VNP10N06 ”OMNIFET”: FULLY AUTOPROTECTED POWER MOSFET TYPE VNP10N06 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ V clamp R DS(on) I l im 60 V 0.3 Ω 10 A LINEAR CURRENT LIMITATION THERMAL SHUT DOWN SHORT CIRCUIT PROTECTION INTEGRATED CLAMP LOW CURRENT DRAWN FROM INPUT PIN LOGIC LEVEL INPUT THRESHOLD ESD PROTECTION SCHMITT TRIGGER ON INPUT HIGH NOISE IMMUNITY STANDARD TO-220 PACKAGE 1 2 3 TO-220 DESCRIPTION The VNP10N06 is a monolithic device made using SGS-THOMSON Vertical Intelligent Power M0 Technology, intended for replacement of standard power MOSFETS in DC to 50 KHz applications. Built-in thermal shut-down, linear current limitation and overvoltage clamp protect the chip in harsh enviroments. BLOCK DIAGRAM June 1997 1/11 VNP10N06 ABSOLUTE MAXIMUM RATING Symbol Parameter Value Unit V V DS Drain-source Voltage (V in = 0) Internally Clamped V in Input Voltage Internally Clamped V I in Input Current ± 20 mA ID Drain Current Internally Limited A IR Reverse DC O utput Current V esd Electrostatic Discharge (C= 100 pF , R=1.5 KΩ) P to t Total Dissipation at T c = 25 C Tj Tc T st g o -15 A 4000 V 42 Operating Junction T emperature Case Operating T emperature W Internally Limited o C Internally Limited o C -55 to 150 o C Storage Temperature THERMAL DATA R t hj-ca se R t hj- amb Thermal Resistance Junction-case Thermal Resistance Junction-ambient Max Max o 3 62.5 o C/W C/W ELECTRICAL CHARACTERISTICS (Tcase = 25 oC unless otherwise specified) OFF Symb ol V CLAMP Parameter Test Cond ition s Min. Typ . Max. Un it 50 60 70 V 1.5 V Drain-source Clamp Voltage I D = 200 mA V in = 0 VI L Input Low Level Voltage I D = 100 µA VDS = 16 V VI H Input High Level Voltage R L = 27 Ω V DD = 16 V V DS = 0.5 V 3.2 V I NCL Input-Source Reverse Clamp Voltage I in = -1 mA I in = 1 mA -1 8 I DSS Zero Input Voltage Drain Current (V in = 0) V DS = 50 V V DS < 35 V I I SS Supply Current from Input Pin V DS = 0 V V -0.3 11 V V 250 100 µA µA 150 300 µA Typ . Max. Un it 0.15 0.3 Ω Typ . Max. Un it 350 500 pF V in = V IL V in = V IL Vin = 5 V ON (∗) Symb ol R DS( on) Parameter Static Drain-source On Resistance Test Cond ition s Vi n = 7 V ID = 1 A Min. o T J < 125 C DYNAMIC Symb ol C oss 2/11 Parameter Output Capacitance Test Cond ition s V DS = 13 V f = 1 MHz Vin = 0 Min. VNP10N06 ELECTRICAL CHARACTERISTICS (continued) SWITCHING (∗∗) Symb ol Parameter Test Cond ition s Typ . Max. Un it 1100 550 200 100 1600 900 400 200 ns ns ns ns V DD = 16 V Id = 1 A R gen = 1000 Ω V gen = 7 V (see figure 3) 1.2 1 1.6 1.2 1.8 1.5 2.3 1.8 µs µs µs µs Turn-on Current Slope V DD = 16 V Vi n = 7 V ID = 1 A R gen = 10 Ω 1.5 A/µs Total Input Charge V DD = 12 V ID = 1 A 13 nC t d(on) tr t d(of f) tf Turn-on Delay Time Rise Time Turn-off Delay Time Fall T ime V DD = 16 V Id = 1 A R gen = 10 Ω V gen = 7 V (see figure 3) t d(on) tr t d(of f) tf Turn-on Delay Time Rise Time Turn-off Delay Time Fall T ime (di/dt) on Qi Min. V in = 7 V SOURCE DRAIN DIODE Symb ol Parameter Test Cond ition s V SD (∗) Forward O n Voltage I SD = 1 A t r r (∗∗) Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current I SD = 1 A di/dt = 100 A/µs Tj = 25 oC V DD = 30 V (see test circuit, figure 5) Q r r (∗∗) I RRM (∗∗) Min. V in = V IL Typ . Max. Un it 0.8 1.6 V 125 ns 0.22 µC 3.5 A PROTECTION Symb ol I lim Parameter Test Cond ition s Drain Current Limit Vi n = 7 V V DS = 13 V t dl im (∗∗) Step Response Current Limit Vi n = 7 V V DS step from 0 to 13 V T jsh (∗∗) Overtemperature Shutdown T j rs (∗∗) Overtemperature Reset E as (∗∗) Single Pulse Avalanche Energy o starting T j = 25 C V DD = 24 V V i n = 7 V R g en = 1 KΩ L = 10 mH Min. Typ . Max. Un it 6 10 15 A 12 20 µs 150 o C 135 o C 250 mJ (∗) Pulsed: Pulse duration = 300 µs, duty cycle 1.5 % (∗∗) Parameters guaranteed by design/characterization 3/11 VNP10N06 PROTECTION FEATURES During Normal Operation, the INPUT pin is electrically connected to the gate of the internal power MOSFET through a low impedance path as soon as VIN > VIH. The device then behaves like a standard power MOSFET and can be used as a switch from DC to 50KHz. The only difference from the user’s standpoint is that a small DC current (typically 150 µA) flows into the INPUT pin in order to supply the internal circuitry. During turn-off of an unclamped inductive load the output voltage is clamped to a safe level by an integrated Zener clamp between DRAIN pin and the gate of the internal Power MOSFET. In this condition, the Power MOSFET gate is set 4/11 to a voltage high enough to sustain the inductive load current even if the INPUT pin is driven to 0V. The device integrates an active current limiter circuit which limits the drain current ID to Ilim whatever the INPUT pin Voltage. When the current limiter is active, the device operates in the linear region, so power dissipation may exceed the heatsinking capability. Both case and junction temperatures increase, and if this phase lasts long enough, junction temperature may reach the overtemperature threshold Tjsh. If Tj reaches Tjsh, the device shuts down whatever the INPUT pin voltage. The device will restart automatically when Tj has cooled down to Tjrs VNP10N06 Thermal Impedance Derating Curve Output Characteristics Static Drain-Source On Resistance vs Input Voltage Static Drain-Source On Resistance Static Drain-Source On Resistance 5/11 VNP10N06 Input Charge vs Input Voltage Capacitance Variations Normalized Input Threshold Voltage vs Temperature Normalized On Resistance vs Temperature Normalized On Resistance vs Temperature Turn-on Current Slope 6/11 VNP10N06 Turn-on Current Slope Turn-off Drain-Source Voltage Slope Turn-off Drain-Source Voltage Slope Switching Time Resistive Load Switching Time Resistive Load Switching Time Resistive Load 7/11 VNP10N06 Current Limit vs Junction Temperature Source Drain Diode Voltage vs Junction Temperature 8/11 Step Response Current Limit VNP10N06 Fig. 1: Unclamped Inductive Load Test Circuits Fig. 2: Unclamped Inductive Waveforms Fig. 3: Switching Times Test Circuits For Resistive Load Fig. 4: Input Charge Test Circuit Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times Fig. 6: Waveforms 9/11 VNP10N06 TO-220 MECHANICAL DATA mm DIM. MIN. inch TYP. MAX. MIN. TYP. MAX. A 4.40 4.60 0.173 0.181 C 1.23 1.32 0.048 0.051 D 2.40 2.72 0.094 D1 0.107 1.27 0.050 E 0.49 0.70 0.019 0.027 F 0.61 0.88 0.024 0.034 F1 1.14 1.70 0.044 0.067 F2 1.14 1.70 0.044 0.067 G 4.95 5.15 0.194 0.203 G1 2.4 2.7 0.094 0.106 H2 10.0 10.40 0.393 0.409 14.0 0.511 0.551 L2 16.4 L4 0.645 13.0 2.65 2.95 0.104 0.116 L6 15.25 15.75 0.600 0.620 L7 6.2 6.6 0.244 0.260 L9 3.5 3.93 0.137 0.154 DIA. 3.75 3.85 0.147 0.151 D1 C D A E L5 H2 G G1 F1 L2 F2 F Dia. L5 L9 L7 L6 10/11 L4 P011C VNP10N06 Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics. 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A . 11/11