VNQ600AP ®P QUAD CHANNEL HIGH SIDE SOLID STATE RELAY TYPE VNQ600AP RDS(on) (*) 35mΩ Ilim 22A VCC 36 V (*) Per each channel DC SHORT CIRCUIT CURRENT: 22A ■ CMOS COMPATIBLE INPUTS ■ PROPORTIONAL LOAD CURRENT SENSE ■ UNDERVOLTAGE & OVERVOLTAGE nSHUT-DOWN ■ OVERVOLTAGE CLAMP ■ THERMAL SHUT-DOWN ■ CURRENT LIMITATION ■ VERY LOW STAND-BY POWER DISSIPATION ■ PROTECTION AGAINST: nLOSS OF GROUND & LOSS OF VCC ■ REVERSE BATTERY PROTECTION (**) ■ DESCRIPTION The VNQ600AP is a quad HSD formed by SO-28 (DOUBLE ISLAND) ORDER CODES PACKAGE SO-28 TUBE VNQ600AP T&R VNQ600AP13TR assembling two VND600 chips in the same SO-28 package. The VND600 is a monolithic device designed in| STMicroelectronics VIPower M0-3 Technology. The VNQ600A is intended for driving any type of multiple loads with one side connected to ground. This device has four independent channels and four analog sense outputs which deliver currents proportional to the outputs currents. Active current limitation combined with thermal shut-down and automatic restart protect the device against overload. Device automatically turns off in case of ground pin disconnection. ABSOLUTE MAXIMUM RATING Symbol VCC -VCC IOUT IR IIN Parameter Supply voltage (continuous) Reverse supply voltage (continuous) Output current (continuous), for each channel Reverse output current (continuous), for each channel Input current VCSENSE Current sense maximum voltage IGND VESD EMAX Ptot Tj Tstg Value 41 -0.3 15 -15 +/- 10 -3 Unit V V A A mA V +15 -200 V mA - INPUT 4000 V - CURRENT SENSE 2000 V - OUTPUT 5000 V - VCC Maximum Switching Energy 5000 V 126 mJ 6.25 Internally Limited -55 to 150 W °C °C Ground current at Tpins < 25°C (continuous) Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF) (L=0.11mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=40A) Power dissipation (per island) at Tlead=25°C Junction operating temperature Storage temperature (**) See application schematic at page 9. April 2004 1/18 VNQ600AP BLOCK DIAGRAM VCC 1,2 OVERVOLTAGE UNDERVOLTAGE DEMAG 1 DRIVER 1 OUTPUT 1 INPUT 1 ILIM1 LOGIC IOUT1 INPUT 2 K CURRENT SENSE 1 DEMAG 2 DRIVER 2 GND 1,2 OUTPUT 2 ILIM2 OVERTEMP. 1 IOUT2 OVERTEMP. 2 K OVERVOLTAGE CURRENT SENSE 2 VCC 3,4 UNDERVOLTAGE DEMAG 3 DRIVER 3 OUTPUT 3 INPUT 3 ILIM3 LOGIC IOUT3 INPUT 4 K CURRENT SENSE 3 DEMAG 4 DRIVER 4 GND 3,4 OUTPUT 4 ILIM4 OVERTEMP. 3 OVERTEMP. 4 2/18 IOUT4 K CURRENT SENSE 4 VNQ600AP CURRENT AND VOLTAGE CONVENTIONS IS1,2 VCC1,2 VCC1,2 IS3,4 VCC3,4 IIN1 ISENSE1 VIN1 IIN2 VSENSE1 ISENSE2 VIN2 VSENSE2 VIN3 IIN3 ISENSE3 VSENSE3 IIN4 VIN4 ISENSE4 VCC3,4 INPUT1 IOUT1 CUR. SENSE1 OUTPUT1 IOUT2 INPUT2 CUR. SENSE2 INPUT3 VOUT2 IOUT3 OUTPUT3 CUR. SENSE3 INPUT4 VOUT1 OUTPUT2 IOUT4 VOUT3 OUTPUT4 VOUT4 CUR. SENSE4 VSENSE4 GND1,2 GND3,4 IGND1,2 IGND3,4 CONNECTION DIAGRAM (TOP VIEW) VCC1,2 1 28 VCC1,2 GND 1,2 OUTPUT 1 INPUT2 OUTPUT 1 INPUT1 OUTPUT 1 CURRENT SENSE 1 OUTPUT 2 CURRENT SENSE 2 OUTPUT 2 VCC1,2 OUTPUT 2 VCC3,4 OUTPUT 3 GND 3,4 OUTPUT 3 INPUT4 OUTPUT 3 INPUT3 OUTPUT 4 CURRENT SENSE 3 OUTPUT 4 CURRENT SENSE 4 OUTPUT 4 VCC3,4 14 15 VCC3,4 3/18 VNQ600AP THERMAL DATA (Per island) Symbol Rthj-lead Rthj-amb Rthj-amb Parameter Thermal resistance Junction-lead Thermal resistance Junction-ambient (one chip ON) Thermal resistance Junction-ambient (two chips ON) Value 20 60 (*) 46 (*) Unit °C/W °C/W °C/W (*) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick) connected to all VCC pins. Horizontal mounting and no artificial air flow. ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C; unless otherwise specified) (Per each channel) POWER Symbol VCC (**) VUSD (**) VOV (**) RON Vclamp IS (**) Parameter Operating supply voltage Undervoltage shut-down Overvoltage shut-down IOUT 1,2,3,4=5A; Tj=25°C 35 Unit V V V mΩ On state resistance IOUT 1,2,3,4=5A; Tj=150°C 70 mΩ Clamp Voltage IOUT 1,2,3,4=3A; VCC=6V ICC=20mA (see note 1) 48 120 55 mΩ V Off State; VCC=13V; VIN=VOUT=VSENSE=0V 12 40 µA Off State; VCC=13V; VIN=VOUT=VSENSE=0V; Tj =25°C 12 25 µA 6 50 mA µA 5 µA 3 µA Max 70 Unit A 70 A 200 °C Supply current Test Conditions Min 5.5 3 36 41 Typ 13 4 On State; VCC=13V; VIN=5V; IOUT =0A; RSENSE=3.9KΩ; VSENSE=0V IL(off1) Off state output current IL(off3) Off State Output Current IL(off4) Off State Output Current VIN=VOUT=VSENSE=0V VIN=VOUT=VSENSE=0V; VCC=13V; 0 Tj =125°C VIN=VOUT=VSENSE=0V; VCC=13V; Tj =25°C Max 36 5.5 PROTECTIONS Symbol Ilim TTSD TR Thyst Vdemag VON (**) Per island 4/18 1 Parameter DC Short circuit current Test Conditions VCC=13V Typ 40 5.5V<VCC<36V Thermal shut-down temperature Thermal reset temperature Thermal hysteresis Turn-off output voltage clamp Output voltage drop limitation Min 22 150 175 135 7 IOUT=2A; L=6mH IOUT=0.5A; Tj= -40°C...+150°C °C 15 °C VCC-41 VCC-48 VCC-55 V 50 mV VNQ600AP ELECTRICAL CHARACTERISTICS (continued) SWITCHING (V CC=13V) Symbol tD(on) tD(off) (dVOUT /dt)on (dVOUT /dt)off Parameter Turn-on delay time Turn-off delay time Turn-on voltage slope Turn-off voltage slope Test Conditions RL=2.6Ω channels 1,2,3,4 (see fig. 1) RL=2.6Ω channels 1,2,3,4 (see fig. 1) RL=2.6Ω channels 1,2,3,4 (see fig. 1) RL=2.6Ω channels 1,2,3,4 (see fig. 1) Min Typ 40 40 0.20 0.20 Max Unit µs µs V/µs V/µs Min Typ Max Unit 3100 4150 5560 3750 4600 5700 Tj= 25°C...+150°C IOUT=4A; VSENSE=4V; Tj=-40°C 4000 4000 4600 4500 5400 5200 Tj= 25°C...+150°C VCC=5.5V; IOUT1,2=2A; RSENSE=10KΩ 4100 4500 5150 CURRENT SENSE (9V < VCC< 16V) (See Fig. 3) Symbol Parameter K1 IOUT/ISENSE K2 IOUT/ISENSE K3 IOUT/ISENSE VSENSE1,2 Max analog sense output voltage Test Conditions IOUT1,2=0.35A; VSENSE=0.5V; Tj= -40°C...+150°C IOUT=2A; VSENSE=2.5V; Tj=-40°C VCC>8V; IOUT1,2=4A; RSENSE=10KΩ VSENSEH RVSENSEH tDSENSE Analog sense output voltage in overtemperature condition Analog Sense Output Impedance in Overtemperature Condition Current sense delay response 2 V 4 V VCC=13V; RSENSE=3.9KΩ VCC=13V; Tj>TTSD; All channels open 5 V 400 Ω to 90% ISENSE (see note 2) 500 µs Max 1.25 Unit V V V µA µA V LOGIC INPUT Symbol VIL VIH VI(hyst) IIL IIH VICL Parameter Low level input voltage High level input voltage Input hysteresis voltage Low level input current High level input current Input clamp voltage Test Conditions VIN=1.25V VIN=3.25V IIN=1mA Min 3.25 0.5 20 6 IIN= -1mA Typ 65 75 6.8 110 8 -0.7 V VCC - OUTPUT DIODE Symbol VF Parameter Forward on Voltage Test Conditions -IOUT=2.5A; Tj=150°C Min Typ Max 0.9 Unit V Note 1: V clamp and VOV are correlated. Typical difference is 5V. Note 2: current sense signal delay after positive input slope. Note: Sense pin doesn’t have to be left floating. 5/18 2 VNQ600AP TRUTH TABLE (per channel) CONDITIONS Normal operation Overtemperature Undervoltage Overvoltage Short circuit to GND Short circuit to VCC Negative output voltage clamp 6/18 INPUT OUTPUT SENSE 0 Nominal L L H L H L H L L L VSENSEH 0 H L L L 0 0 H L L L 0 0 H L (Tj<TTSD) 0 H L L H (Tj>TTSD) VSENSEH 0 H H < Nominal L L 0 0 VNQ600AP ELECTRICAL TRANSIENT REQUIREMENTS ISO T/R 7637/1 Test Levels Test Levels Test Levels Test Levels Test Levels I II III IV Delays and Impedance -25V +25V -25V +25V -4V +26.5V -50V +50V -50V +50V -5V +46.5V -75V +75V -100V +75V -6V +66.5V -100V +100V -150V +100V -7V +86.5V 2ms, 10Ω 0.2ms, 10Ω 0.1µs, 50Ω 0.1µs, 50Ω 100ms, 0.01Ω 400ms, 2Ω Test Pulse 1 2 3a 3b 4 5 ISO T/R 7637/1 Test Levels Result Test Levels Result Test Levels Result Test Levels Result I II III IV C C C C C C C C C C C E C C C C C E C C C C C E Test Pulse 1 2 3a 3b 4 5 Class C E Contents All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure and cannot be returned to proper operation without replacing the device. Figure 1: Switching Characteristics (Resistive load R L=2.6Ω) VOUT 90% 80% dVOUT/dt(off) dVOUT/dt(on) tr 10% tf t ISENSE 90% INPUT t tDSENSE td(on) td(off) t 7/18 1 VNQ600AP Figure 2: Waveforms (per each chip) NORMAL OPERATION INPUTn LOAD CURRENTn SENSEn UNDERVOLTAGE VCC VUSDhyst VUSD INPUTn LOAD CURRENTn SENSEn OVERVOLTAGE VOV VCC VCC < VOV VCC > VOV INPUTn LOAD CURRENTn SENSEn SHORT TO GROUND INPUTn LOAD CURRENTn LOAD VOLTAGEn SENSEn SHORT TO VCC INPUTn LOAD VOLTAGEn LOAD CURRENTn SENSEn <Nominal <Nominal OVERTEMPERATURE Tj TTSD TR INPUTn LOAD CURRENTn SENSEn 8/18 ISENSE= VSENSEH RSENSE VNQ600AP APPLICATION SCHEMATIC +5V Rprot INPUT1 VCC1,2 VCC3,4 Dld Rprot C. SENSE 1 Rprot INPUT2 Rprot C. SENSE 2 OUTPUT2 INPUT3 OUTPUT3 OUTPUT1 µC Rprot Rprot Rprot C. SENSE 3 OUTPUT4 INPUT4 Rprot C. SENSE 4 GND1,2 GND3,4 RGND RSENSE1,2,3,4 VGND DGND Note: Channels 3 & 4 have the same internal circuit as channel 1 & 2. GND PROTECTION REVERSE BATTERY NETWORK AGAINST Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND ≤ 600mV / 2(IS(on)max ). 2) RGND ≥ (−VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device’s datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1kΩ) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT line is also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT pin is to leave it unconnected, while unused SENSE pin has to be connected to Ground pin. 9/18 1 VNQ600AP LOAD DUMP PROTECTION Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. µC I/Os PROTECTION: If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the µC I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os. -VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V 5kΩ ≤ Rprot ≤ 6kΩ. Recommended Rprot value is 5kΩ. Figure 3: IOUT/ISENSE versus IOUT IOUT/ISENSE 6500 6000 max.Tj=-40°C 5500 max.Tj=25...150°C 5000 typical value 4500 min.Tj=25...150°C 4000 min.Tj=-40°C 3500 3000 0 0.5 1 1.5 2 IOUT (A) 10/18 2.5 3 3.5 4 4.5 VNQ600AP High Level Input Current Off State Output Current IL(off1) (uA) Iih (uA) 5 5 4.5 4.5 Off state Vcc=36V Vin=Vout=0V 4 3.5 Vin=3.25V 4 3.5 3 3 2.5 2.5 2 2 1.5 1.5 1 1 0.5 0.5 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 50 75 100 125 150 175 100 125 150 175 100 125 150 175 Tc (°C) Input High Level Input Clamp Voltage Vih (V) Vicl (V) 3.6 8 7.8 3.4 Iin=1mA 7.6 3.2 7.4 3 7.2 2.8 7 6.8 2.6 6.6 2.4 6.4 2.2 6.2 2 6 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 Tc (°C) Tc (°C) Input Low Level Input Hysteresis Voltage Vil (V) Vhyst (V) 2.6 1.5 1.4 2.4 1.3 2.2 1.2 2 1.1 1 1.8 0.9 1.6 0.8 1.4 0.7 1.2 0.6 1 0.5 -50 -25 0 25 50 75 Tc (°C) 100 125 150 175 -50 -25 0 25 50 75 Tc (°C) 11/18 VNQ600AP ILIM Vs Tcase Overvoltage Shutdown Vov (V) Ilim (A) 50 80 48 70 Vcc=13V 46 60 44 50 42 40 40 38 30 36 20 34 10 32 30 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 50 75 100 125 150 175 100 125 150 175 Tc (°C) Turn-on Voltage Slope Turn-off Voltage Slope dVout/dt(on) (V/ms) dVout/dt(off) (V/ms) 750 500 700 450 Vcc=13V Rl=2.6Ohm 650 Vcc=13V Rl=2.6Ohm 400 600 350 550 300 500 250 450 200 400 150 350 100 300 50 250 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (ºC) 50 75 Tc (ºC) On State Resistance Vs Tcase On State Resistance Vs V CC Ron (mOhm) Ron (mOhm) 100 80 90 70 Iout=5A Vcc=8V & 36V 80 Iout=5A Tc= 150°C 60 70 50 60 50 40 40 Tc= 25°C 30 30 20 20 Tc= - 40°C 10 10 0 0 -75 -50 -25 0 25 50 Tc (°C) 12/18 75 100 125 150 175 5 10 15 20 25 Vcc (V) 30 35 40 VNQ600AP Maximum turn off current versus load inductance ILMAX (A) 100 A B C 10 1 0.001 0.01 0.1 1 10 100 L(mH ) A = Single Pulse at TJstart=150ºC B= Repetitive pulse at T Jstart=100ºC C= Repetitive Pulse at T Jstart=125ºC Conditions: VCC=13.5V Values are generated with R L=0Ω In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization t 13/18 VNQ600AP SO-28 DOUBLE ISLAND THERMAL DATA SO-28 Double island PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: 0.5cm2, 3cm2, 6cm2). Thermal calculation according to the PCB heatsink area Chip 1 ON OFF ON ON Chip 2 OFF ON ON ON Tjchip1 RthA x Pdchip1 + Tamb RthC x Pdchip2 + Tamb RthB x (Pdchip1 + Pdchip2) + Tamb (RthA x Pdchip1) + RthC x Pdchip2 + Tamb Tjchip2 Note RthC x Pdchip1 + Tamb RthA x Pdchip2 + Tamb RthB x (Pdchip1 + Pdchip2) + Tamb Pdchip1=Pdchip2 (RthA x Pdchip2) + RthC x Pdchip1 + T amb Pdchip1≠Pdchip2 RthA = Thermal resistance Junction to Ambient with one chip ON RthB = Thermal resistance Junction to Ambient with both chips ON and Pdchip1=Pdchip2 RthC = Mutual thermal resistance Rthj-amb Vs PCB copper area in open box free air condition RTHj_am b (°C/W) 70 60 50 RthA 40 RthB 30 20 RthC 10 0 14/18 1 2 3 4 5 PCB Cu heatsink area (cm ^2)/island 6 7 VNQ600AP SO-28 Thermal Impedance Junction Ambient Single Pulse Zth(°C/W) 100 0,5 cm ^2/island 3 cm ^2/island 6 cm ^2/island 10 One channel ON Two channels ON on same chip 1 0.1 0.01 0.0001 0.001 0.01 0.1 1 time(s) Thermal fitting model of a four channels HSD in SO-28 10 C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 1000 Pulse calculation formula Z THδ = R TH ⋅ δ + Z TH tp ( 1 – δ ) where Tj_1 100 δ = tp ⁄ T Thermal Parameter Pd1 Tj_2 C13 R13 C14 R14 Pd2 R17 Tj_3 R18 C7 C8 C9 R7 R8 R9 C10 C11 C12 Pd3 Tj_4 C15 R15 R10 C16 R16 Pd4 T_amb R11 R12 Area/island (cm2) R1=R7=R13=R15 (°C/W) R2=R8=R14=R16 (°C/W) R3=R9 (°C/W) R4=R10 (°C/W) R5=R11 (°C/W) R6=R12 (°C/W) C1=C7=C13=C15 (W.s/°C) C2=C8=C14=C16 (W.s/°C) C3=C9 (W.s/°C) C4=C10 (W.s/°C) C5=C11 (W.s/°C) C6=C12 (W.s/°C) R17=R18 (°C/W) 0.5 0.05 0.3 3.4 11 15 30 0.001 5.00E-03 1.00E-02 0.2 1.5 5 150 6 13 8 15/18 VNQ600AP SO-28 MECHANICAL DATA DIM. mm. MIN. TYP A a1 inch MAX. MIN. TYP. 2.65 0.10 MAX. 0.104 0.30 0.004 0.012 b 0.35 0.49 0.013 0.019 b1 0.23 0.32 0.009 0.012 C 0.50 0.020 c1 45 (typ.) D 17.7 18.1 0.697 0.713 E 10.00 10.65 0.393 0.419 e 1.27 0.050 e3 16.51 0.650 F 7.40 7.60 L 0.40 1.27 S 0.291 0.299 0.016 0.050 8 (max.) 16/18 2 VNQ600AP SO-28 TUBE SHIPMENT (no suffix) Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) C B 28 700 532 3.5 13.8 0.6 All dimensions are in mm. A TAPE AND REEL SHIPMENT (suffix “13TR”) REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 1000 1000 330 1.5 13 20.2 16.4 60 22.4 TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.05) K (max) P1 (± 0.1) All dimensions are in mm. 16 4 12 1.5 1.5 7.5 6.5 2 End Start Top No components Components No components cover tape 500mm min Empty components pockets saled with cover tape. 500mm min User direction of feed 17/18 VNQ600AP Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics. All other names are the property of their respective owners 2004 STMicroelectronics - Printed in ITALY- All Rights Reserved. STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States http://www.st.com 18/18