D2 D1 D0 2dB STEPS 0 0 0 0dB 0 0 1 2dB 0 1 0 4dB 0 1 1 6dB 1 0 0 8dB 1 0 1 10dB 1 1 0 12dB 1 1 1 14dB GAIN = 0 to 30dB Table 9. SURROUND MSB D7 LSB D6 D5 D4 D3 D2 D1 SURROUND D0 SURROUND MODE 1 ON 0 OFF GAIN 0 0 0dB 0 1 6dB 1 0 9dB 1 1 12dB MIXING 0 0 0 inverting : 100% 0 0 1 inverting :50% 0 1 0 inverting : 25% 0 1 1 0% 1 0 0 non-inverting : 100% 1 0 1 non-inverting : 75% 1 1 0 non-inverting : 50% 1 1 1 mute BUFFER GAIN 1 0 0 6dB 11/22 TDA7468D Table 10. VOLUME MSB D7 D6 D5 D4 D3 LSB VOLUME D2 D1 D0 1dB STEPS 0 0 0 0dB 0 0 1 -1dB 0 1 0 -2dB 0 1 1 -3dB 1 0 0 -4dB 1 0 1 -5dB 1 1 0 -6dB 1 1 1 -7dB 8dB STEPS 0 0 0 0dB 0 0 1 -8dB 0 1 0 -16dB 0 1 1 -24dB 1 0 0 -32dB 1 0 1 -40dB 1 1 0 -48dB 1 1 1 -56dB VOLUME 2 0 0 0dB 0 1 -8dB 1 0 -16dB 1 1 -24dB VOLUME = 0 to-87dB Table 11. VOLUME setting 1 Target Volume (dB) 12/22 Volume1 1dB step (dB) Volume1 8dB step (dB) Volume2 8dB step (dB) 0 0 -8 0 0 0 -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 -6 -6 -7 -7 -8 0 -9 -1 -10 -2 -11 -3 -12 -4 -13 -5 -14 -6 -15 -7 TDA7468D Table 11. VOLUME setting 1 (continua) Target Volume (dB) Volume1 1dB step (dB) Volume1 8dB step (dB) Volume2 8dB step (dB) -16 0 -16 0 -17 -1 -18 -2 -19 -3 -20 -4 -21 -5 -22 -6 -23 -7 -24 0 -32 0 -40 0 -48 0 -24 0 -25 -1 -26 -2 -27 -3 -28 -4 -29 -5 -30 -6 -31 -7 -32 0 -33 -1 -34 -2 -35 -3 -36 -4 -37 -5 -38 -6 -39 -7 -40 0 -41 -1 -42 -2 -43 -3 -44 -4 -45 -5 -46 -6 -47 -7 -48 0 -49 -1 -50 -2 -51 -3 -52 -4 -53 -5 -54 -6 -55 -7 Target Volume (dB) Volume1 1dB step (dB) Volume1 8dB step (dB) Volume2 8dB step (dB) -56 0 -56 0 -57 -1 13/22 TDA7468D Table 11. VOLUME setting 1 (continua) -58 -2 -59 -3 -60 -4 -61 -5 -62 -6 -63 -7 -64 0 -65 -1 -66 -2 -67 -3 -68 -4 -69 -5 -70 -6 -71 -7 -72 0 -73 -1 -74 -2 -75 -3 -76 -4 -77 -5 -78 -6 -79 -7 -80 0 -81 -1 -82 -2 -83 -3 -84 -4 -85 -5 -86 -6 -87 -7 -56 8 -56 -16 -56 -24 Table 12. VOLUME setting 2 Target Volume (dB) Volume1 1dB step (dB) Volume1 8dB step (dB) Volume2 8dB step (dB) 0 0 0 0 -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 -6 -6 -7 -7 14/22 TDA7468D Table 12. VOLUME setting 2 (continua) Target Volume (dB) Volume1 1dB step (dB) Volume1 8dB step (dB) Volume2 8dB step (dB) -8 0 -8 0 -9 -1 -10 -2 -11 -3 -12 -4 -13 -5 -14 -6 -15 -7 -16 0 -16 0 -17 -1 -18 -2 -19 -3 -20 -4 -21 -5 -22 -6 -23 -7 -24 0 -16 -8 -25 -1 -26 -2 -27 -3 -28 -4 -29 -5 -30 -6 -31 -7 -32 0 -16 -16 -33 -1 -34 -2 -35 -3 -36 -4 -37 -5 -38 -6 -39 -7 -40 0 -16 -24 -41 -1 -42 -2 -43 -3 -44 -4 -45 -5 -46 -6 -47 -7 15/22 TDA7468D Table 12. VOLUME setting 2 (continua) Target Volume (dB) Volume1 1dB step (dB) Volume1 8dB step (dB) Volume2 8dB step (dB) -48 0 -24 -24 -49 -1 -50 -2 -51 -3 -52 -4 -53 -5 -54 -6 -55 -7 -56 0 -32 -24 -57 -1 -58 -2 -59 -3 -60 -4 -61 -5 -62 -6 -63 -7 -64 0 -40 -24 -65 -1 -66 -2 -67 -3 -68 -4 -69 -5 -70 -6 -71 -7 -72 0 -48 -24 -73 -1 -74 -2 -75 -3 -76 -4 -77 -5 -78 -6 -79 -7 -80 0 -56 -24 -81 -1 -82 -2 -83 -3 -84 -4 -85 -5 -86 -6 -87 -7 16/22 TDA7468D Table 13. TREBLE & BASS SELECTION MSB D7 LSB D6 D5 D4 D3 D2 D1 D0 TREBLE 0 0 0 0 -14dB 0 0 0 1 -12dB 0 0 1 0 -10dB 0 0 1 1 -8dB 0 1 0 0 -6dB 0 1 0 1 -4dB 0 1 1 0 -2dB 0 1 1 1 0dB 1 0 0 0 14dB 1 0 0 1 12dB 1 0 1 0 10dB 1 0 1 1 8dB 1 1 0 0 6dB 1 1 0 1 4dB 1 1 1 0 2dB 1 1 1 1 0dB BASS (*) 0 0 0 0 -14dB 0 0 0 1 -12dB 0 0 1 0 -10dB 0 0 1 1 -8dB 0 1 0 0 -6dB 0 1 0 1 -4dB 0 1 1 0 -2dB 0 1 1 1 0dB 1 0 0 0 14dB 1 0 0 1 12dB 1 0 1 0 10dB 1 0 1 1 8dB 1 1 0 0 6dB 1 1 0 1 4dB 1 1 1 0 2dB 1 1 1 1 0dB (*) When BASS is programmed in the range -14dB/0dB, ALC is automatically switched to "OFF". Table 14. OUTPUT MSB D7 LSB D6 D5 D4 D3 D2 D1 D0 MUTE 0 ON 1 OFF 17/22 TDA7468D Table 15. BASS ALC MSB D7 LSB D6 D5 D4 D3 D2 D1 BASS ALC D0 ALC Mode 1 ON 0 OFF Detector 1 ON 0 OFF Release Current Circuit 1 ON 0 OFF Attack Time Resistor 0 0 12.5KΩ 0 1 25KΩ 1 0 50KΩ 1 1 100KΩ Threshold 0 0 700mVrms 0 1 485mVrms 1 0 320mVrms 1 1 170mVrms Attack Mode 0 MODE 1: Fixed Resistor 1 MODE 2: Adaptive Figure 9. BASS ALC : Threshold curve VO (VRMS) 1 Figure 10. BASS ALC : THD D00AU1100 Supply Voltage : 9.0V Frequency : 60Hz Bassfilter : 60Hz/28dB boost Internal release circuit : ON Attack mode : 12.5kohm, mode2(adaptive) D99AU1101A THD [%] 10 Supply Voltage : 9.0V Frequency : 60Hz Bassfilter : 60Hz/28dB boost Internal release circuit : ON Attack mode : 12.5kohm, mode2(adaptive) 1 Threshold1 Threshold2 old1 Threshold Thresh 0.01 Thresh old2 4 Threshold Threshold4 0.1 3 0.1 Threshold3 0.001 0.01 18/22 0.1 1 VIN(VRMS) 0.01 0.1 1 VIN(VRMS) TDA7468D 8 IC1 Figure 11. PINS: IN1_L, IN1_R, IN2_L, IN2_R, IN3_L, IN3_R, IN4_L, IN4 _R, IS_L, IS_R, MIC Figure 15. PINS: BASSI_L, BASSI_R VS 20µA VS 20µA 45K GND 50K GND Vref BASSO-L,BASSO-R D99AU1096 D99AU1092 Figure 16. PINS: BASSO_L, BASSO_R Figure 12. PINS: OUT_L, OUT_R, IMUX_L, MUX_R VS 20µA VS 20µA 45K 10Ω GND BASSI-L,BASSI-R D99AU1097 GND D99AU1093 Figure 17. PIN: ALC Figure 13. PINS: TREBLE_L, TREBLE_R VS 20µA VS 20µA 100K GND 25K D99AU1098 GND D99AU1094 Figure 18. PIN: CREF VS Figure 14. PINS: SCL, SDA 20µA VS 25K 20µA 25K GND GND D99AU1099 D99AU1095 19/22 TDA7468D Figure 19. SO20 Mechanical Data & Package Dimensions mm inch DIM. MIN. TYP. MAX. MIN. TYP. MAX. A 2.35 2.65 0.093 0.104 A1 0.10 0.30 0.004 0.012 B 0.33 0.51 0.013 0.200 C 0.23 0.32 0.009 0.013 D (1) 12.60 13.00 0.496 0.512 E 7.40 7.60 0.291 0.299 e 1.27 0.050 H 10.0 10.65 0.394 0.419 h 0.25 0.75 0.010 0.030 L 0.40 1.27 0.016 0.050 k ddd OUTLINE AND MECHANICAL DATA 0˚ (min.), 8˚ (max.) 0.10 0.004 (1) “D” dimension does not include mold flash, protusions or gate burrs. Mold flash, protusions or gate burrs shall not exceed 0.15mm per side. SO20 0016022 D 20/22 TDA7468D Table 16. Revision History Date Revision Description of Changes January 2004 2 First Issue in EDOCS DMS June 2004 3 Changed the Style-sheet in compliance to the new “Corporate Technical Pubblications Design Guide” 21/22 TDA7468D Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com 22/22