VND600PEP-E DOUBLE CHANNEL HIGH SIDE DRIVER Table 1. General Features Figure 1. Package TYPE RDS(on) Ilim VCC VND600PEP-E 30mΩ (*) 25A 36V (*) Per each channel ■ DC SHORT CIRCUIT CURRENT: 25A CMOS COMPATIBLE INPUTS PROPORTIONAL LOAD CURRENT SENSE ■ UNDERVOLTAGE AND OVERVOLTAGE SHUT-DOWN ■ OVERVOLTAGE CLAMP ■ THERMAL SHUT-DOWN ■ CURRENT LIMITATION ■ VERY LOW STAND-BY POWER DISSIPATION ■ PROTECTION AGAINST: LOSS OF GROUND AND LOSS OF VCC ■ REVERSE BATTERY PROTECTION (**) ■ IN COMPLIANCE WITH THE 2002/95/EC EUROPEAN DIRECTIVE ■ ■ PowerSSO-24 This device has two channels in high side configuration; each channel has an analog sense output on which the sensing current is proportional (according to a known ratio) to the corresponding load current. Built-in thermal shut-down and outputs current limitation protect the chip from over temperature and short circuit. Device turns off in case of ground pin disconnection. DESCRIPTION The VND600PEP-E is a monolithic device made using STMicroelectronics VIPower M0-3 technology. It is intended for driving resistive or inductive loads with one side connected to ground. Active VCC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). Table 2. Order Codes Package PowerSSO-24 Tube Tape and Reel VND600PEP-E VND600PEPTR-E Note: (**) See application schematic at page 9 Rev. 5 May 2005 1/19 This is preliminary information on a new product foreseen to be developed. Details are subject to change without notice. VND600PEP-E Figure 2. Block Diagram VCC OVERVOLTAGE VCC CLAMP UNDERVOLTAGE PwCLAMP 1 DRIVER 1 OUTPUT 1 ILIM1 INPUT 1 Vdslim1 LOGIC IOUT1 INPUT 2 Ot1 CURRENT SENSE 1 K PwCLAMP 2 DRIVER 2 GND Ot1 OVERTEMP. 2 OUTPUT 2 ILIM2 OVERTEMP. 1 Vdslim2 IOUT2 Ot2 Ot2 CURRENT SENSE 2 K Table 3. Absolute Maximum Ratings Symbol Parameter Value Unit 41 V VCC DC supply voltage -VCC Reverse supply voltage -0.3 V - IGND DC reverse ground pin current -200 mA Internally limited A -21 A +/- 10 mA IOUT Output current IR Reverse output current IIN Input current VCSENSE -3 V +15 V 4000 V 2000 V 5000 V 5000 V (L=0.13mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=40A) 146 mJ Power dissipation at Tc=25°C 96 W Internally limited °C Current sense maximum voltage Electrostatic Discharge (Human R=1.5KΩ; C=100pF) VESD Body Model: - INPUT - CURRENT SENSE - OUTPUT - VCC Maximum Switching Energy EMAX Ptot Tj Junction operating temperature Tc Case operating temperature -40 to 150 °C Storage temperature -55 to 150 °C TSTG 2/19 VND600PEP-E Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins VCC GND NC INPUT2 NC INPUT1 NC C.SENSE1 NC C.SENSE2 NC VCC OUTPUT2 OUTPUT2 OUTPUT2 OUTPUT2 OUTPUT2 OUTPUT2 OUTPUT1 OUTPUT1 OUTPUT1 OUTPUT1 OUTPUT1 OUTPUT1 TAB = VCC Connection / Pin Current Sense Floating Through 1KΩ To Ground resistor N.C. X Output X X Input X Through 10KΩ resistor Figure 4. Current and Voltage Conventions IS VCC VF1 (*) IIN1 INPUT1 OUTPUT1 CURRENT SENSE 1 IOUT2 IIN2 INPUT2 VOUT1 ISENSE1 VIN1 VIN2 VCC IOUT1 OUTPUT2 CURRENT SENSE 2 GROUND VSENSE1 VOUT2 ISENSE2 VSENSE2 IGND (*) VFn = VCCn - VOUTn during reverse battery condition Table 4. Thermal Data Symbol Rthj-case (1) Rthj-case (2) Rthj-amb Parameter Thermal resistance junction-case Thermal resistance junction-case Thermal resistance junction-ambient (MAX) (MAX) (MAX) Value 1.8 1.3 54 (*) 39 (**) Unit °C/W °C/W °C/W Note: (*) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick). Note: (**) When mounted on a standard single-sided FR-4 board with 8cm 2 of Cu (at least 35µm thick). Note: (1) one channel ON - (2) two channels ON 3/19 VND600PEP-E ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C unless otherwise specified) (Per each channel) Table 5. Power Symbol Parameter VCC (**) Min. Typ. Max. Unit Operating supply voltage 5.5 13 36 V VUSD (**) Undervoltage shutdown 3 4 5.5 V VOV (**) Overvoltage shutdown 36 RON Vclamp IS (**) On state resistance Test Conditions V IOUT=5A; Tj=25°C 30 mΩ IOUT=5A; Tj=150°C 60 mΩ IOUT=3A; VCC=6V 100 mΩ 48 55 V 12 40 µA 12 25 µA 6 mA 50 µA 5 µA 3 µA Max. Unit Clamp Voltage ICC=20mA (see note 1) Supply current Off State; VCC=13V; VIN=VOUT=0V Off State; VCC=13V; VIN=VOUT=0V; Tj=25°C 41 On state; VIN=5V; VCC=13V; IOUT=0A; RSENSE=3.9kΩ IL(off1) Off State Output Current IL(off3) Off State Output Current IL(off4) Off State Output Current VIN=VOUT=VSENSE=0V 0 VIN=VOUT=VSENSE=0V; VCC=13V; Tj =125°C VIN=VOUT=VSENSE=0V; VCC=13V; Tj =25°C Note: 1. Vclamp and VOV are correlated. Typical difference is 5V. Note: (**) Per device. Table 6. Switching (VCC =13V) Symbol Parameter Test Conditions Min. Typ. td(on) Turn-on delay time RL=2.6Ω (see Figure 5) 30 µs td(off) Turn-on delay time RL=2.6Ω (see Figure 5) 30 µs (dVOUT/ dt)on Turn-on voltage slope RL=2.6Ω (see Figure 5) See relative diagram V/µs (dVOUT/ dt)off Turn-off voltage slope RL=2.6Ω (see Figure 5) See relative diagram V/µs Table 7. VCC - Output Diode Symbol VF 4/19 Parameter Forward on Voltage Test Conditions -IOUT=2.6A; Tj=150°C Min Typ Max 0.6 Unit V VND600PEP-E ELECTRICAL CHARACTERISTICS (continued) Table 8. Logic Input (Channels 1,2) Symbol Parameter VIL Input low level voltage IIL Low level input current VIH Input high level voltage IIH High level input current VI(hyst) Input hysteresis voltage VICL Input clamp voltage Test Conditions VIN=1.25V Min. 20 Typ. Max. Unit 1.25 V µA 65 3.25 V VIN=3.25V 10 0.5 IIN=1mA 6 IIN=-1mA µA V 6.8 8 -0.7 V V Table 9. Current Sense (9V≤VCC≤16V) (see Figure 8) Symbol K1 dK1/K1 K2 dK2/K2 K3 dK3/K3 VSENSE1,2 Parameter Test Conditions Min Typ Max 4400 6000 IOUT/ISENSE IOUT1 or IOUT2=0.5A; VSENSE=0.5V; other channels open; Tj= 40°C...150°C 3300 Current Sense Ratio Drift IOUT1 or IOUT2=0.5A; VSENSE=0.5V; other channels open; Tj= 40°C...150°C -10 IOUT/ISENSE Current Sense Ratio Drift IOUT/ISENSE +10 IOUT1 or IOUT2=5A; VSENSE=4V; other channels open; Tj=-40°C 3800 4400 5400 Tj=25°C...150°C 3950 4400 5200 IOUT1 or IOUT2=5A; VSENSE=4V; other channels open; Tj=-40°C...150°C -6 +6 IOUT1 or IOUT2=15A; VSENSE=4V; other channels open; Tj=-40°C 3800 4400 4900 Tj=25°C...150°C 3950 4400 4700 Unit % % Current Sense Ratio Drift IOUT1 or IOUT2=15A; VSENSE=4V; other channels open; Tj=-40°C...150°C -6 Max analog sense VCC=5.5V; IOUT1,2=2.5A; RSENSE=10kΩ 2 V 4 V output voltage VCC>8V, IOUT1,2=5A; RSENSE=10kΩ VSENSEH Analog sense output voltage in overtemperature condition RVSENSEH Analog sense output impedance in overtemperature condition VCC=13V; Tj>TTSD; All Channels Open tDSENSE Current sense delay response to 90% ISENSE (see note 2) VCC=13V; RSENSE=3.9kΩ +6 % 5.5 V 400 Ω 500 µs Note: 2. Current sense signal delay after positive input slope 5/19 VND600PEP-E ELECTRICAL CHARACTERISTICS (continued) Table 10. Protections (See note 3) Symbol Ilim TTSD TR Parameter Test Conditions DC short circuit current Typ. 25 40 5.5V<VCC<36V Thermal shut-down 150 temperature Thermal reset 175 Max. Unit 70 A 70 A 200 °C 135 temperature THYST Thermal hysteresis Vdemag Turn-off output voltage clamp VON VCC=13V Min. Output voltage drop limitation IOUT=2A; VIN=0V; L=6mH IOUT=0.5A; Tj= -40°C...+150°C °C 7 15 VCC-41 VCC-48 °C VCC-55 50 V mV Note: 3. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles. Figure 5. Switching Characteristics (Resistive load RL=2.6Ω) VOUT 90% 80% dVOUT/dt(off) dVOUT/dt(on) tr 10% tf t ISENSE 90% INPUT t tDSENSE td(on) td(off) t 6/19 VND600PEP-E Table 11. Truth Table (per channel) CONDITIONS INPUT Normal operation Overtemperature Undervoltage Overvoltage Short circuit to GND Short circuit to VCC Negative output voltage clamp OUTPUT SENSE 0 Nominal L L H H L L 0 H L VSENSEH L L 0 H L 0 L L 0 H L 0 L L 0 H L (Tj<TTSD) 0 H L (Tj>TTSD) VSENSEH L H 0 H H < Nominal L L 0 Table 12. Electrical Transient Requirements ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E I II TEST LEVELS III IV -25 V +25 V -25 V +25 V -4 V +26.5 V -50 V +50 V -50 V +50 V -5 V +46.5 V -75 V +75 V -100 V +75 V -6 V +66.5 V -100 V +100 V -150 V +100 V -7 V +86.5 V I C C C C C C TEST LEVELS RESULTS II III C C C C C C C C C C E E Delays and Impedance 2 ms 10 Ω 0.2 ms 10 Ω 0.1 µs 50 Ω 0.1 µs 50 Ω 100 ms, 0.01 Ω 400 ms, 2 Ω IV C C C C C E CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. 7/19 VND600PEP-E Figure 6. Waveforms NORMAL OPERATION INPUTn LOAD CURRENTn SENSEn UNDERVOLTAGE VCC VUSDhyst VUSD INPUTn LOAD CURRENTn SENSEn OVERVOLTAGE VOV VCC VCC < VOV VCC > VOV INPUTn LOAD CURRENTn SENSEn SHORT TO GROUND INPUTn LOAD CURRENTn LOAD VOLTAGEn SENSEn SHORT TO VCC INPUTn LOAD VOLTAGEn LOAD CURRENTn SENSEn <Nominal <Nominal OVERTEMPERATURE Tj TTSD TR INPUTn LOAD CURRENTn SENSEn 8/19 ISENSE= VSENSEH RSENSE VND600PEP-E Figure 7. Application Schematic +5V Rprot INPUT1 VCC Dld µC Rprot CURRENT SENSE1 Rprot INPUT2 Rprot CURRENT SENSE2 OUTPUT1 GND RSENSE1 GND PROTECTION REVERSE BATTERY RSENSE2 NETWORK VGND AGAINST Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND ≤ 600mV / (IS(on)max). 2) RGND ≥ (−VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device’s datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1kΩ) should be inserted in parallel to DGND if the device will be driving an inductive load. RGND OUTPUT2 DGND This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT line is also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT pin is to leave it unconnected, while unused SENSE pin has to be connected to Ground pin. LOAD DUMP PROTECTION Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. µC I/Os PROTECTION: If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the µC I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os. -VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V 5kΩ ≤ Rprot ≤ 65kΩ. Recommended Rprot value is 10kΩ. 9/19 VND600PEP-E Figure 8. IOUT/ISENSE versus IOUT IOUT/ISENSE 6500 6000 5500 max.Tj=-40°C max.Tj=25...150°C 5000 4500 typical value min.Tj=25...150°C 4000 min.Tj=-40°C 3500 3000 0 2 4 6 8 IOUT (A) 10/19 10 12 14 16 VND600PEP-E Figure 9. Off State Output Current Figure 10. High Level Input Current IL(off1) (µA) lih (µA) 2 8 1.75 7 Vcc=36V Vin=3.25V 1.5 6 1.25 5 1 4 0.75 3 0.5 2 0.25 1 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 50 75 100 125 150 175 100 100 125 125 150 150 175 175 150 175 Tc (°C) Figure 11. Input Clamp Voltage Figure 13. Input High Level Vih Vih(V) (V) Vicl (V) 83.6 8 73.4 7.75 lin=1mA 7.5 63.2 7.25 5 3 7 42.8 6.75 32.6 6.5 22.4 6.25 12.2 6 0 -50 -25 0 25 50 75 100 125 150 175 2 -50-50 -25-25 0 0 2525 5050 75 75 Tc(°C) (°C) Tc Tc (°C) Figure 12. Input Low Level Figure 14. Input Hysteresis Voltage Vil (V) Vhyst (V) 2.75 1.5 2.5 1.4 1.3 2.25 1.2 2 1.1 1.75 1 1.5 0.9 1.25 0.8 1 0.7 0.75 0.6 0.5 0.5 -50 -25 0 25 50 75 Tc (°C) 100 125 150 175 -50 -25 0 25 50 75 100 125 Tc (°C) 11/19 VND600PEP-E Figure 15. Overvoltage Shutdown Figure 18. ILIM Vs Tcase Vov (V) Ilim (A) 50 80 47.5 70 45 60 42.5 50 40 40 37.5 30 35 20 32.5 10 30 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 Tc (°C) 75 100 125 150 175 150 175 Tc (°C) Figure 16. Turn-on Voltage Slope Figure 19. Turn-off Voltage Slope dVout/dt (on) (V/ms) dVout/dt (off) (V/ms) 600 550 500 550 Rl=2.6 Ohm Rl=2.6 Ohm 450 500 400 450 350 400 300 350 250 200 300 150 250 100 200 50 150 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 Tc (°C) 75 100 125 Tc (°C) Figure 17. On State Resistance Vs Tcase Figure 20. On State Resistance Vs VCC Ron (mOhm) Ron (mOhm) 80 100 90 70 Iout=5A Vcc=13V 60 80 70 50 60 Tc= 150°C 40 50 40 30 30 20 Tc= 25°C 20 10 0 0 -50 -25 0 25 50 75 Tc (°C) 12/19 Tc= -40°C 10 100 125 150 175 0 5 10 15 20 Vcc (V) 25 30 35 40 VND600PEP-E PowerSSO-24 Thermal Data Figure 21. PowerSSO-24 PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 78mm x 78mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: from minimum pad lay-out to 8cm2). Figure 22. Rthj-amb Vs PCB copper area in open box free air condition RTHj_amb(°C/W) 55 50 45 40 35 0 2 4 6 8 10 PCB Cu heatsink area (cm^2) 13/19 VND600PEP-E Figure 23. Maximum turn off current versus load inductance ILMAX (A) 100 A B C 10 1 0.01 0.1 1 10 L(mH) A = Single Pulse at TJstart=150ºC B= Repetitive pulse at TJstart=100ºC C= Repetitive Pulse at TJstart=125ºC Conditions: VCC=13.5V Values are generated with RL=0Ω In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization t 14/19 VND600PEP-E Figure 24. PowerSSO-24 Thermal Impedance Junction Ambient Single Pulse ZTH (°C/W) 100 Footprint 8 cm2 10 1 0.1 0.01 0.0001 0.001 0.01 0.1 1 10 100 1000 Time (s) Figure 25. Thermal Fitting Model of a Double Channel HSD in PowerSSO-24 Pulse Calculation Formula Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ ) where δ = tp ⁄ T Table 13. Thermal Parameter Area/island (cm2) R1=R7 (°C/W) R2=R8 (°C/W) R3 ( °C/W) R4 (°C/W) R5 (°C/W) R6 (°C/W) C1=C7 (W.s/°C) C2=C8 (W.s/°C) C3 (W.s/°C) C4 (W.s/°C) C5 (W.s/°C) C6 (W.s/°C) Footprint 0.05 0.3 0.9 5 13.5 37 0.001 0.005 0.025 0.08 0.7 3 8 22 5 15/19 VND600PEP-E PACKAGE MECHANICAL Table 14. PowerSSO-24™ Mechanical Data Symbol millimeters Min Max A 2.15 2.47 A2 2.15 2.40 a1 0 0.075 b 0.33 0.51 c 0.23 0.32 D 10.10 10.50 E 7.4 7.6 e 0.8 e3 8.8 G 0.1 G1 0.06 H 10.1 h L 10.5 0.4 0.55 N 0.85 10deg X 4.1 4.7 Y 6.5 7.1 Figure 26. PowerSSO-24™ Package Dimensions 16/19 Typ VND600PEP-E Figure 27. PowerSSO-24 Tube Shipment (No Suffix) Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) C B 49 1225 532 3.5 13.8 0.6 All dimensions are in mm. A Figure 28. Tape And Reel Shipment (Suffix “TR”) REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 1000 1000 330 1.5 13 20.2 24.4 100 30.4 TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.05) D1 (min) F (± 0.1) K (max) P1 (± 0.1) 24 4 12 1.55 1.5 11.5 2.85 2 End All dimensions are in mm. Start Top cover tape No components Components No components 500mm min Empty components pockets saled with cover tape. 500mm min User direction of feed 17/19 VND600PEP-E REVISION HISTORY Table 15. Revision History 18/19 Date Revision Description of Changes Nov. 2004 1 - First Issue. Dec. 2004 2 - IL(off2) removal. Mar. 2005 3 - Maximum Switching Energy insertion; - Thermal data insertion; - Maximum turn off current versus load inductance; - Thermal Impedance Junction Ambient Single Pulse curve insertion. Apr. 2005 4 - Configuration diagram modification - Shipment data insertion May 2005 5 - Minor changes VND600PEP-E Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 19/19