STMICROELECTRONICS VND600PEP-E

VND600PEP-E
DOUBLE CHANNEL HIGH SIDE DRIVER
Table 1. General Features
Figure 1. Package
TYPE
RDS(on)
Ilim
VCC
VND600PEP-E
30mΩ (*)
25A
36V
(*) Per each channel
■
DC SHORT CIRCUIT CURRENT: 25A
CMOS COMPATIBLE INPUTS
PROPORTIONAL LOAD CURRENT SENSE
■ UNDERVOLTAGE AND OVERVOLTAGE
SHUT-DOWN
■ OVERVOLTAGE CLAMP
■ THERMAL SHUT-DOWN
■ CURRENT LIMITATION
■ VERY LOW STAND-BY POWER DISSIPATION
■ PROTECTION AGAINST:
LOSS OF GROUND AND LOSS OF VCC
■ REVERSE BATTERY PROTECTION (**)
■ IN COMPLIANCE WITH THE 2002/95/EC
EUROPEAN DIRECTIVE
■
■
PowerSSO-24
This device has two channels in high side
configuration; each channel has an analog sense
output on which the sensing current is proportional
(according to a known ratio) to the corresponding
load current. Built-in thermal shut-down and
outputs current limitation protect the chip from
over temperature and short circuit. Device turns off
in case of ground pin disconnection.
DESCRIPTION
The VND600PEP-E is a monolithic device made
using
STMicroelectronics
VIPower
M0-3
technology. It is intended for driving resistive or
inductive loads with one side connected to ground.
Active VCC pin voltage clamp protects the device
against low energy spikes (see ISO7637 transient
compatibility table).
Table 2. Order Codes
Package
PowerSSO-24
Tube
Tape and Reel
VND600PEP-E
VND600PEPTR-E
Note: (**) See application schematic at page 9
Rev. 5
May 2005
1/19
This is preliminary information on a new product foreseen to be developed. Details are subject to change without notice.
VND600PEP-E
Figure 2. Block Diagram
VCC
OVERVOLTAGE
VCC CLAMP
UNDERVOLTAGE
PwCLAMP 1
DRIVER 1
OUTPUT 1
ILIM1
INPUT 1
Vdslim1
LOGIC
IOUT1
INPUT 2
Ot1
CURRENT
SENSE 1
K
PwCLAMP 2
DRIVER 2
GND
Ot1
OVERTEMP. 2
OUTPUT 2
ILIM2
OVERTEMP. 1
Vdslim2
IOUT2
Ot2
Ot2
CURRENT
SENSE 2
K
Table 3. Absolute Maximum Ratings
Symbol
Parameter
Value
Unit
41
V
VCC
DC supply voltage
-VCC
Reverse supply voltage
-0.3
V
- IGND
DC reverse ground pin current
-200
mA
Internally limited
A
-21
A
+/- 10
mA
IOUT
Output current
IR
Reverse output current
IIN
Input current
VCSENSE
-3
V
+15
V
4000
V
2000
V
5000
V
5000
V
(L=0.13mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC;
IL=40A)
146
mJ
Power dissipation at Tc=25°C
96
W
Internally limited
°C
Current sense maximum voltage
Electrostatic Discharge (Human
R=1.5KΩ; C=100pF)
VESD
Body
Model:
- INPUT
- CURRENT SENSE
- OUTPUT
- VCC
Maximum Switching Energy
EMAX
Ptot
Tj
Junction operating temperature
Tc
Case operating temperature
-40 to 150
°C
Storage temperature
-55 to 150
°C
TSTG
2/19
VND600PEP-E
Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins
VCC
GND
NC
INPUT2
NC
INPUT1
NC
C.SENSE1
NC
C.SENSE2
NC
VCC
OUTPUT2
OUTPUT2
OUTPUT2
OUTPUT2
OUTPUT2
OUTPUT2
OUTPUT1
OUTPUT1
OUTPUT1
OUTPUT1
OUTPUT1
OUTPUT1
TAB = VCC
Connection / Pin Current Sense
Floating
Through 1KΩ
To Ground
resistor
N.C.
X
Output
X
X
Input
X
Through 10KΩ
resistor
Figure 4. Current and Voltage Conventions
IS
VCC
VF1 (*)
IIN1
INPUT1
OUTPUT1
CURRENT SENSE 1
IOUT2
IIN2
INPUT2
VOUT1
ISENSE1
VIN1
VIN2
VCC
IOUT1
OUTPUT2
CURRENT SENSE 2
GROUND
VSENSE1
VOUT2
ISENSE2
VSENSE2
IGND
(*) VFn = VCCn - VOUTn during reverse battery condition
Table 4. Thermal Data
Symbol
Rthj-case (1)
Rthj-case (2)
Rthj-amb
Parameter
Thermal resistance junction-case
Thermal resistance junction-case
Thermal resistance junction-ambient
(MAX)
(MAX)
(MAX)
Value
1.8
1.3
54 (*)
39 (**)
Unit
°C/W
°C/W
°C/W
Note: (*) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick).
Note: (**) When mounted on a standard single-sided FR-4 board with 8cm 2 of Cu (at least 35µm thick).
Note: (1) one channel ON - (2) two channels ON
3/19
VND600PEP-E
ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C unless otherwise specified)
(Per each channel)
Table 5. Power
Symbol
Parameter
VCC (**)
Min.
Typ.
Max.
Unit
Operating supply voltage
5.5
13
36
V
VUSD (**)
Undervoltage shutdown
3
4
5.5
V
VOV (**)
Overvoltage shutdown
36
RON
Vclamp
IS (**)
On state resistance
Test Conditions
V
IOUT=5A; Tj=25°C
30
mΩ
IOUT=5A; Tj=150°C
60
mΩ
IOUT=3A; VCC=6V
100
mΩ
48
55
V
12
40
µA
12
25
µA
6
mA
50
µA
5
µA
3
µA
Max.
Unit
Clamp Voltage
ICC=20mA (see note 1)
Supply current
Off State; VCC=13V; VIN=VOUT=0V
Off State; VCC=13V; VIN=VOUT=0V;
Tj=25°C
41
On state; VIN=5V; VCC=13V; IOUT=0A;
RSENSE=3.9kΩ
IL(off1)
Off State Output Current
IL(off3)
Off State Output Current
IL(off4)
Off State Output Current
VIN=VOUT=VSENSE=0V
0
VIN=VOUT=VSENSE=0V; VCC=13V;
Tj =125°C
VIN=VOUT=VSENSE=0V; VCC=13V;
Tj =25°C
Note: 1. Vclamp and VOV are correlated. Typical difference is 5V.
Note: (**) Per device.
Table 6. Switching (VCC =13V)
Symbol
Parameter
Test Conditions
Min.
Typ.
td(on)
Turn-on delay time
RL=2.6Ω (see Figure 5)
30
µs
td(off)
Turn-on delay time
RL=2.6Ω (see Figure 5)
30
µs
(dVOUT/
dt)on
Turn-on voltage slope
RL=2.6Ω (see Figure 5)
See
relative
diagram
V/µs
(dVOUT/
dt)off
Turn-off voltage slope
RL=2.6Ω (see Figure 5)
See
relative
diagram
V/µs
Table 7. VCC - Output Diode
Symbol
VF
4/19
Parameter
Forward on Voltage
Test Conditions
-IOUT=2.6A; Tj=150°C
Min
Typ
Max
0.6
Unit
V
VND600PEP-E
ELECTRICAL CHARACTERISTICS (continued)
Table 8. Logic Input (Channels 1,2)
Symbol
Parameter
VIL
Input low level voltage
IIL
Low level input current
VIH
Input high level voltage
IIH
High level input current
VI(hyst)
Input hysteresis voltage
VICL
Input clamp voltage
Test Conditions
VIN=1.25V
Min.
20
Typ.
Max.
Unit
1.25
V
µA
65
3.25
V
VIN=3.25V
10
0.5
IIN=1mA
6
IIN=-1mA
µA
V
6.8
8
-0.7
V
V
Table 9. Current Sense (9V≤VCC≤16V) (see Figure 8)
Symbol
K1
dK1/K1
K2
dK2/K2
K3
dK3/K3
VSENSE1,2
Parameter
Test Conditions
Min
Typ
Max
4400
6000
IOUT/ISENSE
IOUT1 or IOUT2=0.5A; VSENSE=0.5V;
other channels open; Tj= 40°C...150°C
3300
Current Sense Ratio Drift
IOUT1 or IOUT2=0.5A; VSENSE=0.5V;
other channels open; Tj= 40°C...150°C
-10
IOUT/ISENSE
Current Sense Ratio Drift
IOUT/ISENSE
+10
IOUT1 or IOUT2=5A; VSENSE=4V; other
channels open; Tj=-40°C
3800
4400
5400
Tj=25°C...150°C
3950
4400
5200
IOUT1 or IOUT2=5A; VSENSE=4V; other
channels open; Tj=-40°C...150°C
-6
+6
IOUT1 or IOUT2=15A; VSENSE=4V; other
channels open; Tj=-40°C
3800
4400
4900
Tj=25°C...150°C
3950
4400
4700
Unit
%
%
Current Sense Ratio Drift
IOUT1 or IOUT2=15A; VSENSE=4V; other
channels open; Tj=-40°C...150°C
-6
Max analog sense
VCC=5.5V; IOUT1,2=2.5A;
RSENSE=10kΩ
2
V
4
V
output voltage
VCC>8V, IOUT1,2=5A; RSENSE=10kΩ
VSENSEH
Analog sense output
voltage in
overtemperature
condition
RVSENSEH
Analog sense output
impedance in
overtemperature
condition
VCC=13V; Tj>TTSD; All Channels Open
tDSENSE
Current sense delay
response
to 90% ISENSE (see note 2)
VCC=13V; RSENSE=3.9kΩ
+6
%
5.5
V
400
Ω
500
µs
Note: 2. Current sense signal delay after positive input slope
5/19
VND600PEP-E
ELECTRICAL CHARACTERISTICS (continued)
Table 10. Protections (See note 3)
Symbol
Ilim
TTSD
TR
Parameter
Test Conditions
DC short circuit current
Typ.
25
40
5.5V<VCC<36V
Thermal shut-down
150
temperature
Thermal reset
175
Max.
Unit
70
A
70
A
200
°C
135
temperature
THYST
Thermal hysteresis
Vdemag
Turn-off output voltage
clamp
VON
VCC=13V
Min.
Output voltage drop
limitation
IOUT=2A; VIN=0V; L=6mH
IOUT=0.5A; Tj= -40°C...+150°C
°C
7
15
VCC-41
VCC-48
°C
VCC-55
50
V
mV
Note: 3. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be
used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration
and number of activation cycles.
Figure 5. Switching Characteristics (Resistive load RL=2.6Ω)
VOUT
90%
80%
dVOUT/dt(off)
dVOUT/dt(on)
tr
10%
tf
t
ISENSE
90%
INPUT
t
tDSENSE
td(on)
td(off)
t
6/19
VND600PEP-E
Table 11. Truth Table (per channel)
CONDITIONS
INPUT
Normal operation
Overtemperature
Undervoltage
Overvoltage
Short circuit to GND
Short circuit to VCC
Negative output voltage
clamp
OUTPUT
SENSE
0
Nominal
L
L
H
H
L
L
0
H
L
VSENSEH
L
L
0
H
L
0
L
L
0
H
L
0
L
L
0
H
L
(Tj<TTSD) 0
H
L
(Tj>TTSD) VSENSEH
L
H
0
H
H
< Nominal
L
L
0
Table 12. Electrical Transient Requirements
ISO T/R 7637/1
Test Pulse
1
2
3a
3b
4
5
ISO T/R 7637/1
Test Pulse
1
2
3a
3b
4
5
CLASS
C
E
I
II
TEST LEVELS
III
IV
-25 V
+25 V
-25 V
+25 V
-4 V
+26.5 V
-50 V
+50 V
-50 V
+50 V
-5 V
+46.5 V
-75 V
+75 V
-100 V
+75 V
-6 V
+66.5 V
-100 V
+100 V
-150 V
+100 V
-7 V
+86.5 V
I
C
C
C
C
C
C
TEST LEVELS RESULTS
II
III
C
C
C
C
C
C
C
C
C
C
E
E
Delays and
Impedance
2 ms 10 Ω
0.2 ms 10 Ω
0.1 µs 50 Ω
0.1 µs 50 Ω
100 ms, 0.01 Ω
400 ms, 2 Ω
IV
C
C
C
C
C
E
CONTENTS
All functions of the device are performed as designed after exposure to disturbance.
One or more functions of the device is not performed as designed after exposure to disturbance
and cannot be returned to proper operation without replacing the device.
7/19
VND600PEP-E
Figure 6. Waveforms
NORMAL OPERATION
INPUTn
LOAD CURRENTn
SENSEn
UNDERVOLTAGE
VCC
VUSDhyst
VUSD
INPUTn
LOAD CURRENTn
SENSEn
OVERVOLTAGE
VOV
VCC
VCC < VOV
VCC > VOV
INPUTn
LOAD CURRENTn
SENSEn
SHORT TO GROUND
INPUTn
LOAD CURRENTn
LOAD VOLTAGEn
SENSEn
SHORT TO VCC
INPUTn
LOAD VOLTAGEn
LOAD CURRENTn
SENSEn
<Nominal
<Nominal
OVERTEMPERATURE
Tj
TTSD
TR
INPUTn
LOAD CURRENTn
SENSEn
8/19
ISENSE=
VSENSEH
RSENSE
VND600PEP-E
Figure 7. Application Schematic
+5V
Rprot
INPUT1
VCC
Dld
µC
Rprot
CURRENT SENSE1
Rprot
INPUT2
Rprot
CURRENT SENSE2
OUTPUT1
GND
RSENSE1
GND PROTECTION
REVERSE BATTERY
RSENSE2
NETWORK
VGND
AGAINST
Solution 1: Resistor in the ground line (RGND only). This
can be used with any type of load.
The following is an indication on how to dimension the
RGND resistor.
1) RGND ≤ 600mV / (IS(on)max).
2) RGND ≥ (−VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can
be found in the absolute maximum rating section of the
device’s datasheet.
Power Dissipation in RGND (when VCC<0: during reverse
battery situations) is:
PD= (-VCC)2/RGND
This resistor can be shared amongst several different
HSD. Please note that the value of this resistor should be
calculated with formula (1) where IS(on)max becomes the
sum of the maximum on-state currents of the different
devices.
Please note that if the microprocessor ground is not
common with the device ground then the RGND will
produce a shift (IS(on)max * RGND) in the input thresholds
and the status output values. This shift will vary
depending on how many devices are ON in the case of
several high side drivers sharing the same RGND.
If the calculated power dissipation leads to a large
resistor or several devices have to share the same
resistor then the ST suggests to utilize Solution 2 (see
below).
Solution 2: A diode (DGND) in the ground line.
A resistor (RGND=1kΩ) should be inserted in parallel to
DGND if the device will be driving an inductive load.
RGND
OUTPUT2
DGND
This small signal diode can be safely shared amongst
several different HSD. Also in this case, the presence of
the ground network will produce a shift (j600mV) in the
input threshold and the status output values if the
microprocessor ground is not common with the device
ground. This shift will not vary if more than one HSD
shares the same diode/resistor network.
Series resistor in INPUT line is also required to prevent
that, during battery voltage transient, the current exceeds
the Absolute Maximum Rating.
Safest configuration for unused INPUT pin is to leave it
unconnected, while unused SENSE pin has to be
connected to Ground pin.
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the
load dump peak voltage exceeds VCC max DC rating.
The same applies if the device will be subject to
transients on the VCC line that are greater than the ones
shown in the ISO T/R 7637/1 table.
µC I/Os PROTECTION:
If a ground protection network is used and negative
transients are present on the VCC line, the control pins will
be pulled negative. ST suggests to insert a resistor (Rprot)
in line to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the
leakage current of µC and the current required by the
HSD I/Os (Input levels compatibility) with the latch-up
limit of µC I/Os.
-VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax
Calculation example:
For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V
5kΩ ≤ Rprot ≤ 65kΩ.
Recommended Rprot value is 10kΩ.
9/19
VND600PEP-E
Figure 8. IOUT/ISENSE versus IOUT
IOUT/ISENSE
6500
6000
5500
max.Tj=-40°C
max.Tj=25...150°C
5000
4500
typical value
min.Tj=25...150°C
4000
min.Tj=-40°C
3500
3000
0
2
4
6
8
IOUT (A)
10/19
10
12
14
16
VND600PEP-E
Figure 9. Off State Output Current
Figure 10. High Level Input Current
IL(off1) (µA)
lih (µA)
2
8
1.75
7
Vcc=36V
Vin=3.25V
1.5
6
1.25
5
1
4
0.75
3
0.5
2
0.25
1
0
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
50
75
100
125
150
175
100
100
125
125
150
150
175
175
150
175
Tc (°C)
Figure 11. Input Clamp Voltage
Figure 13. Input High Level
Vih
Vih(V)
(V)
Vicl (V)
83.6
8
73.4
7.75
lin=1mA
7.5
63.2
7.25
5 3
7
42.8
6.75
32.6
6.5
22.4
6.25
12.2
6
0
-50
-25
0
25
50
75
100
125
150
175
2
-50-50 -25-25
0 0
2525
5050
75
75
Tc(°C)
(°C)
Tc
Tc (°C)
Figure 12. Input Low Level
Figure 14. Input Hysteresis Voltage
Vil (V)
Vhyst (V)
2.75
1.5
2.5
1.4
1.3
2.25
1.2
2
1.1
1.75
1
1.5
0.9
1.25
0.8
1
0.7
0.75
0.6
0.5
0.5
-50
-25
0
25
50
75
Tc (°C)
100
125
150
175
-50
-25
0
25
50
75
100
125
Tc (°C)
11/19
VND600PEP-E
Figure 15. Overvoltage Shutdown
Figure 18. ILIM Vs Tcase
Vov (V)
Ilim (A)
50
80
47.5
70
45
60
42.5
50
40
40
37.5
30
35
20
32.5
10
30
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
50
Tc (°C)
75
100
125
150
175
150
175
Tc (°C)
Figure 16. Turn-on Voltage Slope
Figure 19. Turn-off Voltage Slope
dVout/dt (on) (V/ms)
dVout/dt (off) (V/ms)
600
550
500
550
Rl=2.6 Ohm
Rl=2.6 Ohm
450
500
400
450
350
400
300
350
250
200
300
150
250
100
200
50
150
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
50
Tc (°C)
75
100
125
Tc (°C)
Figure 17. On State Resistance Vs Tcase
Figure 20. On State Resistance Vs VCC
Ron (mOhm)
Ron (mOhm)
80
100
90
70
Iout=5A
Vcc=13V
60
80
70
50
60
Tc= 150°C
40
50
40
30
30
20
Tc= 25°C
20
10
0
0
-50
-25
0
25
50
75
Tc (°C)
12/19
Tc= -40°C
10
100
125
150
175
0
5
10
15
20
Vcc (V)
25
30
35
40
VND600PEP-E
PowerSSO-24 Thermal Data
Figure 21. PowerSSO-24 PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 78mm x 78mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: from minimum pad lay-out to 8cm2).
Figure 22. Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb(°C/W)
55
50
45
40
35
0
2
4
6
8
10
PCB Cu heatsink area (cm^2)
13/19
VND600PEP-E
Figure 23. Maximum turn off current versus load inductance
ILMAX (A)
100
A
B
C
10
1
0.01
0.1
1
10
L(mH)
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at TJstart=100ºC
C= Repetitive Pulse at TJstart=125ºC
Conditions:
VCC=13.5V
Values are generated with RL=0Ω
In case of repetitive pulses, Tjstart (at beginning of
each demagnetization) of every pulse must not
exceed the temperature specified above for
curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
14/19
VND600PEP-E
Figure 24. PowerSSO-24 Thermal Impedance Junction Ambient Single Pulse
ZTH (°C/W)
100
Footprint
8 cm2
10
1
0.1
0.01
0.0001
0.001
0.01
0.1
1
10
100
1000
Time (s)
Figure 25. Thermal Fitting Model of a Double
Channel HSD in PowerSSO-24
Pulse Calculation Formula
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Table 13. Thermal Parameter
Area/island (cm2)
R1=R7 (°C/W)
R2=R8 (°C/W)
R3 ( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1=C7 (W.s/°C)
C2=C8 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
Footprint
0.05
0.3
0.9
5
13.5
37
0.001
0.005
0.025
0.08
0.7
3
8
22
5
15/19
VND600PEP-E
PACKAGE MECHANICAL
Table 14. PowerSSO-24™ Mechanical Data
Symbol
millimeters
Min
Max
A
2.15
2.47
A2
2.15
2.40
a1
0
0.075
b
0.33
0.51
c
0.23
0.32
D
10.10
10.50
E
7.4
7.6
e
0.8
e3
8.8
G
0.1
G1
0.06
H
10.1
h
L
10.5
0.4
0.55
N
0.85
10deg
X
4.1
4.7
Y
6.5
7.1
Figure 26. PowerSSO-24™ Package Dimensions
16/19
Typ
VND600PEP-E
Figure 27. PowerSSO-24 Tube Shipment (No Suffix)
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
C
B
49
1225
532
3.5
13.8
0.6
All dimensions are in mm.
A
Figure 28. Tape And Reel Shipment (Suffix “TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
1000
1000
330
1.5
13
20.2
24.4
100
30.4
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.05)
D1 (min)
F (± 0.1)
K (max)
P1 (± 0.1)
24
4
12
1.55
1.5
11.5
2.85
2
End
All dimensions are in mm.
Start
Top
cover
tape
No components
Components
No components
500mm min
Empty components pockets
saled with cover tape.
500mm min
User direction of feed
17/19
VND600PEP-E
REVISION HISTORY
Table 15. Revision History
18/19
Date
Revision
Description of Changes
Nov. 2004
1
- First Issue.
Dec. 2004
2
- IL(off2) removal.
Mar. 2005
3
- Maximum Switching Energy insertion;
- Thermal data insertion;
- Maximum turn off current versus load inductance;
- Thermal Impedance Junction Ambient Single Pulse curve insertion.
Apr. 2005
4
- Configuration diagram modification
- Shipment data insertion
May 2005
5
- Minor changes
VND600PEP-E
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
19/19