VNQ500PEP-E QUAD CHANNEL HIGH SIDE DRIVER Table 1. General Features Figure 1. Package Type RDS(on) IOUT VCC VNQ500PEP-E 500 mΩ 0.4 A 36V CMOS COMPATIBLE I/O’s ■ CHIP ENABLE ■ JUNCTION OVERTEMPERATURE PROTECTION AND DIAGNOSTIC ■ CURRENT LIMITATION ■ SHORTED LOAD PROTECTION ■ UNDERVOLTAGE SHUTDOWN ■ PROTECTION AGAINST LOSS OF GROUND ■ VERY LOW STAND-BY CURRENT ■ IN COMPLIANCE WITH THE 2002/95/EC EUROPEAN DIRECTIVE ■ c u d PowerSSO-12 e t le o r P o s b O - DESCRIPTION The VNQ500PEP-E is a monolithic device designed in STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active current limitation combined with latched thermal shutdown, protect the device against overload. ) s ( ct ) s t( In case of overtemperature of one channel the relative I/O pin is pulled down. Device automatically turns off in case of ground pin disconnection. u d o r P e t e l o Table 2. Order Codes bs O Package PowerSSO-12 Tube Tape and Reel VNQ500PEP-E VNQ500PEPTR-E Rev. 4 June 2005 1/17 VNQ500PEP-E Figure 2. Block Diagram VCC UNDERVOLTAGE DETECTION VCC CLAMP CE GND I/O 1 OT1 CLAMP POWER OUTPUT 1 I/O 2 LOGIC OT2 OUTPUT 2 CURRENT LIMITER OUTPUT 3 I/O 3 JUNCTION TEMP. DETECTION OT3 c u d Same structure for all channels I/O 4 OT4 Table 3. Pin Definitions And Functions Pin No TAB 7,12 1 2 3 4 5 6 8 9 10 11 VCC VCC GND CE I/O 1 I/O 2 I/O 3 I/O 4 OUTPUT 4 OUTPUT 3 OUTPUT 2 OUTPUT 1 t e l o r P e o s b O - Function Positive power supply voltage Positive power supply voltage Logic ground Chip Enable Input/Output of channel 1 Input/Output of channel 2 Input/Output of channel 3 Input/Output of channel 4 High-Side output of channel 4 High-Side output of channel 3 High-Side output of channel 2 High-Side output of channel 1 ) s ( ct u d o s b O 2/17 Symbol e t le ) s t( OUTPUT 4 o r P VNQ500PEP-E Table 4. Absolute Maximum Ratings Symbol Parameter Value Unit 41 V VCC DC Supply voltage -VCC Reverse supply voltage -0.3 V - IGND DC Ground pin reverse current - 250 mA Internally Limited A -1 A +/- 10 mA 4000 V 5000 V 73 W Internally Limited °C IOUT - IOUT IIN DC Output current Reverse DC output current DC Input current Electrostatic discharge (R=1.5KΩ; C=100pF) VESD - I/On - OUTn & Vcc Ptot Tj Tstg Power dissipation at Tc=25°C Junction operating temperature Storage temperature - 55 to 150 c u d Figure 3. Configuration Diagram (Top View) TAB = VCC GND CE I/O1 I/O2 I/O3 I/O4 1 2 3 4 5 6 ) s ( ct VCC OUTPUT1 OUTPUT2 OUTPUT3 OUTPUT4 VCC 12 11 10 9 8 7 e t le ) s t( °C o r P o s b O - u d o Figure 4. Current and Voltage Conventions r P e s b O t e l o IS VCC VCC IINn I/On VINn IOUTn OUTPUTn VOUTn ICE VCE CE GND IGND 3/17 VNQ500PEP-E Table 5. Thermal Data Symbol Rthj-case Rthj-amb Parameter Thermal Resistance Junction-case Thermal Resistance Junction-ambient Value 1.7 Max Max 61 (1) Unit °C/W °C/W 50 (2) Note: 1. When mounted on a standard single-sided FR-4 board with 0.5cm 2 of Cu (at least 35µm thick) connected to all VCC pins. Note: 2. When mounted on a standard single-sided FR-4 board with 8cm2 of Cu (at least 35µm thick) connected to all VCC pins. ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C unless otherwise specified) Table 6. Power Symbol Parameter VCC (**) Test Conditions Min. Typ. Max. Unit Operating supply voltage 5.5 13 36 V VUSD (**) Undervoltage shut-down 3 4 5.5 V VOV (**) Overvoltage shutdown On state resistance 36 RON IOUTn=0.25A; Tj=25°C 500 IOUTn=0.25A 1000 VCE=VI/On=0V; VCC=13V; Tcase=25°C Supply current IS VCC=VCE=VI/On=VGND=13V Output current at turn-off IL(off) (**) Off state output current VI/On=VOUTn=0V ILoff2 (**) Off state output current VI/On=0V, VOUTn=0V, VCC=13V; Tcase=25°C VOUTn=0V Note: (**) Per channel Table 7. Switching (VCC =13V) ) s ( ct Parameter Turn-on time ton u d o dVOUT/ dt(on) Turn-on voltage slope dVOUT/ dt(off) Turn-off voltage slope r P e t e l o Test Conditions 0 Min. (1) Typ. ) s t( mΩ µA 8 mA 1 mA 5 µA 1 µA Max. Unit 50 µs 75 µs RL=52Ω from VOUT=1.3V to VOUT=10.4V (1) 0.3 V/µs RL=52Ω from VOUT=11.7V to VOUT=1.3V (1) 0.3 V/µs RL=52Ω from 80% VOUT Turn-off time toff o s b O - e t le o r P mΩ 20 c u d On state (all channels ON); VCC=13V ILGND (**) Symbol V RL=52Ω to 10% VOUT (1) Note: (1) see figure 5 :switching time waveforms Table 8. Input & CE Pin s b O Symbol Parameter VINL I/O low level IINL Low level I/O current VINH I/O high level IINH High level I/O current VI(hyst) I/O hysteresis voltage VICL Input Clamp Voltage 4/17 Test Conditions VIN=1.25V Min. Typ. Max. Unit 1.25 V 1 µA 3.25 V VIN=3.25V 10 0.5 IIN=1mA IIN=-1mA 6 µA V 6.8 -0.7 8 V V VNQ500PEP-E ELECTRICAL CHARACTERISTICS (continued) Table 9. Protections (see note 1) Symbol VOL TTSD Ilim Vdemag treset Parameter I/O low level default Test Conditions detection Junction shut-down temperature DC Short circuit current Turn-off output clamp voltage Thermal latch reset time Min Typ IIN=1mA, latched thermal shutdown 150 VCC=13V; RLOAD=10mΩ 175 0.4 IOUT=0.25 A; L=50mH VCC-41 VCC-48 Tj < TTSD (see figure 3 in waveforms) Max Unit 0.5 V 200 °C 0.9 A VCC-55 V 10 µs Note: 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles Figure 5. Switching Time Waveforms: Turn-on & Turn-off ton toff c u d VIN ) s t( o r P t e t le VOUT dVOUT/dt(on) ) s ( ct tr o r P e o s b O - 90% 80% dVOUT/dt(off) tf 10% du t Figure 6. Driving Circuit t e l o s b O MCOUT n Rprot(*) I/O n OUTPUT n Rprot(*) MCU Diagnostic feedback Rprot(*) VNQ500PEP CE (*) see pag. 8 5/17 VNQ500PEP-E Table 10. Truth Table CONDITIONS MCOUTn L H L H L H L H X Normal operation Current limitation Overtemperature Undervoltage Stand-by CE H H H H H H H H L I/On L H L H L L (latched) L H X OUTPUTn L H L H L L L L L Table 11. Electrical Transient Requirements On VCC Pin ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 I II TEST LEVELS III IV -25 V +25 V -25 V +25 V -4 V +26.5 V -50 V +50 V -50 V +50 V -5 V +46.5 V -75 V +75 V -100 V +75 V -6 V +66.5 V -100 V +100 V -150 V +100 V -7 V +86.5 V ISO T/R 7637/1 Test Pulse CLASS C E t e l o 6/17 ) s ( ct o s b O - o r P c u d ) s t( IV C C C C C E CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. u d o r P e s b O e t le I C C C C C C 1 2 3a 3b 4 5 TEST LEVELS RESULTS II III C C C C C C C C C C E E Delays and Impedance 2 ms 10 Ω 0.2 ms 10 Ω 0.1 µs 50 Ω 0.1 µs 50 Ω 100 ms, 0.01 Ω 400 ms, 2 Ω VNQ500PEP-E Figure 7. Waveforms 1) NORMAL OPERATION CE MCOUTn I/On VOUTn 2) UNDERVOLTAGE CE VUSDhyst VCC VUSD MCOUTn c u d I/On VOUTn e t le 3) SHORTED LOAD OPERATION CE TTSD Tjn ) s ( ct MCOUTn I/On ) s t( o r P treset o s b O VOL u d o r P e IOUTn t e l o s b O 7/17 VNQ500PEP-E Figure 8. Application Schematic +5V VCC Rprot CE Dld µC Rprot I/0n OUTPUT Rprot Diagnostic feedback GND RGND VGND DGND c u d GND PROTECTION REVERSE BATTERY NETWORK AGAINST u d o r P e t e l o s b O 8/17 o r P the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. e t le o s b O - Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND ≤ 600mV / (IS(on)max). 2) RGND ≥ (−VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device’s datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1kΩ) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of ) s ( ct ) s t( LOAD DUMP PROTECTION Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. µC I/Os PROTECTION: If a ground protection network is used and negative transient are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the µC I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os. -VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V 5kΩ ≤ Rprot ≤ 65kΩ. Recommended Rprot value is 10kΩ. VNQ500PEP-E Figure 9. Off State Output Current Figure 10. High Level Input Current Iih (uA) IL(off) (uA) 6 0.3 5.5 0.27 Vin=3.25V Vcc=36V 0.24 5 0.21 4.5 0.18 4 0.15 3.5 0.12 3 0.09 2.5 0.06 2 0.03 1.5 1 0 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 100 125 150 175 Tc (°C) Tc (°C) Figure 11. Input Clamp Voltage Figure 13. Overvoltage Shutdown Vicl (V) Vov (V) 10 60 9.5 c u d 55 Iin=1mA 9 50 8.5 e t le 45 8 7.5 40 7 o r P o s b O 35 6.5 ) s t( 30 6 5.5 5 -50 -25 0 25 50 75 Tc (°C) o r P e 100 125 c u d (t s) 150 175 Figure 12. Turn-on Voltage Slope 25 20 -50 -25 0 dVout/dt(off) (V/ms) 800 t e l o 100 125 150 175 150 175 750 Vcc=13V Rl=6.5Ohm s b O 700 75 Figure 14. Turn-off Voltage Slope dVout/dt(on) (V/ms) 800 50 Tc (°C) 1000 900 25 Vcc=13V Rl=6.5Ohm 700 650 600 500 600 400 550 300 500 200 450 100 0 400 -50 -25 0 25 50 75 Tc (°C) 100 125 150 175 -50 -25 0 25 50 75 100 125 Tc (°C) 9/17 VNQ500PEP-E Figure 15. ILIM Vs Tcase Figure 18. Input Hysteresis Voltage Ilim (A) Vhyst (V) 1.4 1 0.9 1.3 Vcc=13V 0.8 1.2 0.7 1.1 0.6 1 0.5 0.9 0.4 0.8 0.3 0.7 0.2 0.6 0.1 0 0.5 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) Ron (mOhm) Ron (mOhm) 900 900 800 700 700 500 500 Tc= -40°C 200 200 100 0 25 Vcc (V) o r P e Figure 17. Input High Level 30 (t s) 35 c u d 3.2 0 -50 -25 0 25 50 75 100 125 150 175 100 125 150 175 Tc (°C) Figure 20. Input Low Level Vil (V) 3 2.75 2.5 s b O 3 100 40 t e l o 3.4 ) s t( 300 Tc= 25°C 300 3.6 175 o s b O 400 400 Vih (V) 150 o r P e t le 600 Tc= 150°C 600 20 125 c u d Iout=0.25A Vcc=8V, 13V & 36V Iout=0.25A 800 15 100 Figure 19. On State Resistance Vs Tcase 1000 10 75 Tc (°C) Figure 16. On State Resistance Vs VCC 5 50 2.25 2.8 2 2.6 1.75 2.4 1.5 2.2 1.25 2 1 1.8 -50 -25 0 25 50 75 Tc (°C) 10/17 100 125 150 175 -50 -25 0 25 50 75 Tc (°C) VNQ500PEP-E Figure 21. Maximum Turn Off Current Versus Load Inductance ILM AX (A) 10 1 A B C c u d 0.1 10 100 L(mH) A = Single Pulse at TJstart=150ºC B= Repetitive pulse at TJstart=100ºC C= Repetitive Pulse at TJstart=125ºC ) s ( ct Conditions: VCC=13.5V t e l o 1000 o s b O - Values are generated with RL=0Ω In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. u d o r P e VIN, IL e t le o r P ) s t( Demagnetization Demagnetization Demagnetization s b O t 11/17 VNQ500PEP-E PowerSSO-12 Thermal Data Figure 22. PowerSSO-12 PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 78mm x 78mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: from minimum pad lay-out to 8cm2). c u d Figure 23. Rthj-amb Vs PCB copper area in open box free air condition e t le RTHj_amb(°C/W) 70 ) s ( ct 65 o r P o s b O - u d o 60 r P e 55 t e l o 50 s b O 45 0 2 4 6 PCB Cu heatsink area (cm^2) 12/17 8 10 ) s t( VNQ500PEP-E Figure 24. Thermal Impedance Junction Ambient Single Pulse ZTH (°C/W) 1000 100 Footprint 8 cm2 10 c u d 1 e t le 0.1 0.0001 0.001 0.01 0.1 1 Time (s) Figure 25. Thermal Fitting Model of a Quad Channel HSD in PowerSSO-12 uc d o r P e s b O t e l o (t s) o s b O - 10 ) s t( o r P 100 1000 Pulse Calculation Formula Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ ) where δ = tp ⁄ T Table 12. Thermal Parameter Area/island (cm2) R1=R7=R9=R11 (°C/W) R2=R8=R10=R12 (°C/W) R3 ( °C/W) R4 (°C/W) R5 (°C/W) R6 (°C/W) C1=C7=C9=C11 (W.s/°C) C2=C8=C10=C12 (W.s/°C) C3 (W.s/°C) C4 (W.s/°C) C5 (W.s/°C) C6 (W.s/°C) Footprint 0.8 2.6 1.5 8 28 30 0.00006 0.0005 0.015 0.1 0.15 3 8 18 22 0.17 5 13/17 VNQ500PEP-E PACKAGE MECHANICAL Table 13. PowerSSO-12™ Mechanical Data millimeters Symbol Min Typ DIM. MIN. TYP 1.250 1.620 A1 0.000 0.100 A2 1.100 1.650 B 0.230 0.410 C 0.190 0.250 D 4.800 5.000 E 3.800 4.000 0.800 ) s t( H 5.800 6.200 h 0.250 0.500 L 0.400 k 0º X 1.900 Y 3.600 c u d 1.270 e t le ddd o s b O - Figure 26. PowerSSO-12™ Package Dimensions ) s ( ct u d o r P e t e l o 14/17 MAX. A e s b O Max mm. o r P 8º 2.500 4.200 0.100 VNQ500PEP-E Figure 27. PowerSSO-12 Tube Shipment (No Suffix) B Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) C A 100 2000 532 1.85 6.75 0.6 All dimensions are in mm. Figure 28. Tape And Reel Shipment (Suffix “TR”) REEL DIMENSIONS ro c u d Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) P e let ) s ( ct TAPE DIMENSIONS u d o o s b O - ) s t( 2500 2500 330 1.5 13 20.2 12.4 60 18.4 According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 r P e Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing t e l o s b O W P0 (± 0.1) P D (± 0.05) D1 (min) F (± 0.1) K (max) P1 (± 0.1) 12 4 8 1.5 1.5 5.5 4.5 2 End All dimensions are in mm. Start Top cover tape No components Components No components 500mm min Empty components pockets saled with cover tape. 500mm min User direction of feed 15/17 VNQ500PEP-E REVISION HISTORY Table 14. Revision History Date Revision Description of Changes Dec. 2004 1 - First Issue. Jun. 2005 2 - Electrical characterization insertion; - Configuration diagram drawing change; - Thermal data insertion; - Shipment data insertion; - Minor changes. Jun. 2005 3 - Maximum Turn Off Current Versus Load Inductance curve insertion; - Thermal Impedance Junction Ambient Single Pulse curve insertion. Jun. 2005 4 - Maximum Turn Off Current Versus Load Inductance curve review. c u d e t le ) s ( ct u d o r P e t e l o s b O 16/17 o s b O - o r P ) s t( VNQ500PEP-E c u d e t le ) s ( ct ) s t( o r P o s b O - u d o r P e t e l o Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. s b O The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 17/17