VNQ600P-E QUAD CHANNEL HIGH SIDE DRIVER Table 1. General Features TYPE VNQ600P-E Figure 1. Package RDS(on) (*) Ilim VCC 35mΩ 25A 36 V (*) Per each channel DC SHORT CIRCUIT CURRENT: 22A ■ CMOS COMPATIBLE INPUTS ■ PROPORTIONAL LOAD CURRENT SENSE ■ UNDERVOLTAGE & OVERVOLTAGE SHUT-DOWN ■ OVERVOLTAGE CLAMP ■ THERMAL SHUT-DOWN ■ CURRENT LIMITATION ■ VERY LOW STAND-BY POWER DISSIPATION ■ PROTECTION AGAINST: LOSS OF GROUND & LOSS OF VCC ■ REVERSE BATTERY PROTECTION (**) ■ IN COMPLIANCE WITH THE 2002/95/EC EUROPEAN DIRECTIVE ■ SO-28 (DOUBLE ISLAND) The VNQ600P-E is intended for driving any type of multiple loads with one side connected to ground. This device has four independent channels and four analog sense outputs which deliver currents proportional to the outputs currents. Active current limitation combined with thermal shut-down and automatic restart protect the device against overload. Device automatically turns off in case of ground pin disconnection. DESCRIPTION The VNQ600P-E is a quad HSD formed by assembling two VND600-E chips in the same SO28 package. The VND600-E is a monolithic device designed in| STMicroelectronics VIPower M0-3 Technology. Table 2. Order Codes Package SO-28 Tube Tape and Reel VNQ600P-E VNQ600PTR-E Note: (**) See application schematic at page 11. Rev. 1 October 2004 1/20 VNQ600P-E Figure 2. Block Diagram VCC 1,2 OVERVOLTAGE UNDERVOLTAGE DEMAG 1 DRIVER 1 OUTPUT 1 INPUT 1 ILIM1 LOGIC IOUT1 INPUT 2 K CURRENT SENSE 1 DEMAG 2 DRIVER 2 GND 1,2 OUTPUT 2 ILIM2 OVERTEMP. 1 IOUT2 OVERTEMP. 2 K OVERVOLTAGE CURRENT SENSE 2 VCC 3,4 UNDERVOLTAGE DEMAG 3 DRIVER 3 OUTPUT 3 INPUT 3 ILIM3 LOGIC IOUT3 INPUT 4 K CURRENT SENSE 3 DEMAG 4 DRIVER 4 GND 3,4 OUTPUT 4 ILIM4 OVERTEMP. 3 OVERTEMP. 4 2/20 IOUT4 K CURRENT SENSE 4 VNQ600P-E Table 3. Absolute Maximum Ratings Symbol Parameter Value Unit 41 V -0.3 V VCC Supply voltage (continuous) -VCC Reverse supply voltage (continuous) IOUT Output current (continuous), for each channel 15 A IR Reverse output current (continuous), for each channel -15 A IIN Input current +/- 10 mA -3 V +15 V -200 mA 4000 V 2000 V 5000 V 5000 V (L=0.11mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=40A) 126 mJ Power dissipation (per island) at Tlead=25°C 6.25 W Internally Limited °C -55 to 150 °C VCSENSE IGND Current sense maximum voltage Ground current at Tpins < 25°C (continuous) Electrostatic Discharge (Human R=1.5KΩ; C=100pF) VESD Body Model: - INPUT - CURRENT SENSE - OUTPUT - VCC Maximum Switching Energy EMAX Ptot Tj Tstg Junction operating temperature Storage temperature Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins VCC 1,2 1 28 VCC 1,2 GND 1,2 OUTPUT 2 INPUT 2 OUTPUT 2 INPUT 1 OUTPUT 2 CURRENT SENSE 1 OUTPUT 1 CURRENT SENSE 2 OUTPUT 1 VCC 1,2 OUTPUT 1 VCC 3,4 OUTPUT 4 GND 3,4 OUTPUT 4 INPUT 4 OUTPUT 4 INPUT 3 OUTPUT 3 CURRENT SENSE 3 OUTPUT 3 CURRENT SENSE 4 VCC 3,4 Connection / Pin Floating To Ground OUTPUT 3 14 Current Sense Through 1KΩ resistor 15 N.C. X X VCC 3,4 Output X Input X Through 10KΩ resistor 3/20 VNQ600P-E Figure 4. Current and Voltage Conventions IS3,4 IS1,2 VCC3,4 VCC3,4 VCC1,2 VF1 (*) VCC1,2 IIN1 ISENSE1 VIN1 IIN2 VSENSE1 ISENSE2 VIN2 VSENSE2 VIN3 IIN3 ISENSE3 VSENSE3 IIN4 VIN4 ISENSE4 VSENSE4 INPUT1 IOUT1 CUR. SENSE1 OUTPUT1 VOUT1 IOUT2 INPUT2 CUR. SENSE2 OUTPUT2 VOUT2 IOUT3 INPUT3 CUR. SENSE3 OUTPUT3 IOUT4 INPUT4 OUTPUT4 CUR. SENSE4 GND3,4 IGND3,4 VOUT3 VOUT4 GND1,2 IGND1,2 (*) VFn = VCCn - VOUTn during reverse battery condition Table 4. Thermal Data Symbol Rthj-case Rthj-amb Rthj-amb Parameter Thermal resistance junction-case Thermal resistance junction-ambient (one chip ON) Thermal resistance junction-ambient (two chips ON) (MAX) (MAX) (MAX) Value 15 60 (1) 46 (1) 44 (2) 31 (2) Unit °C/W °C/W °C/W Note: 1. When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick) connected to all VCC pins. Horizontal mounting and no artificial air flow. Note: 2. When mounted on a standard single-sided FR-4 board with 6cm 2 of Cu (at least 35µm thick) connected to all VCC pins. Horizontal mounting and no artificial air flow. 4/20 VNQ600P-E ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C unless otherwise specified) (Per each channel) Table 5. Power Symbol Parameter VCC (**) Min. Typ. Max. Unit Operating supply voltage 5.5 13 36 V VUSD (**) Undervoltage shut-down 3 4 5.5 V VOV (**) Overvoltage shut-down 36 RON Vclamp IS (**) On state resistance Clamp Voltage Supply current Test Conditions V IOUT1,2,3,4=5A; Tj=25°C 35 mΩ IOUT1,2,3,4=5A; Tj=150°C 70 mΩ IOUT1,2,3,4=3A; VCC=6V 120 mΩ 48 55 V Off State; VCC=13V; VIN=VOUT=0V 12 40 µA Off State; VCC=13V; VIN=VOUT=0V; Tj =25°C 12 25 µA 6 mA 0 50 µA -75 0 µA ICC=20mA (see note 3) 41 On State; VCC=13V; VIN=5V; IOUT=0A; RSENSE=3.9KΩ IL(off1) Off state output current VIN=VOUT=0V IL(off2) Off State Output Current VIN=0V; VOUT=3.5V IL(off3) Off State Output Current VIN=VOUT=0V; VCC=13V; Tj =125°C 5 µA IL(off4) Off State Output Current VIN=VOUT=0V; VCC=13V; Tj =25°C 3 µA Max. Unit Note: 3. Vclamp and VOV are correlated. Typical difference is 5V. Note: (**) Per island. Table 6. Switching (VCC =13V) Symbol Parameter Test Conditions Min. Typ. td(on) Turn-on delay time RL=2.6Ω channels 1,2,3,4 (see fig. 1) 40 µs td(off) Turn-off delay time RL=2.6Ω channels 1,2,3,4 (see fig. 1) 40 µs (dVOUT/ dt)on Turn-on voltage slope RL=2.6Ω channels 1,2,3,4 (see fig. 1) See relative diagram V/µs (dVOUT/ dt)off Turn-off voltage slope RL=2.6Ω channels 1,2,3,4 (see fig. 1) See relative diagram V/µs Table 7. VCC - Output Diode Symbol VF Parameter Forward on Voltage Test Conditions -IOUT=2.3A; Tj=150°C Min Typ Max 0.6 Unit V 5/20 VNQ600P-E ELECTRICAL CHARACTERISTICS (continued) Table 8. Logic Input Symbol Parameter Test Conditions Min. Typ. Max. Unit 1.25 V VIL Low level input voltage VIH High level input voltage 3.25 V VI(hyst) Input hysteresis voltage 0.5 V 1 µA IIL Input current VIN=1.5V IIN Input current VIN=3.5V VICL Input clamp voltage IIN=1mA 6 IIN= -1mA 6.8 10 µA 8 V -0.7 V Table 9. Protections (See note 4) Symbol Ilim TTSD TR Thyst Vdemag VON Parameter DC Short circuit current Test Conditions VCC=13V Min. Typ. Max. Unit 25 40 70 A 70 A 200 °C 5.5V<VCC<36V Thermal shut-down 150 temperature Thermal reset temperature 175 135 Thermal hysteresis Turn-off output voltage clamp IOUT=2A; L=6mH Output voltage drop limitation IOUT=0.5A; Tj= -40°C...+150°C °C 7 15 VCC41 VCC-48 50 °C VCC55 V mV Note: 4. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles. 6/20 VNQ600P-E ELECTRICAL CHARACTERISTICS (continued) Table 10. CURRENT SENSE (9V ≤ VCC ≤ 16V) (See Figure 5) Symbol K1 dK1/K1 K2 dK2/K2 Parameter IOUT/ISENSE Current Sense Ratio Drift IOUT/ISENSE Current Sense Ratio Drift Test Conditions IOUT1 or IOUT2=0.5A; VSENSE=0.5V; other channels open; Tj= -40°C...150°C IOUT1 or IOUT2=0.5A; VSENSE=0.5V; other channels open; Tj= -40°C...150°C Min Typ Max 3300 4400 6000 -10 +10 IOUT1 or IOUT2=5A; VSENSE=4V; other channels open; Tj=-40°C 4200 4900 6000 Tj=25°C...150°C 4400 4900 5750 IOUT1 or IOUT2=5A; VSENSE=4V; other channels open; -6 +6 Unit % % Tj=-40°C...150°C K3 dK3/K3 VSENSE1,2 VSENSEH RVSENSEH tDSENSE IOUT/ISENSE IOUT1 or IOUT2=15A; VSENSE=4V; other channels open; Tj=-40°C 4200 4900 5500 Tj=25°C...150°C 4400 4900 5250 Current Sense Ratio Drift IOUT1 or IOUT2=15A; VSENSE=4V; other channels open; -6 Max analog sense Tj=-40°C...150°C VCC=5.5V; IOUT1,2=2.5A; RSENSE=10kΩ 2 V VCC>8V, IOUT1,2=5A; RSENSE=10kΩ 4 V output voltage Analog sense output voltage in overtemperature condition Analog Sense Output Impedance in Overtemperature Condition Current sense delay response VCC=13V; RSENSE=3.9kΩ VCC=13V; Tj>TTSD; All channels open to 90% ISENSE (see note 5) +6 % 5.5 V 400 Ω 500 µs Note: 5. Current sense signal delay after positive input slope. 7/20 VNQ600P-E Figure 5. IOUT/ISENSE versus IOUT IOUT/ISENSE 6500 6000 max.Tj=-40°C 5500 max.Tj=25...150°C 5000 typical value min.Tj=25...150°C 4500 4000 min.Tj=-40°C 3500 3000 0 2 4 6 8 10 12 14 IOUT (A) Figure 6. Switching Characteristics (Resistive load RL=2.6Ω) VOUT 90% 80% dVOUT/dt(off) dVOUT/dt(on) tr 10% tf t ISENSE 90% INPUT t tDSENSE td(on) td(off) t 8/20 16 VNQ600P-E Table 11. Truth Table (Per channel) CONDITIONS INPUT Normal operation Overtemperature Undervoltage Overvoltage Short circuit to GND Short circuit to VCC Negative output voltage clamp OUTPUT SENSE 0 Nominal L L H H L L 0 H L VSENSEH L L 0 H L 0 L L 0 H L 0 L L 0 H L (Tj<TTSD) 0 H L (Tj>TTSD) VSENSEH L H 0 H H < Nominal L L 0 Table 12. Electrical Transient Requirements on VCC Pin ISO T/R 7637/1 Test Pulse I II TEST LEVELS III IV 1 2 3a 3b 4 5 -25 V +25 V -25 V +25 V -4 V +26.5 V -50 V +50 V -50 V +50 V -5 V +46.5 V -75 V +75 V -100 V +75 V -6 V +66.5 V -100 V +100 V -150 V +100 V -7 V +86.5 V ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E I C C C C C C TEST LEVELS RESULTS II III C C C C C C C C C C E E Delays and Impedance 2 ms 10 Ω 0.2 ms 10 Ω 0.1 µs 50 Ω 0.1 µs 50 Ω 100 ms, 0.01 Ω 400 ms, 2 Ω IV C C C C C E CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. 9/20 VNQ600P-E Figure 7. Waveforms (Per each chip) NORMAL OPERATION INPUTn LOAD CURRENTn SENSEn UNDERVOLTAGE VCC VUSDhyst VUSD INPUTn LOAD CURRENTn SENSEn OVERVOLTAGE VOV VCC VCC < VOV VCC > VOV INPUTn LOAD CURRENTn SENSEn SHORT TO GROUND INPUTn LOAD CURRENTn LOAD VOLTAGEn SENSEn SHORT TO VCC INPUTn LOAD VOLTAGEn LOAD CURRENTn SENSEn <Nominal <Nominal OVERTEMPERATURE Tj TTSD TR INPUTn LOAD CURRENTn SENSEn 10/20 ISENSE= VSENSEH RSENSE VNQ600P-E Figure 8. Application Schematic +5V Rprot INPUT1 VCC1,2 VCC3,4 Dld Rprot C. SENSE 1 Rprot INPUT2 Rprot C. SENSE 2 OUTPUT2 INPUT3 OUTPUT3 OUTPUT1 µC Rprot Rprot C. SENSE 3 Rprot OUTPUT4 INPUT4 Rprot C. SENSE 4 GND1,2 GND3,4 RGND RSENSE1,2,3,4 VGND DGND Note: Channels 3 & 4 have the same internal circuit as channel 1 & 2. GND PROTECTION REVERSE BATTERY NETWORK AGAINST Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND ≤ 600mV / 2(IS(on)max). 2) RGND ≥ (−VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device’s datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1kΩ) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT line is also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT pin is to leave it unconnected, while unused SENSE pin has to be connected to Ground pin. LOAD DUMP PROTECTION Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. µC I/Os PROTECTION: If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the µC I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os. -VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V 5kΩ ≤ Rprot ≤ 65kΩ. Recommended Rprot value is 10kΩ. 11/20 VNQ600P-E Figure 9. Off State Output Current Figure 10. Low Level Input Current Iil (µA) IL(off1) (µA) 6 4 5.5 3.5 Vcc=13V Vcc=13V Vin=1.5V 5 3 4.5 2.5 4 3.5 2 3 1.5 2.5 1 2 0.5 1.5 1 0 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 100 125 150 175 100 125 150 175 150 175 Tc (°C) Tc (°C) Figure 11. Input Clamp Voltage Figure 13. Input High Level Vicl (V) Vih (V) 5 10 9.5 4.5 Iin=1mA 9 4 8.5 3.5 8 3 7.5 7 2.5 6.5 2 6 1.5 5.5 5 1 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 50 75 Tc (°C) Figure 12. Input Low Level Figure 14. Input Hysteresis Voltage Vil (V) Vhyst (V) 4 1.5 1.4 3.5 1.3 3 1.2 2.5 1.1 2 1 0.9 1.5 0.8 1 0.7 0.5 0.6 0 0.5 -50 -25 0 25 50 75 Tc (°C) 12/20 100 125 150 175 -50 -25 0 25 50 75 Tc (°C) 100 125 VNQ600P-E Figure 15. Overvoltage Shutdown Figure 16. ILIM Vs Tcase Ilim (A) Vov (V) 80 55 52.5 70 Vcc=13V 50 60 47.5 50 45 40 42.5 40 30 37.5 20 35 10 32.5 0 30 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 75 100 125 150 175 150 175 Tc (°C) Tc (°C) Figure 17. Turn-on Voltage Slope Figure 19. Turn-off Voltage Slope Vov (V) dVout/dt(off) (V/ms) dVout/dt(on) (V/ms) 55 1 1 52.5 0.9 0.9 Vcc=13V Rl=2.6Ohm 0.8 0.8 50 0.7 47.5 0.7 0.6 0.6 45 0.5 42.5 0.5 0.4 0.4 40 0.3 37.5 0.3 0.2 0.2 35 0.1 32.5 0.1 Vcc=13V Rl=2.6Ohm 30 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -50 -25 -25 00 25 25 50 50 75 75 100 100 125 125 Tc Tc (°C) (°C) Tc (°C) Figure 18. On State Resistance Vs Tcase Ron (mOhm) 80 70 Vcc=13V Iout=5V 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 175 Tc (°C) 13/20 VNQ600P-E Figure 20. Maximum Turn Off Current Versus Load Inductance ILMAX (A) 100 A B C 10 1 0.001 0.01 0.1 1 10 100 L(mH ) A = Single Pulse at TJstart=150ºC B= Repetitive pulse at TJstart=100ºC C= Repetitive Pulse at TJstart=125ºC Conditions: VCC=13.5V Values are generated with RL=0Ω In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization t 14/20 VNQ600P-E SO-28 Thermal Data Figure 21. SO-28 Double Island PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: 0.5cm2, 3cm2, 6cm2). Table 13. Thermal Calculation According to the PCB Heatsink Area Chip 1 ON OFF ON ON Chip 2 OFF ON ON ON Tjchip1 RthA x Pdchip1 + Tamb RthC x Pdchip2 + Tamb RthB x (Pdchip1 + Pdchip2) + Tamb (RthA x Pdchip1) + RthC x Pdchip2 + Tamb Tjchip2 Note RthC x Pdchip1 + Tamb RthA x Pdchip2 + Tamb RthB x (Pdchip1 + Pdchip2) + Tamb Pdchip1=Pdchip2 (RthA x Pdchip2) + RthC x Pdchip1 + Tamb Pdchip1≠Pdchip2 Note:RthA = Thermal resistance Junction to Ambient with one chip ON Note:RthB = Thermal resistance Junction to Ambient with both chips ON and Pdchip1=Pdchip2 Note:RthC = Mutual thermal resistance Figure 22. Rthj-amb Vs PCB Copper Area In Open Box Free Air Condition RTHj_am b (°C/W) 70 60 50 RthA 40 RthB 30 20 RthC 10 0 1 2 3 4 5 PCB Cu heatsink area (cm ^2)/island 6 7 15/20 VNQ600P-E Figure 23. SO-28 Thermal Impedance Junction Ambient Single Pulse Zth(°C /W ) 10 0 0,5 cm ^2/is lan d 3 cm ^2/is lan d 6 cm ^2/is lan d 10 One channel ON Two channels ON on same chip 1 0 .1 0.0 1 0.0 00 1 0 .0 01 0 .01 0 .1 1 tim e (s) Figure 24. Thermal Fitting Model of a Quad Channels HSD in SO-28 10 C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 Pd1 Tj_2 C13 R13 C14 R14 Pd2 R17 Tj_3 R18 C7 C8 C9 R7 R8 R9 C10 C11 C12 Pd3 Tj_4 C15 R15 R10 C16 R16 Pd4 T_amb 16/20 R11 R12 10 0 0 Pulse Calculation Formula THδ where Tj_1 100 = R TH ⋅ δ + Z THtp ( 1 – δ ) δ = tp ⁄ T Table 14. Thermal Parameter Area/island (cm2) R1=R7=R13=R15 (°C/W) R2=R8=R14=R16 (°C/W) R3=R9 (°C/W) R4=R10 (°C/W) R5=R11 (°C/W) R6=R12 (°C/W) C1=C7=C13=C15 (W.s/°C) C2=C8=C14=C16 (W.s/°C) C3=C9 (W.s/°C) C4=C10 (W.s/°C) C5=C11 (W.s/°C) C6=C12 (W.s/°C) R17=R18 (°C/W) 0.5 0.05 0.3 3.4 11 15 30 0.001 5.00E-03 1.00E-02 0.2 1.5 5 150 6 13 8 VNQ600P-E PACKAGE MECHANICAL Table 15. SO-28 Mechanical Data Symbol millimeters Min Typ A Max 2.65 a1 0.10 0.30 b 0.35 0.49 b1 0.23 C 0.32 0.50 c1 45 (typ.) D 17.7 18.1 E 10.00 10.65 e 1.27 e3 16.51 F 7.40 7.60 L 0.40 1.27 S 8 (max.) Figure 25. SO-28 Package Dimensions 17/20 VNQ600P-E Figure 26. SO-28 Tube Shipment (no suffix) Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) C B 28 700 532 3.5 13.8 0.6 All dimensions are in mm. A Figure 27. Tape and Reel Shipment (suffix “TR”) REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 1000 1000 330 1.5 13 20.2 16.4 60 22.4 TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.05) K (max) P1 (± 0.1) All dimensions are in mm. 16 4 12 1.5 1.5 7.5 6.5 2 End Start Top No components Components No components cover tape 500mm min Empty components pockets saled with cover tape. User direction of feed 18/20 500mm min VNQ600P-E REVISION HISTORY Table 16. Revision History Date Revision Oct. 2004 1 Description of Changes First issue. 19/20 VNQ600P-E Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 20/20