STMICROELECTRONICS VN920SP

VN920SP
®
SINGLE CHANNEL HIGH SIDE SOLID STATE RELAY
TYPE
VN920SP
RDS(on)
15mΩ
IOUT
30 A
VCC
36 V
CMOS COMPATIBLE INPUT
■ PROPORTIONAL LOAD CURRENT SENSE
■ SHORTED LOAD PROTECTION
■ UNDERVOLTAGE AND OVERVOLTAGE
SHUTDOWN
■ OVERVOLTAGE CLAMP
■ THERMAL SHUTDOWN
■ CURRENT LIMITATION
■
10
1
PowerSO-10
ORDER CODES
PACKAGE
PROTECTION AGAINST LOSS OF GROUND
AND LOSS VCC
■ VERY LOW STAND-BY POWER DISSIPATION
■ REVERSE BATTERY PROTECTION (*)
■
DESCRIPTION
The VN920SP is a monolithic device designed in
STMicroelectronics VIPower M0-3 Technology,
intended for driving any kind of load with one side
connected to ground. Active VCC pin voltage
clamp protects the device against low energy
TUBE
PowerSO-10 VN920SP
T&R
VN920SP13TR
spikes (see ISO7637 transient compatibility
table). Active current limitation combined with
thermal shutdown and automatic restart protect
the device against overload. The device
integrates an analog current sense output which
delivers a current proportional to the load current.
Device automatically turns off in case of ground
pin disconnection.
BLOCK DIAGRAM
VCC
OVERVOLTAGE
DETECTION
VCC
CLAMP
UNDERVOLTAGE
DETECTION
GND
Power CLAMP
DRIVER
INPUT
OUTPUT
LOGIC
CURRENT LIMITER
VDS LIMITER
IOUT
K
CURRENT
SENSE
OVERTEMPERATURE
DETECTION
(*) See application schematic at page 8
October 2002
1/16
1
VN920SP
ABSOLUTE MAXIMUM RATING
Symbol
VCC
- VCC
- IGND
IOUT
- IOUT
IIN
VCSENSE
Parameter
DC Supply Voltage
Reverse DC Supply Voltage
DC Reverse Ground Pin Current
DC Output Current
Reverse DC Output Current
DC Input Current
Current Sense Maximum Voltage
Value
41
- 0.3
- 200
Internally Limited
- 40
+/- 10
-3
Unit
V
V
mA
A
A
mA
V
+15
V
- INPUT
4000
V
- CURRENT SENSE
2000
V
- OUTPUT
5000
V
- VCC
Maximum Switching Energy
5000
V
362
mJ
96.1
Internally limited
- 40 to 150
- 55 to 150
W
°C
°C
°C
Electrostatic Discharge
(Human Body Model: R=1.5KΩ; C=100pF)
VESD
EMAX
Ptot
Tj
Tc
TSTG
(L=0.25mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=45A)
Power Dissipation TC≤25°C
Junction Operating Temperature
Case Operating Temperature
Storage Temperature
CONNECTION DIAGRAM (TOP VIEW)
5
4
3
6
7
8
9
10
GROUND
INPUT
C.SENSE
N.C.
N.C.
OUTPUT
OUTPUT
N.C.
OUTPUT
OUTPUT
2
1
11
VCC
CURRENT AND VOLTAGE CONVENTIONS
IS
VCC
VCC
IOUT
OUTPUT
IIN
VOUT
INPUT
VIN
ISENSE
CURRENT SENSE
VSENSE
GND
IGND
2/16
1
VN920SP
THERMAL DATA
Symbol
Rthj-case
Parameter
Thermal Resistance Junction-case
Rthj-amb
Thermal Resistance Junction-ambient
Max
Max
Value
1.3
Unit
°C/W
51.3 (*)
°C/W
(*) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick).
ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C unless otherwise specified)
POWER
Symbol
VCC
VUSD
VOV
RON
Vclamp
IS
IL(off1)
IL(off2)
IL(off3)
IL(off4)
Parameter
Operating Supply Voltage
Undervoltage Shut-down
Overvoltage Shut-down
On State Resistance
Test Conditions
Min
5.5
3
36
Typ
13
4
IOUT=10A; Tj =25°C
15
Unit
V
V
V
mΩ
IOUT=10A
30
mΩ
50
55
25
mΩ
V
µA
20
µA
5
mA
50
0
5
3
µA
µA
µA
µA
Typ
50
50
See
relative
diagram
See
relative
diagram
Max
Unit
µs
µs
Typ
Max
1.25
Clamp Voltage
IOUT=3A; VCC=6V
ICC=20mA (See note 1)
Off State; VCC=13V; VIN=VOUT=0V
48
10
Supply Current
Off State; VCC=13V; Tj=25°C; VIN=VOUT=0V
10
41
On State; VCC=13V; VIN=5V; IOUT=0;
RSENSE=3.9KΩ
Off State Output Current
Off State Output Current
Off State Output Current
Off State Output Current
VIN=VOUT=0V
VIN=0V; VOUT=3.5V
VIN=VOUT=0V; Vcc=13V; Tj =125°C
VIN=VOUT=0V; Vcc=13V; Tj =25°C
0
-75
Test Conditions
RL=1.3Ω (see figure 2)
RL=1.3Ω (see figure 2)
Min
Max
36
5.5
SWITCHING (VCC=13V)
Symbol
td(on)
td(off)
Parameter
Turn-on Delay Time
Turn-off Delay Time
dVOUT/dt(on) Turn-on Voltage Slope
RL=1.3Ω (see figure 2)
dVOUT/dt(off) Turn-off Voltage Slope
RL=1.3Ω (see figure 2)
V/µs
V/µs
LOGIC INPUT
Symbol
VIL
IIL
VIH
IIH
VI(hyst)
VICL
Parameter
Input Low Level
Low Level Input Current
Input High Level
High Level Input Current
Input Hysteresis Voltage
Input Clamp Voltage
Test Conditions
VIN=1.25V
Min
1
3.25
VIN=3.25V
IIN=1mA
IIN=-1mA
10
0.5
6
6.8
-0.7
8
Unit
V
µA
V
µA
V
V
V
Note 1: Vclamp and VOV are correlated. Typical difference is 5V.
3/16
1
VN920SP
ELECTRICAL CHARACTERISTICS (continued)
CURRENT SENSE (9V≤VCC≤16V) (See Fig. 1)
Symbol
K1
dK1/K1
K2
dK2/K2
K3
dK3/K3
ISENSEO
VSENSE
VSENSEH
RVSENSEH
tDSENSE
Parameter
IOUT/ISENSE
Current Sense Ratio Drift
IOUT/ISENSE
Current Sense Ratio Drift
IOUT/ISENSE
Current Sense Ratio Drift
Analog Sense Leakage
Current
Test Conditions
IOUT=1A; VSENSE=0.5V;
Tj= -40°C...150°C
IOUT=1A; VSENSE=0.5V;
Tj= -40°C...+150°C
IOUT=10A; VSENSE=4V; Tj=-40°C
Tj=25°C...150°C
IOUT=10A; VSENSE=4V;
Tj=-40°C...+150°C
IOUT=30A; VSENSE=4V; Tj=-40°C
Tj=25°C...150°C
IOUT=30A; VSENSE=4V;
Tj=-40°C...+150°C
VCC=6...16V; IOUT=0A;VSENSE=0V;
Tj=-40°C...+150°C
Max Analog Sense Output VCC=5.5V; IOUT=5A; RSENSE=10KΩ
Voltage
VCC>8V; IOUT=10A; RSENSE=10KΩ
Sense Voltage in
Overtemperature
VCC=13V; RSENSE=3.9KΩ
conditions
Analog sense output
impedance in
VCC=13V; Tj>TTSD; Output Open
overtemperature condition
Current sense delay
to 90% I SENSE (see note 2)
response
Min
Typ
Max
3300
4400
6000
-10
+10
4200
4900
6000
4400
4900
5750
-8
+8
4200
4900
5500
4400
4900
5250
Unit
%
%
-6
+6
%
0
10
µA
2
V
4
V
5.5
V
400
Ω
500
µs
Typ
175
Max
200
15
45
75
Unit
°C
°C
°C
A
75
A
PROTECTIONS
Symbol
TTSD
TR
Thyst
Ilim
Vdemag
VON
Parameter
Shut-down Temperature
Reset Temperature
Thermal Hysteresis
DC Short Circuit Current
Turn-off Output Clamp
Voltage
Output Voltage Drop
Limitation
Test Conditions
VCC=13V
Min
150
135
7
30
5V<VCC<36V
IOUT=2A; VIN=0V; L=6mH
IOUT=1A; Tj=-40°C....+150°C
VCC-41 VCC-48 VCC-55
V
50
mV
Note 2: current sense signal delay after positive input slope
Note: Sense pin doesn’t have to be left floating.
4/16
2
1
VN920SP
Figure 1: IOUT/I SENSE versus IOUT
IOUT/I SENSE
6500
6000
max.Tj=-40°C
5500
max.Tj=25...150°C
5000
typical value
min.Tj=25...150°C
4500
min.Tj=-40°C
4000
3500
3000
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
IOUT (A)
Figure 2: Switching Characteristics (Resistive load RL=1.3Ω)
VOUT
90%
80%
dVOUT/dt(off)
dVOUT /dt(on)
tr
10%
tf
t
ISENSE
90%
INPUT
t
tDSENSE
td(on)
td(off)
t
5/16
1
VN920SP
TRUTH TABLE
CONDITIONS
Normal operation
Overtemperature
Undervoltage
Overvoltage
Short circuit to GND
Short circuit to VCC
Negative output voltage clamp
INPUT
OUTPUT
SENSE
L
L
H
L
H
L
0
Nominal
H
L
L
L
VSENSEH
0
H
L
L
L
0
0
H
L
L
L
0
0
H
L
(Tj<TTSD) 0
H
L
L
H
(Tj>TTSD) VSENSEH
0
H
L
H
L
0
< Nominal
0
ELECTRICAL TRANSIENT REQUIREMENTS
ISO T/R 7637/1
Test Pulse
1
2
3a
3b
4
5
ISO T/R 7637/1
Test Pulse
1
2
3a
3b
4
5
CLASS
C
E
6/16
1
I
II
TEST LEVELS
III
IV
-25 V
+25 V
-25 V
+25 V
-4 V
+26.5 V
-50 V
+50 V
-50 V
+50 V
-5 V
+46.5 V
-75 V
+75 V
-100 V
+75 V
-6 V
+66.5 V
-100 V
+100 V
-150 V
+100 V
-7 V
+86.5 V
I
C
C
C
C
C
C
TEST LEVELS RESULTS
II
III
C
C
C
C
C
C
C
C
C
C
E
E
Delays and
Impedance
2 ms 10 Ω
0.2 ms 10 Ω
0.1 µs 50 Ω
0.1 µs 50 Ω
100 ms, 0.01 Ω
400 ms, 2 Ω
IV
C
C
C
C
C
E
CONTENTS
All functions of the device are performed as designed after exposure to disturbance.
One or more functions of the device is not performed as designed after exposure to disturbance
and cannot be returned to proper operation without replacing the device.
VN920SP
Figure 3: Waveforms
NORMAL OPERATION
INPUT
LOAD CURRENT
SENSE
UNDERVOLTAGE
VCC
VUSDhyst
VUSD
INPUT
LOAD CURRENT
SENSE
OVERVOLTAGE
VOV
VCC
VCC > VUSD
VOVhyst
INPUT
LOAD CURRENT
SENSE
SHORT TO GROUND
INPUT
LOAD CURRENT
LOAD VOLTAGE
SENSE
SHORT TO VCC
INPUT
LOAD VOLTAGE
LOAD CURRENT
SENSE
<Nominal
<Nominal
OVERTEMPERATURE
Tj
TTSD
TR
INPUT
LOAD CURRENT
SENSE
ISENSE=
VSENSEH
RSENSE
7/16
1
1
VN920SP
APPLICATION SCHEMATIC
+5V
VCC
Rprot
INPUT
Dld
µC
Rprot
OUTPUT
CURRENT SENSE
RSENSE
GND
VGND
GND PROTECTION
REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This
can be used with any type of load.
The following is an indication on how to dimension the
RGND resistor.
1) RGND ≤ 600mV / (IS(on)max).
2) RGND ≥ (−VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can
be found in the absolute maximum rating section of the
device’s datasheet.
Power Dissipation in RGND (when VCC<0: during reverse
battery situations) is:
PD= (-VCC)2/RGND
This resistor can be shared amongst several different
HSD. Please note that the value of this resistor should be
calculated with formula (1) where IS(on)max becomes the
sum of the maximum on-state currents of the different
devices.
Please note that if the microprocessor ground is not
common with the device ground then the RGND will
produce a shift (IS(on)max * RGND) in the input thresholds
and the status output values. This shift will vary
depending on how many devices are ON in the case of
several high side drivers sharing the same RGND.
If the calculated power dissipation leads to a large resistor
or several devices have to share the same resistor then
the ST suggests to utilize Solution 2 (see below).
Solution 2: A diode (DGND) in the ground line.
A resistor (RGND=1kΩ) should be inserted in parallel to
DGND if the device will be driving an inductive load.
RGND
DGND
This small signal diode can be safely shared amongst
several different HSD. Also in this case, the presence of
the ground network will produce a shift (j600mV) in the
input threshold and the status output values if the
microprocessor ground is not common with the device
ground. This shift will not vary if more than one HSD
shares the same diode/resistor network.
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the
load dump peak voltage exceeds VCC max DC rating. The
same applies if the device will be subject to transients on
the VCC line that are greater than the ones shown in the
ISO T/R 7637/1 table.
µC I/Os PROTECTION:
If a ground protection network is used and negative
transients are present on the VCC line, the control pins will
be pulled negative. ST suggests to insert a resistor (Rprot )
in line to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the
leakage current of µC and the current required by the
HSD I/Os (Input levels compatibility) with the latch-up limit
of µC I/Os.
-VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax
Calculation example:
For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V
5kΩ ≤ Rprot ≤ 65kΩ.
Recommended Rprot value is 10kΩ.
8/16
1
1
VN920SP
High Level Input Current
Off State Output Current
IL(off1) (uA)
Iih (uA)
9
5
8
4.5
7
4
Vin=3.25V
3.5
6
3
5
2.5
4
2
3
1.5
2
1
1
0.5
0
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
50
75
100
125
150
175
100
125
150
175
100
125
150
175
Tc (°C)
Input Clamp Voltage
Input High Level
Vih (V)
Vicl (V)
3.6
8
7.8
3.4
Iin=1mA
7.6
3.2
7.4
3
7.2
2.8
7
6.8
2.6
6.6
2.4
6.4
2.2
6.2
2
6
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
50
75
Tc (°C)
Tc (°C)
Input Low Level
Input Hysteresis Voltage
Vil (V)
Vhyst (V)
2.6
1.5
1.4
2.4
1.3
2.2
1.2
2
1.1
1.8
1
0.9
1.6
0.8
1.4
0.7
1.2
0.6
1
0.5
-50
-25
0
25
50
75
Tc (°C)
100
125
150
175
-50
-25
0
25
50
75
Tc (°C)
9/16
1
1
VN920SP
ILIM Vs Tcase
Overvoltage Shutdown
Vov (V)
Ilim (A)
50
100
48
90
46
80
44
70
42
60
40
50
38
40
36
30
34
20
32
10
Vcc=13V
30
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
50
Tc (°C)
75
100
125
150
175
100
125
150
175
Tc (°C)
Turn-on Voltage Slope
Turn-off Voltage Slope
dVout/dt(on) (V/ms)
dVout/dt(off) (V/ms)
700
550
500
650
600
Vcc=13V
Rl=1.3Ohm
450
Vcc=13V
Rl=1.3Ohm
400
550
350
500
300
450
250
200
400
150
350
100
300
50
0
250
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
50
75
Tc (°C)
Tc (ºC)
On State Resistance Vs Tcase
On State Resistance Vs VCC
Ron (mOhm)
Ron (mOhm)
30
30
27.5
27.5
Iout=10A
25
Tc= 150ºC
25
Vcc=8V; 36V
22.5
22.5
20
20
17.5
17.5
15
15
12.5
Tc= 25ºC
Tc= - 40ºC
10
12.5
7.5
10
5
7.5
5
0
-25
0
25
50
75
Tc (ºC)
10/16
1
IOUT=10A
2.5
100
125
150
175
5
10
15
20
25
Vcc (V)
30
35
40
VN920SP
Maximum turn off current versus load inductance
ILMAX (A)
100
A
B
C
10
1
0.01
0.1
1
L(mH)
10
100
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at TJstart=100ºC
C= Repetitive Pulse at TJstart=125ºC
Conditions:
VCC=13.5V
Values are generated with RL=0Ω
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed
the temperature specified above for curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
11/16
VN920SP
PowerSO-10™ THERMAL DATA
PowerSO-10™ PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: from minimum pad lay-out to 8cm2).
Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (°C/W)
55
Tj-Tamb=50°C
50
45
40
35
30
0
2
4
6
PCB Cu heatsink area (cm^2)
12/16
8
10
VN920SP
PowerSO-10 Thermal Impedance Junction Ambient Single Pulse
ZTH (°C/W)
100
0.5 cm2
6 cm2
10
1
0.1
0.01
0.0001
0.001
0.01
0.1
1
10
100
1000
Time (s)
Thermal fitting model of a single channel HSD
in PowerSO-10
Pulse calculation formula
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Thermal Parameter
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
Area/island (cm2)
R1 (°C/W)
R2 (°C/W)
R3( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1 (W.s/°C)
C2 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
0.5
0.02
0.1
0.2
0.8
12
37
0.0015
7.00E-03
0.015
0.3
0.75
3
6
22
5
13/16
VN920SP
PowerSO-10™ MECHANICAL DATA
mm.
DIM.
MIN.
A
A (*)
A1
B
B (*)
C
C (*)
D
D1
E
E2
E2 (*)
E4
E4 (*)
e
F
F (*)
H
H (*)
h
L
L (*)
α
α (*)
inch
TYP
3.35
3.4
0.00
0.40
0.37
0.35
0.23
9.40
7.40
9.30
7.20
7.30
5.90
5.90
MAX.
MIN.
3.65
3.6
0.10
0.60
0.53
0.55
0.32
9.60
7.60
9.50
7.60
7.50
6.10
6.30
0.132
0.134
0.000
0.016
0.014
0.013
0.009
0.370
0.291
0.366
0.283
0.287
0.232
0.232
1.35
1.40
14.40
14.35
0.049
0.047
0.543
0.545
1.80
1.10
8º
8º
0.047
0.031
0º
2º
TYP.
1.27
0.050
1.25
1.20
13.80
13.85
0.053
0.055
0.567
0.565
0.50
0.002
1.20
0.80
0º
2º
0.070
0.043
8º
8º
(*) Muar only POA P013P
B
0.10 A B
10
H
E
E2
E4
1
SEATING
PLANE
e
B
DETAIL "A"
A
C
0.25
h
D
= D1 =
=
=
SEATING
PLANE
A
F
A1
A1
L
DETAIL "A"
α
14/16
MAX.
0.144
0.142
0.004
0.024
0.021
0.022
0.0126
0.378
0.300
0.374
300
0.295
0.240
0.248
P095A
VN920SP
PowerSO-10™ SUGGESTED PAD LAYOUT
TUBE SHIPMENT (no suffix)
14.6 - 14.9
CASABLANCA
B
10.8- 11
MUAR
C
6.30
C
A
A
0.67 - 0.73
10
9
1
9.5
2
3
B
0.54 - 0.6
All dimensions are in mm.
8
7
4
5
1.27
Base Q.ty Bulk Q.ty Tube length (± 0.5)
6
Casablanca
Muar
50
50
1000
1000
532
532
A
B
C (± 0.1)
10.4 16.4
4.9 17.2
0.8
0.8
TAPE AND REEL SHIPMENT (suffix “13TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
600
600
330
1.5
13
20.2
24.4
60
30.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
All dimensions are in mm.
24
4
24
1.5
1.5
11.5
6.5
2
End
Start
Top
No components
Components
No components
cover
tape
500mm min
Empty components pockets
saled with cover tape.
500mm min
User direction of feed
15/16
1
1
VN920SP
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a trademark of STMicroelectronics
 2002 STMicroelectronics - Printed in ITALY- All Rights Reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
16/16
1