STMICROELECTRONICS VND600TR-E

VND600-E
DOUBLE CHANNEL HIGH SIDE DRIVER
Table 1. General Features
Figure 1. Package
Type
RDS(on)
Ilim
VCC
VND600-E
35 mΩ
25 A
36 V
■
DC SHORT CIRCUIT CURRENT: 25 A
CMOS COMPATIBLE INPUTS
PROPORTIONAL LOAD CURRENT SENSE
■ UNDERVOLTAGE AND OVERVOLTAGE n
SHUT-DOWN
■ OVERVOLTAGE CLAMP
■ THERMAL SHUT DOWN
■ CURRENT LIMITATION
■ VERY LOW STAND-BY POWER DISSIPATION
■ PROTECTION AGAINST:
n LOSS OF GROUND AND LOSS OF VCC
■ REVERSE BATTERY PROTECTION (*)
■ IN COMPLIANCE WITH THE 2002/95/EC
EUROPEAN DIRECTIVE
■
■
SO-16L
DESCRIPTION
The VND600-E is a monolithic device made using
STMicroelectronics VIPower M0-3 technology. It
is intended for driving resistive or inductive loads
with one side connected to ground. Active V CC pin
voltage clamp protects the device against low
energy
spikes
(see
ISO7637
transient
compatibility table).
This device has two channels in high side
configuration; each channel has an analog sense
output on which the sensing current is proportional
(according to a known ratio) to the corresponding
load current. Built-in thermal shut-down and
outputs current limitation protect the chip from
over temperature and short circuit. Device turns off
in case of ground pin disconnection.
Table 2. Order Codes
Package
SO-16L
Tube
VND600-E
Tape and Reel
VND600TR-E
Note: (*) See application schematic at page 9
Rev. 1
October 2004
1/18
VND600-E
Figure 2. Block Diagram
VCC
OVERVOLTAGE
VCC CLAMP
UNDERVOLTAGE
PwCLAMP 1
DRIVER 1
OUTPUT 1
ILIM1
INPUT 1
Vdslim1
LOGIC
IOUT1
INPUT 2
Ot1
CURRENT
SENSE 1
K
PwCLAMP 2
DRIVER 2
GND
Ot1
OVERTEMP. 2
Vdslim2
Ot2
OUTPUT 2
ILIM2
OVERTEMP. 1
IOUT2
Ot2
CURRENT
SENSE 2
K
Table 3. Absolute Maximum Ratings
Symbol
Parameter
Value
Unit
41
V
VCC
DC supply voltage
-VCC
Reverse supply voltage
-0.3
V
- IGND
DC reverse ground pin current
-200
mA
Internally limited
A
-21
A
+/- 10
mA
4000
V
2000
V
5000
V
5000
V
(L=0.12mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC;
IL=40A)
136
mJ
Power dissipation at Tc=25°C
8.3
W
Internally limited
°C
IOUT
Output current
IR
Reverse output current
IIN
Input current
Electrostatic Discharge (Human Body Model:
R=1.5KΩ; C=100pF)
VESD
- INPUT
- CURRENT SENSE
- OUTPUT
- VCC
Maximum Switching Energy
EMAX
Ptot
Tj
Junction operating temperature
Tc
Case operating temperature
-40 to 150
°C
Storage temperature
-55 to 150
°C
TSTG
2/18
VND600-E
Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins
1
VCC
16
GND
OUTPUT 2
INPUT 2
OUTPUT 2
INPUT 1
C. SENSE 1
OUTPUT 1
OUTPUT 1
OUTPUT 1
C. SENSE 2
8
VCC
Connection / Pin
Floating
Current Sense
9
N.C.
X
Through
1KΩresistor
To Ground
VCC
OUTPUT 2
N.C.
VCC
Output
X
X
Input
X
Through 10KΩ resistor
Figure 4. Current and Voltage Conventions
IS
VCC
VF1 (*)
IIN1
INPUT1
OUTPUT1
CURRENT SENSE 1
IOUT2
IIN2
INPUT2
VOUT1
ISENSE1
VIN1
VIN2
VCC
IOUT1
OUTPUT2
CURRENT SENSE 2
GROUND
VSENSE1
VOUT2
ISENSE2
VSENSE2
IGND
(*) VFn = VCCn - VOUTn during reverse battery condition
Table 4. Thermal Data
Symbol
Rthj-lead
Rthj-amb
Parameter
Thermal resistance junction-lead
Thermal resistance junction-ambient
(MAX)
(MAX)
Value
15
65 (*)
48 (**)
Unit
°C/W
°C/W
Note: (*) When mounted on a standard single-sided FR-4 board with 0.5cm 2 of Cu (at least 35µm thick). Horizontal mounting and no artificial
air flow
Note: (**) When mounted on a standard single-sided FR-4 board with 6cm2 of Cu (at least 35µm thick). Horizontal mounting and no artificial
air flow.
3/18
VND600-E
ELECTRICAL CHARACTERISTICS
(8V<VCC<36V; -40°C<T j<150°C; unless otherwise specified)
(Per each channel)
Table 5. Power
Symbol
Parameter
VCC (**)
Test Conditions
Min.
Typ.
Max.
Unit
Operating supply voltage
5.5
13
36
V
VUSD (**)
Undervoltage shutdown
3
4
5.5
V
VOV (**)
Overvoltage shutdown
36
V
IOUT=5A; Tj=25°C
RON
Vclamp
IS (**)
On state resistance
Clamp voltage
Supply current
35
mΩ
IOUT=5A; Tj=150°C
70
mΩ
IOUT=3A; VCC=6V
120
mΩ
48
55
V
Off State; VCC=13V; VIN=VOUT=0V
12
40
µA
Off State; VCC=13V; VIN=VOUT=0V;
Tj=25°C
12
25
µA
6
mA
0
50
µA
-75
0
µA
ICC=20 mA (see note 1)
41
On state; VIN=5V; VCC=13V; IOUT=0A;
RSENSE=3.9kΩ
IL(off1)
Off state output current
VIN=VOUT=0V
IL(off2)
Off State Output Current
VIN=0V; VOUT =3.5V
IL(off3)
Off State Output Current
VIN=VOUT=0V; VCC=13V; Tj =125°C
5
µA
IL(off4)
Off State Output Current
VIN=VOUT=0V; VCC=13V; Tj =25°C
3
µA
Max.
Unit
Note: (**) Per device.
Note: 1. Vclamp and VOV are correlated. Typical difference is 5V.
Table 6. Protection (Per each channel) (See note 2)
Symbol
Ilim
TTSD
TR
Parameter
DC short circuit current
Test Conditions
VCC=13V
Typ.
25
40
5.5V<VCC<36V
Thermal shut-down
150
temperature
Thermal reset
175
70
A
70
A
200
°C
135
temperature
THYST
Thermal hysteresis
Vdemag
Turn-off output voltage
clamp
IOUT =2A; VIN=0V; L=6mH
Output voltage drop
IOUT =0.5A
limitation
Tj= -40°C...+150°C
VON
Min.
°C
7
15
VCC-41
VCC-48
°C
VCC-55
50
V
mV
Note: 2. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be
used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration
and number of activation cycles
Table 7. VCC - Output Diode
Symbol
VF
4/18
Parameter
Forward on Voltage
Test Conditions
-IOUT=2.3A; Tj=150°C
Min
Typ
Max
0.6
Unit
V
VND600-E
ELECTRICAL CHARACTERISTICS (continued)
Table 8. Current Sense CURRENT SENSE (9V≤VCC≤16V) (See fig. 6)
Symbol
K1
dK1/K1
K2
dK2/K2
K3
dK3/K3
VSENSE1,2
Parameter
Test Conditions
IOUT1 or IOUT2=0.5A; VSENSE=0.5V;
other channels open; Tj= -40°C...150°C
IOUT1 or IOUT2=0.5A; VSENSE=0.5V;
other channels open; Tj= -40°C...150°C
IOUT /ISENSE
Current Sense Ratio Drift
IOUT /ISENSE
IOUT /ISENSE
Max analog sense
output voltage
Analog sense output
VSENSEH voltage in overtemperature
condition
Analog Sense Output
RVSENSEH Impedance in
Overtemperature Condition
Current sense delay
tDSENSE
response
Max
3300
4400
6000
-10
+10
4200
4900
6000
Tj=25°C...150°C
4400
4900
5750
-6
+6
IOUT1 or IOUT2=15A; VSENSE=4V; other
channels open; Tj=-40°C
4200
4900
5500
Tj=25°C...150°C
4400
4900
5250
IOUT1 or IOUT2=15A; VSENSE=4V; other
channels open; Tj=-40°C...150°C
VCC=5.5V; IOUT1,2=2.5A; RSENSE=10kΩ
Current Sense Ratio Drift
Typ
IOUT1 or IOUT2=5A; VSENSE=4V; other
channels open; Tj=-40°C
IOUT1 or IOUT2=5A; VSENSE=4V; other
channels open; Tj=-40°C...150°C
Current Sense Ratio Drift
Min
VCC>8V, IOUT1,2=5A; RSENSE=10kΩ
-6
+6
Unit
%
%
%
2
V
4
V
VCC=13V; RSENSE=3.9kΩ
VCC=13V; Tj>TTSD; All channels Open
5.5
V
400
Ω
500
µs
Typ
30
30
See
relative
diagram
See
relative
diagram
Max
Unit
µs
µs
Typ
Max
1.25
to 90% ISENSE (see note 3)
Note: 3. Current sense signal delay after positive input slope.
Table 9. Switching (V CC=13V)
Symbol
td(on)
td(off)
Parameter
Turn-on delay time
Turn-on delay time
Test Conditions
RL=2.6Ω (see figure 6)
RL=2.6Ω (see figure 6)
(dVOUT/dt)on Turn-on voltage slope
RL=2.6Ω (see figure 6)
(dVOUT/dt)off Turn-off voltage slope
RL=2.6Ω (see figure 6)
Min
V/µs
V/µs
Table 10. Logic Input (Channel 1, 2)
Symbol
VIL
IIL
VIH
IIH
VI(hyst)
VICL
Parameter
Test Conditions
Input low level voltage
Low level input current VIN=1.25V
Input high level voltage
High level input current VIN=3.25V
Input hysteresis voltage
IIN=1mA
Input clamp voltage
IIN=-1mA
Min
1
3.25
10
0.5
6
6.8
-0.7
8
Unit
V
µA
V
µA
V
V
V
5/18
VND600-E
Figure 5. IOUT/ISENSE versus IOUT
IOUT/ISENSE
6500
6000
max.Tj=-40°C
5500
max.Tj=25...150°C
5000
typical value
min.Tj=25...150°C
4500
4000
min.Tj=-40°C
3500
3000
0
2
4
6
8
10
12
14
16
IOUT (A)
Table 11. Truth Table (per channel)
CONDITIONS
Normal operation
Overtemperature
Undervoltage
Overvoltage
Short circuit to GND
Short circuit to VCC
Negative output voltage
clamp
6/18
INPUT
OUTPUT
SENSE
L
L
H
H
0
Nominal
L
L
0
H
L
VSENSEH
L
L
0
H
L
0
L
L
0
H
L
0
L
L
0
H
L
(Tj<TTSD) 0
H
L
(Tj>TTSD) VSENSEH
L
H
0
H
H
< Nominal
L
L
0
VND600-E
Figure 6. Switching Characteristics (Resistive load RL=2.6Ω)
VOUT
90%
80%
dVOUT/dt(off)
dVOUT/dt(on)
10%
tr
tf
t
ISENSE
90%
t
tDSENSE
INPUT
td(on)
td(off)
t
Table 12. Electrical Transient Requirements On V CC Pin
ISO T/R 7637/1
Test Pulse
1
2
3a
3b
4
5
ISO T/R 7637/1
Test Pulse
1
2
3a
3b
4
5
CLASS
C
E
I
II
TEST LEVELS
III
IV
-25 V
+25 V
-25 V
+25 V
-4 V
+26.5 V
-50 V
+50 V
-50 V
+50 V
-5 V
+46.5 V
-75 V
+75 V
-100 V
+75 V
-6 V
+66.5 V
-100 V
+100 V
-150 V
+100 V
-7 V
+86.5 V
I
C
C
C
C
C
C
TEST LEVELS RESULTS
II
III
C
C
C
C
C
C
C
C
C
C
E
E
Delays and
Impedance
2 ms 10 Ω
0.2 ms 10 Ω
0.1 µs 50 Ω
0.1 µs 50 Ω
100 ms, 0.01 Ω
400 ms, 2 Ω
IV
C
C
C
C
C
E
CONTENTS
All functions of the device are performed as designed after exposure to disturbance.
One or more functions of the device is not performed as designed after exposure to disturbance
and cannot be returned to proper operation without replacing the device.
7/18
VND600-E
Figure 7. Waveforms
NORMAL OPERATION
INPUTn
LOAD CURRENTn
SENSEn
UNDERVOLTAGE
VCC
VUSDhyst
VUSD
INPUTn
LOAD CURRENTn
SENSEn
OVERVOLTAGE
VOV
VCC
VCC < VOV
VCC > VOV
INPUTn
LOAD CURRENTn
SENSEn
SHORT TO GROUND
INPUTn
LOAD CURRENTn
LOAD VOLTAGEn
SENSEn
SHORT TO VCC
INPUTn
LOAD VOLTAGEn
LOAD CURRENTn
SENSEn
<Nominal
<Nominal
OVERTEMPERATURE
Tj
TTSD
TR
INPUTn
LOAD CURRENTn
SENSEn
8/18
ISENSE =
VSENSEH
RSENSE
VND600-E
Figure 8. Application Schematic
+5V
Rprot
INPUT1
VCC
Dld
µC
Rprot
CURRENT SENSE1
Rprot
INPUT2
Rprot
CURRENT SENSE2
OUTPUT1
GND
RSENSE1
GND PROTECTION
REVERSE BATTERY
RSENSE2
NETWORK
VGND
AGAINST
Solution 1: Resistor in the ground line (RGND only). This
can be used with any type of load.
The following is an indication on how to dimension the
RGND resistor.
1) RGND ≤ 600mV / IS(on)max.
2) RGND ≥ (−VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can
be found in the absolute maximum rating section of the
device’s datasheet.
Power Dissipation in RGND (when VCC<0: during reverse
battery situations) is:
PD= (-VCC)2/RGND
This resistor can be shared amongst several different
HSD. Please note that the value of this resistor should be
calculated with formula (1) where IS(on)max becomes the
sum of the maximum on-state currents of the different
devices.
Please note that if the microprocessor ground is not
common with the device ground then the RGND will
produce a shift (IS(on)max * RGND) in the input thresholds
and the status output values. This shift will vary
depending on how many devices are ON in the case of
several high side drivers sharing the same RGND.
If the calculated power dissipation leads to a large
resistor or several devices have to share the same
resistor then the ST suggests to utilize Solution 2 (see
below).
Solution 2: A diode (DGND) in the ground line.
A resistor (RGND=1kΩ) should be inserted in parallel to
DGND if the device will be driving an inductive load.
This small signal diode can be safely shared amongst
several different HSDs.
RGND
OUTPUT2
DGND
Also in this case, the presence of the ground network will
produce a shift (j600mV) in the input thresholds and the
status output values if the microprocessor ground is not
common with the device ground. This shift will not vary if
more than one HSD shares the same diode/resistor
network.
Series resistor in INPUT and STATUS lines are also
required to prevent that, during battery voltage transient,
the current exceeds the Absolute Maximum Rating.
Safest configuration for unused INPUT and STATUS pin
is to leave them unconnected.
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the
load dump peak voltage exceeds VCC max DC rating.
The same applies if the device will be subject to
transients on the VCC line that are greater than the ones
shown in the ISO T/R 7637/1 table.
.µC I/Os PROTECTION:
If a ground protection network is used and negative
transient are present on the VCC line, the control pins will
be pulled negative. ST suggests to insert a resistor (Rprot)
in line to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between
the leakage current of µC and the current required by the
HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os.
-VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax
Calculation example:
For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V
5kΩ ≤ Rprot ≤ 65kΩ.
Recommended Rprot value is 10kΩ.
9/18
VND600-E
Figure 9. Off State Output Current
Figure 10. High Level Input Current
IL(off1) (uA)
Iih (uA)
5
5
4.5
4.5
Off state
Vcc=36V
Vin=Vout=0V
4
3.5
Vin=3.25V
4
3.5
3
3
2.5
2.5
2
2
1.5
1.5
1
1
0.5
0.5
0
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
50
75
100
125
150
175
100
125
150
175
150
175
Tc (°C)
Figure 11. Input Clamp Voltage
Figure 13. Input High Level
Vih (V)
Vicl (V)
3.6
8
7.8
3.4
Iin=1mA
7.6
3.2
7.4
3
7.2
2.8
7
6.8
2.6
6.6
2.4
6.4
2.2
6.2
2
6
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
50
75
Tc (°C)
Tc (°C)
Figure 12. Input Low Level
Figure 14. Input Hysteresis Voltage
Vil (V)
Vhyst (V)
2.6
1.5
1.4
2.4
1.3
2.2
1.2
2
1.1
1
1.8
0.9
1.6
0.8
1.4
0.7
1.2
0.6
1
0.5
-50
-25
0
25
50
75
Tc (°C)
10/18
100
125
150
175
-50
-25
0
25
50
75
Tc (°C)
100
125
VND600-E
Figure 15. Overvoltage Shutdown
Figure 18. ILIM Vs Tcase
Vov (V)
Ilim (A)
50
80
48
70
Vcc=13V
46
60
44
50
42
40
40
38
30
36
20
34
10
32
30
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
50
75
100
125
150
175
150
175
Tc (°C)
Figure 16. Turn-on Voltage Slope
Figure 19. Turn-off Voltage Slope
dVout/dt(on) (V/ms)
dVout/dt(off) (V/ms)
750
500
700
450
Vcc=13V
Rl=2.6Ohm
650
Vcc=13V
Rl=2.6Ohm
400
600
350
550
300
500
250
450
200
400
150
350
100
300
50
250
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (ºC)
50
75
100
125
Tc (ºC)
Figure 17. On State Resistance Vs Tcase
Figure 20. On State Resistance Vs VCC
Ron (mOhm)
Ron (mOhm)
100
80
90
70
Iout=5A
Vcc=8V & 36V
80
Iout=5A
Tc= 150°C
60
70
50
60
50
40
40
Tc= 25°C
30
30
20
20
Tc= - 40°C
10
10
0
0
-75
-50
-25
0
25
50
Tc (°C)
75
100
125
150
175
5
10
15
20
25
30
35
40
Vcc (V)
11/18
VND600-E
Figure 21. SO-16L Maximum turn off current versus load inductance
ILMAX (A)
100
A
B
C
10
1
0.01
0.1
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at T Jstart=100ºC
C= Repetitive Pulse at T Jstart=125ºC
Conditions:
VCC=13.5V
1
L(mH)
10
100
Values are generated with R L=0Ω
In case of repetitive pulses, Tjstart (at beginning of
each demagnetization) of every pulse must not
exceed the temperature specified above for
curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
12/18
VND600-E
SO-16L Thermal Data
Figure 22. SO-16L PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 41mm x 48mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: 0.5cm2, 6cm2).
Figure 23. Rthj-amb Vs PCB copper area in open box free air condition
70
RTH j-amb (°C/W)
65
60
55
50
45
40
0
1
2
3
4
5
6
7
PCB Cu heatsink area (cm^2)
13/18
VND600-E
Figure 24. SO-16L Thermal Impedance Junction Ambient Single Pulse
ZT H (°C/W)
1000
100
Footprint
6 cm2
10
1
0.1
0.01
0.0001
0.001
0.01
0.1
1
T ime (s)
Figure 25. Thermal fitting model of a double
channel HSD in SO-16L
10
100
1000
Pulse calculation formula
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Table 13. Thermal Parameter
Tj_1
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd1
Tj_2
C1
C2
R1
R2
Pd2
T_amb
14/18
R1
R2
R3
R4
R5
R6
C1
C2
C3
C4
C5
C6
Area/island (cm2)
(°C/W)
(°C/W)
( °C/W)
(°C/W)
(°C/W)
(°C/W)
(W.s/°C)
(W.s/°C)
(W.s/°C)
(W.s/°C)
(W.s/°C)
(W.s/°C)
Footprint
0.05
0.3
2.2
12
15
37
0.001
5.00E-03
0.02
0.3
1
3
6
22
5
VND600-E
PACKAGE MECHANICAL
Table 14. SO-16L Mechanical Data
Symbol
A
a1
a2
b
b1
C
c1
D
E
e
e3
F
L
M
S
millimeters
Min
Typ
Max
2.65
0.2
2.45
0.49
0.32
0.1
0.35
0.23
0.5
45° (typ.)
10.1
10.0
10.5
10.65
1.27
8.89
7.4
0.5
7.6
1.27
0.75
8° (max.)
Figure 26. SO-16L Package Dimensions
15/18
VND600-E
Figure 27. SO-16L Tube Shipment (No Suffix)
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
C
B
50
1000
532
3.5
13.8
0.6
All dimensions are in mm.
A
Figure 28. Tape And Reel Shipment (Suffix “TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
1000
1000
330
1.5
13
20.2
16.4
60
22.4
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
16
4
12
1.5
1.5
7.5
6.5
2
End
All dimensions are in mm.
Start
Top
cover
tape
No components
Components
Empty components pockets
saled with cover tape.
User direction of feed
16/18
No components
500mm min
500mm min
VND600-E
REVISION HISTORY
Date
Oct. 2004
Revision
1
- First Issue.
Description of Changes
17/18
VND600-E
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
 2004 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
18/18