VNQ600 ®P QUAD CHANNEL HIGH SIDE SOLID STATE RELAY TYPE VNQ600 RDS(on) (*) 35mΩ Ilim 25A VCC 36 V (*) Per each channel DC SHORT CIRCUIT CURRENT: 25A CMOS COMPATIBLE INPUTS ■ PROPORTIONAL LOAD CURRENT SENSE ■ UNDERVOLTAGE & OVERVOLTAGE nSHUT-DOWN ■ OVERVOLTAGE CLAMP ■ THERMAL SHUT-DOWN ■ CURRENT LIMITATION ■ VERY LOW STAND-BY POWER DISSIPATION ■ PROTECTION AGAINST: nLOSS OF GROUND & LOSS OF VCC ■ REVERSE BATTERY PROTECTION (**) ■ ■ DESCRIPTION The VNQ600 is a quad HSD formed by assembling two VND600 chips in the same SO-28 ABSOLUTE MAXIMUM RATING SO-28 (DOUBLE ISLAND) ORDER CODES PACKAGE SO-28 Parameter Supply voltage (continuous) Reverse supply voltage (continuous) Output current (continuous), for each channel Reverse output current (continuous), for each channel Input current VCSENSE Current sense maximum voltage VESD EMAX Ptot Tj Tstg T&R VNQ60013TR package. The VND600 is a monolithic device designed in| STMicroelectronics VIPower M0-3 Technology. The VNQ600 is intended for driving any type of multiple loads with one side connected to ground. This device has four independent channels and four analog sense outputs which deliver currents proportional to the outputs currents. Active current limitation combined with thermal shut-down and automatic restart protect the device against overload. Device automatically turns off in case of ground pin disconnection. Symbol VCC -VCC IOUT IR IIN IGND TUBE VNQ600 Value 41 -0.3 15 -15 +/- 10 -3 Unit V V A A mA V +15 -200 V mA - INPUT 4000 V - CURRENT SENSE 2000 V - OUTPUT 5000 V - VCC Maximum Switching Energy 5000 V 126 mJ 6.25 Internally Limited -55 to 150 W °C °C Ground current at Tpins < 25°C (continuous) Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF) (L=0.11mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=40A) Power dissipation (per island) at Tlead=25°C Junction operating temperature Storage temperature (**) See application schematic at page 9. June 2003 1/18 VNQ600 BLOCK DIAGRAM VCC 1,2 OVERVOLTAGE UNDERVOLTAGE DEMAG 1 DRIVER 1 OUTPUT 1 INPUT 1 ILIM1 LOGIC IOUT1 INPUT 2 K CURRENT SENSE 1 DEMAG 2 DRIVER 2 GND 1,2 OUTPUT 2 ILIM2 OVERTEMP. 1 IOUT2 OVERTEMP. 2 K OVERVOLTAGE CURRENT SENSE 2 VCC 3,4 UNDERVOLTAGE DEMAG 3 DRIVER 3 OUTPUT 3 INPUT 3 ILIM3 LOGIC IOUT3 INPUT 4 K CURRENT SENSE 3 DEMAG 4 DRIVER 4 GND 3,4 OUTPUT 4 ILIM4 OVERTEMP. 3 OVERTEMP. 4 2/18 IOUT4 K CURRENT SENSE 4 VNQ600 CURRENT AND VOLTAGE CONVENTIONS IS1,2 VCC1,2 VCC1,2 IS3,4 VCC3,4 IIN1 ISENSE1 VIN1 IIN2 VSENSE1 ISENSE2 VIN2 VSENSE2 VIN3 IIN3 ISENSE3 VSENSE3 IIN4 VIN4 ISENSE4 VCC3,4 INPUT1 IOUT1 CUR. SENSE1 OUTPUT1 IOUT2 INPUT2 CUR. SENSE2 INPUT3 VOUT2 IOUT3 OUTPUT3 CUR. SENSE3 INPUT4 VOUT1 OUTPUT2 IOUT4 VOUT3 OUTPUT4 VOUT4 CUR. SENSE4 VSENSE4 GND1,2 GND3,4 IGND1,2 IGND3,4 CONNECTION DIAGRAM (TOP VIEW) VCC1,2 1 28 GND 1,2 VCC1,2 OUTPUT 2 INPUT2 OUTPUT 2 INPUT1 OUTPUT 2 CURRENT SENSE 1 OUTPUT 1 CURRENT SENSE 2 OUTPUT 1 VCC1,2 OUTPUT 1 VCC3,4 OUTPUT 4 GND 3,4 OUTPUT 4 INPUT4 OUTPUT 4 INPUT3 OUTPUT 3 CURRENT SENSE 3 OUTPUT 3 CURRENT SENSE 4 OUTPUT 3 VCC3,4 14 15 VCC3,4 3/18 VNQ600 THERMAL DATA (Per island) Symbol Rthj-lead Rthj-amb Rthj-amb Parameter Thermal resistance Junction-lead Thermal resistance Junction-ambient (one chip ON) Thermal Resistance Junction-ambient (two chips ON) Value 20 60 (*) 46 (*) Unit °C/W °C/W °C/W (*) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick) connected to all VCC pins. Horizontal mounting and no artificial air flow. ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C; unless otherwise specified) (Per each channel) POWER Symbol VCC (**) VUSD (**) VOV (**) IOUT1,2,3,4=5A; Tj=25°C 35 Unit V V V mΩ On state resistance IOUT1,2,3,4=5A; Tj=150°C 70 mΩ Vclamp Clamp Voltage IOUT1,2,3,4=3A; VCC=6V ICC=20mA (see note 1) Off State; VCC=13V; VIN=VOUT=0V 48 12 120 55 40 mΩ V µA IS (**) Supply current Tj =25°C 12 25 µA Off state output current Off State Output Current Off State Output Current Off State Output Current On State; VCC=13V; VIN=5V; IOUT=0A; RSENSE=3.9KΩ VIN=VOUT=0V VIN=0V; VOUT=3.5V VIN=VOUT=0V; Vcc=13V; Tj =125°C VIN=VOUT=0V; Vcc=13V; Tj =25°C 6 50 0 5 3 mA µA µA µA µA Typ 40 40 See relative diagram See relative diagram Max Unit µs µs Typ 40 Max 70 Unit A 70 A 200 °C RON Parameter Operating supply voltage Undervoltage shut-down Overvoltage shut-down Test Conditions Min 5.5 3 36 41 Typ 13 4 Max 36 5.5 Off State; VCC=13V; VIN=VOUT=0V; IL(off1) IL(off2) IL(off3) IL(off4) 0 -75 SWITCHING (VCC=13V) Symbol td(on) td(off) Parameter Turn-on delay time Turn-off delay time Test Conditions RL=2.6Ω channels 1,2,3,4 (see fig. 1) RL=2.6Ω channels 1,2,3,4 (see fig. 1) (dVOUT/dt)on Turn-on voltage slope RL=2.6Ω channels 1,2,3,4 (see fig. 1) (dVOUT/dt)off Turn-off voltage slope RL=2.6Ω channels 1,2,3,4 (see fig. 1) Min V/µs V/µs PROTECTIONS Symbol Ilim TTSD TR Thyst Vdemag VON (**) Per island 4/18 1 Parameter DC Short circuit current Test Conditions VCC=13V Min 25 5.5V<VCC<36V Thermal shut-down temperature Thermal reset temperature Thermal hysteresis Turn-off output voltage clamp IOUT=2A; L=6mH Output voltage drop limitation IOUT=0.5A; Tj= -40°C...+150°C 150 175 135 7 15 VCC-41 VCC-48 VCC-55 50 °C °C V mV VNQ600 CURRENT SENSE (9V< VCC< 16V) (See Fig. 3) Symbol K1 dK1/K1 K2 dK2/K2 K3 dK3/K3 VSENSE1,2 Parameter IOUT/ISENSE Current Sense Ratio Drift IOUT/ISENSE Current Sense Ratio Drift IOUT/ISENSE Current Sense Ratio Drift Max analog sense output voltage Test Conditions IOUT1,2=0.35A; VSENSE=0.5V; Tj= -40°C...+150°C IOUT1 or IOUT2=0.5A; VSENSE=0.5V; other channels open; Tj= -40°C...150°C IOUT=2A; VSENSE=2.5V; Tj=-40°C Tj= 25°C...+150°C IOUT1 or IOUT2=5A; VSENSE=4V; other channels open; Tj=-40°C...150°C IOUT=4A; VSENSE=4V; Tj=-40°C Tj= 25°C...+150°C IOUT1 or IOUT2=15A; VSENSE=4V; other channels open; Tj=-40°C...150°C VCC=5.5V; IOUT1,2=2A; RSENSE=10KΩ VCC>8V; IOUT1,2=4A; RSENSE=10KΩ VSENSEH RVSENSEH tDSENSE Analog sense output voltage in overtemperature condition Analog Sense Output Impedance in Overtemperature Condition Current sense delay response Min Typ Max 3300 4350 6000 -10 +10 3900 4850 6000 4150 4850 5800 -6 +6 4150 4900 6000 4400 4900 5750 -6 +6 Unit % % % 2 V 4 V VCC=13V; RSENSE=3.9KΩ VCC=13V; Tj>TTSD; All channels open 5 V 400 Ω to 90% ISENSE (see note 2) 500 µs Max 1.25 Unit V V V µA µA V LOGIC INPUT Symbol VIL VIH VI(hyst) IIL IIN VICL Parameter Low level input voltage High level input voltage Input hysteresis voltage Input current Input current Input clamp voltage Test Conditions VIN=1.5V VIN=3.5V IIN=1mA IIN= -1mA Min Typ 3.25 0.5 1 6 6.8 -0.7 10 8 V Note 1: Vclamp and VOV are correlated. Typical difference is 5V. Note 2: current sense signal delay after positive input slope. Note: Sense pin doesn’t have to be left floating. 5/18 2 VNQ600 TRUTH TABLE (per channel) CONDITIONS Normal operation Overtemperature Undervoltage Overvoltage Short circuit to GND Short circuit to VCC Negative output voltage clamp INPUT OUTPUT SENSE L L H L H L 0 Nominal H L L L VSENSEH 0 H L L L 0 0 H L L L 0 0 H L (Tj<TTSD) 0 H L L H (Tj>TTSD) VSENSEH 0 H H < Nominal L L 0 0 6/18 VNQ600 ELECTRICAL TRANSIENT REQUIREMENTS ISO T/R 7637/1 Test Levels Test Levels Test Levels Test Levels Test Levels I II III IV Delays and Impedance -25V +25V -25V +25V -4V +26.5V -50V +50V -50V +50V -5V +46.5V -75V +75V -100V +75V -6V +66.5V -100V +100V -150V +100V -7V +86.5V 2ms, 10Ω 0.2ms, 10Ω 0.1µs, 50Ω 0.1µs, 50Ω 100ms, 0.01Ω 400ms, 2Ω Test Pulse 1 2 3a 3b 4 5 ISO T/R 7637/1 Test Levels Result Test Levels Result Test Levels Result Test Levels Result I II III IV C C C C C C C C C C C E C C C C C E C C C C C E Test Pulse 1 2 3a 3b 4 5 Class C E Contents All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure and cannot be returned to proper operation without replacing the device. Figure 1: Switching Characteristics (Resistive load RL=2.6Ω) VOUT 90% 80% dVOUT/dt(off) dVOUT/dt(on) tr 10% tf t ISENSE 90% INPUT t tDSENSE td(on) td(off) t 7/18 1 VNQ600 Figure 2: Waveforms (per each chip) NORMAL OPERATION INPUTn LOAD CURRENTn SENSEn UNDERVOLTAGE VCC VUSDhyst VUSD INPUTn LOAD CURRENTn SENSEn OVERVOLTAGE VOV VCC VCC < VOV VCC > VOV INPUTn LOAD CURRENTn SENSEn SHORT TO GROUND INPUTn LOAD CURRENTn LOAD VOLTAGEn SENSEn SHORT TO VCC INPUTn LOAD VOLTAGEn LOAD CURRENTn SENSEn <Nominal <Nominal OVERTEMPERATURE Tj TTSD TR INPUTn LOAD CURRENTn SENSEn ISENSE= VSENSEH RSENSE 8/18 VNQ600 APPLICATION SCHEMATIC +5V Rprot INPUT1 VCC1,2 VCC3,4 Dld Rprot C. SENSE 1 Rprot INPUT2 Rprot C. SENSE 2 OUTPUT2 INPUT3 OUTPUT3 OUTPUT1 µC Rprot Rprot Rprot C. SENSE 3 OUTPUT4 INPUT4 Rprot C. SENSE 4 GND1,2 GND3,4 RGND RSENSE1,2,3,4 VGND DGND Note: Channels 3 & 4 have the same internal circuit as channel 1 & 2. GND PROTECTION REVERSE BATTERY NETWORK AGAINST Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND ≤ 600mV / 2(IS(on)max). 2) RGND ≥ (−VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device’s datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds 9/18 and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1kΩ) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. LOAD DUMP PROTECTION Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. VNQ600 µC I/Os PROTECTION: If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the µC I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os. -VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V 5kΩ ≤ Rprot ≤ 65kΩ. Recommended Rprot value is 10kΩ. Figure 3: IOUT/ISENSE versus IOUT IOUT/ISENSE 6500 6000 max.Tj=-40°C 5500 max.Tj=25...150°C 5000 typical value min.Tj=25...150°C 4500 4000 min.Tj=-40°C 3500 3000 0 2 4 6 8 10 12 14 16 IOUT (A) 10/18 VNQ600 High Level Input Current Off State Output Current IL(off1) (uA) Iih (uA) 5 5 4.5 4.5 Off state Vcc=36V Vin=Vout=0V 4 3.5 Vin=3.25V 4 3.5 3 3 2.5 2.5 2 2 1.5 1.5 1 1 0.5 0.5 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 50 75 100 125 150 175 100 125 150 175 100 125 150 175 Tc (°C) Input Clamp Voltage Input High Level Vih (V) Vicl (V) 3.6 8 7.8 3.4 Iin=1mA 7.6 3.2 7.4 3 7.2 2.8 7 6.8 2.6 6.6 2.4 6.4 2.2 6.2 2 6 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 Tc (°C) Tc (°C) Input Low Level Input Hysteresis Voltage Vil (V) Vhyst (V) 2.6 1.5 1.4 2.4 1.3 2.2 1.2 2 1.1 1.8 1 0.9 1.6 0.8 1.4 0.7 1.2 0.6 1 0.5 -50 -25 0 25 50 75 Tc (°C) 11/18 100 125 150 175 -50 -25 0 25 50 75 Tc (°C) VNQ600 ILIM Vs Tcase Overvoltage Shutdown Vov (V) Ilim (A) 50 80 48 70 Vcc=13V 46 60 44 50 42 40 40 38 30 36 20 34 10 32 30 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 50 75 100 125 150 175 100 125 150 175 Tc (°C) Turn-on Voltage Slope Turn-off Voltage Slope dVout/dt(on) (V/ms) dVout/dt(off) (V/ms) 750 500 700 450 Vcc=13V Rl=2.6Ohm 650 Vcc=13V Rl=2.6Ohm 400 600 350 550 300 500 250 450 200 400 150 350 100 300 50 250 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (ºC) 50 75 Tc (ºC) On State Resistance Vs Tcase On State Resistance Vs VCC Ron (mOhm) Ron (mOhm) 100 80 90 70 Iout=5A Vcc=8V & 36V 80 Iout=5A Tc= 150°C 60 70 50 60 50 40 40 Tc= 25°C 30 30 20 20 Tc= - 40°C 10 10 0 0 -75 -50 -25 0 25 50 Tc (°C) 75 100 125 150 175 5 10 15 20 25 30 35 40 Vcc (V) 12/18 VNQ600 Maximum turn off current versus load inductance ILMAX (A) 100 A B C 10 1 0.001 0.01 0.1 1 10 100 L(mH) A = Single Pulse at TJstart=150ºC B= Repetitive pulse at TJstart=100ºC C= Repetitive Pulse at TJstart=125ºC Conditions: VCC=13.5V Values are generated with RL=0Ω In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization t 13/18 VNQ600 SO-28 DOUBLE ISLAND THERMAL DATA SO-28 Double island PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: 0.5cm2, 3cm2, 6cm2). Thermal calculation according to the PCB heatsink area Chip 1 ON OFF ON ON Chip 2 OFF ON ON ON Tjchip1 RthA x Pdchip1 + Tamb RthC x Pdchip2 + Tamb RthB x (Pdchip1 + Pdchip2) + Tamb (RthA x Pdchip1) + RthC x Pdchip2 + Tamb Tjchip2 Note RthC x Pdchip1 + Tamb RthA x Pdchip2 + Tamb RthB x (Pdchip1 + Pdchip2) + Tamb Pdchip1=Pdchip2 (RthA x Pdchip2) + RthC x Pdchip1 + Tamb Pdchip1≠Pdchip2 RthA = Thermal resistance Junction to Ambient with one chip ON RthB = Thermal resistance Junction to Ambient with both chips ON and Pdchip1=Pdchip2 RthC = Mutual thermal resistance Rthj-amb Vs. PCB copper area in open box free air condition RTHj_am b (°C/W) 70 60 50 RthA 40 RthB 30 20 RthC 10 0 14/18 1 2 3 4 5 PCB Cu heatsink area (cm ^2)/island 6 7 VNQ600 SO-28 Thermal Impedance Junction Ambient Single Pulse Zth(°C/W) 100 0,5 cm ^2/is land 3 cm ^2/is land 6 cm ^2/is land 10 One channel ON Two channels ON on same chip 1 0.1 0.01 0.0001 0.001 0.01 0.1 1 time(s) Thermal fitting model of a four channels HSD in SO-28 Tj_1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 C13 R13 C14 R14 Pd2 R17 Tj_3 R18 C7 C8 C9 R7 R8 R9 C10 C11 C12 Pd3 Tj_4 C15 R15 R10 C16 R16 Pd4 T_amb R11 R12 100 1000 Pulse calculation formula ZTH δ = R TH ⋅ δ + Z THtp ( 1 – δ ) where C1 Pd1 Tj_2 10 δ = tp ⁄ T Thermal Parameter Area/island (cm2) R1=R7=R13=R15 (°C/W) R2=R8=R14=R16 (°C/W) R3=R9 (°C/W) R4=R10 (°C/W) R5=R11 (°C/W) R6=R12 (°C/W) C1=C7=C13=C15 (W.s/°C) C2=C8=C14=C16 (W.s/°C) C3=C9 (W.s/°C) C4=C10 (W.s/°C) C5=C11 (W.s/°C) C6=C12 (W.s/°C) R17=R18 (°C/W) 0.5 0.05 0.3 3.4 11 15 30 0.001 5.00E-03 1.00E-02 0.2 1.5 5 150 6 13 8 15/18 VNQ600 SO-28 MECHANICAL DATA DIM. mm. MIN. TYP A a1 inch MAX. 0.10 MAX. 0.004 0.012 b 0.35 0.49 0.013 0.019 b1 0.23 0.32 0.009 0.012 C 0.50 0.020 45 (typ.) D 17.7 E 10.00 e 18.1 0.697 10.65 0.393 1.27 e3 0.713 0.419 0.050 16.51 0.650 F 7.40 7.60 0.291 0.299 L 0.40 1.27 0.016 0.050 S 2 TYP. 0.104 0.30 c1 16/18 MIN. 2.65 8 (max.) VNQ600 SO-28 TUBE SHIPMENT (no suffix) Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) C B 28 700 532 3.5 13.8 0.6 All dimensions are in mm. A TAPE AND REEL SHIPMENT (suffix “13TR”) REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 1000 1000 330 1.5 13 20.2 16.4 60 22.4 TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb. 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.05) K (max) P1 (± 0.1) All dimensions are in mm. 16 4 12 1.5 1.5 7.5 6.5 2 End Start Top No components Components No components cover tape 500mm min Empty components pockets saled with cover tape. 500mm min User direction of feed 17/18 VNQ600 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics 2003 STMicroelectronics - Printed in ITALY- All Rights Reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 18/18