STMICROELECTRONICS VN610SPTR-E

VN610SP-E
SINGLE CHANNEL HIGH SIDE DRIVER
Table 1. General Features
Type
VN610SP-E
■ OUTPUT
Figure 1. Package
RDS(on)
Iout
VCC
10 mΩ
45 A
36 V
CURRENT: 45 A
CMOS COMPATIBLE INPUT
■ PROPORTIONAL LOAD CURRENT SENSE
■
■
UNDERVOLTAGE AND OVERVOLTAGEn
SHUT-DOWN
■ OVERVOLTAGE CLAMP
10
1
THERMAL SHUT DOWN
■ CURRENT LIMITATION
■ VERY LOW STAND-BY POWER DISSIPATION
■ PROTECTION AGAINST:
n LOSS OF GROUND AND LOSS OF VCC
■ REVERSE BATTERY PROTECTION (*)
■ IN COMPLIANCE WITH THE 2002/95/EC
EUROPEAN DIRECTIVE
■
PowerSO-10™
DESCRIPTION
The VN610SP-E is a monolithic device made
using
STMicroelectronics
VIPower
M0-3
technology. It is intended for driving resistive or
inductive loads with one side connected to ground.
Active V CC pin voltage clamp protects the device
against low energy spikes (see ISO7637 transient
compatibility table).
This device integrates an analog current sense
which delivers a current proportional to the load
current (according to a known ratio). Active current
limitation combined with thermal shut-down and
automatic restart protect the device against
overload. Device automatically turns off in case of
ground pin disconnection.
Table 2. Order Codes
Package
PowerSO-10™
Tube
VN610SP-E
Tape and Reel
VN610SPTR-E
Note: (*) See application schematic at page 9
Rev. 1
October 2004
1/18
VN610SP-E
Figure 2. Block Diagram
VCC
OVERVOLTAGE
VCC
CLAMP
UNDERVOLTAGE
PwCLAMP
DRIVER
OUTPUT
GND
ILIM
VDSLIM
LOGIC
IOUT
INPUT
CURRENT
SENSE
K
OVERTEMP.
Table 3. Absolute Maximum Ratings
Symbol
Parameter
Value
Unit
41
V
VCC
DC supply voltage
-VCC
Reverse DC supply voltage
-0.3
V
- IGND
DC reverse ground pin current
-200
mA
Internally limited
A
-50
A
+/- 10
mA
IOUT
- IOUT
IIN
DC output current
Reverse DC output current
DC input current
-3
V
+15
V
4000
V
2000
V
5000
V
5000
V
(L=0.05mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC;
IL=75A)
193
mJ
Ptot
Power dissipation at TC<25°C
139
W
Tj
Junction operating temperature
Internally limited
°C
Tc
Case operating temperature
-40 to 150
°C
Storage temperature
-55 to 150
°C
VCSENSE
Current sense maximum voltage
Electrostatic Discharge (Human Body Model:
R=1.5KΩ; C=100pF)
VESD
- INPUT
- CURRENT SENSE
- OUTPUT
- VCC
Maximum Switching Energy
EMAX
TSTG
2/18
VN610SP-E
Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins
GROUND
INPUT
C.SENSE
N.C.
N.C.
6
7
8
9
5
4
3
10
1
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
2
11
VCC
Connection / Pin
Floating
Current Sense
N.C.
X
Through
1KΩresistor
To Ground
Output
X
Input
X
X
Through 10KΩ resistor
Figure 4. Current and Voltage Conventions
IS
VCC
VF
VCC
IOUT
OUTPUT
IIN
VOUT
INPUT
VIN
ISENSE
CURRENT SENSE
VSENSE
GND
IGND
Table 4. Thermal Data
Symbol
Rthj-case
Parameter
Thermal resistance junction-case
(MAX)
Rthj-amb
Thermal resistance junction-ambient
(MAX)
Value
0.9
50.9 (1)
36(2)
Unit
°C/W
°C/W
°C/W
Note: (1) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick).
Note: (2) When mounted on a standard single-sided FR-4 board with 6 cm 2 of Cu (at least 35µm thick).
3/18
VN610SP-E
ELECTRICAL CHARACTERISTICS
(8V<VCC<36V; -40°C<Tj<150°C; unless otherwise specified)
(Per each channel)
Table 5. Power
Symbol
Parameter
VCC
Min.
Typ.
Max.
Unit
Operating supply voltage
5.5
13
36
V
VUSD
Undervoltage shutdown
3
4
5.5
V
VOV
Overvoltage shutdown
RON
Vclamp
On state resistance
Test Conditions
(See Note 1)
36
IOUT=15A; Tj=25°C
10
mΩ
IOUT=15A; Tj=150°C
20
mΩ
IOUT=9A; VCC=6V
35
mΩ
48
55
V
10
25
µA
10
20
µA
5
mA
0
50
µA
-75
0
µA
Clamp Voltage
ICC=20 mA (see note 1)
Supply current
Off State; VCC=13V; VIN=VOUT=0V;
Tj=25°C
41
Off State; VCC=13V; VIN=VOUT=0V
IS
V
On State; VCC=13V; VIN=5V; IOUT=0A
RSENSE=3.9K
IL(off1)
Off State Output Current
VIN=VOUT=0V
IL(off2)
Off State Output Current
VIN=0V; VOUT =3.5V
IL(off3)
Off State Output Current
VIN=VOUT=0V; VCC=13V; Tj =125°C
5
µA
IL(off4)
Off State Output Current
VIN=VOUT=0V; VCC=13V; Tj =25°C
3
µA
Max.
Unit
Note: 1. Vclamp and VOV are correlated. Typical difference is 5V.
Table 6. Protection (see note 2)
Symbol
Ilim
TTSD
TR
THYST
VDEMAG
VON
Parameter
DC Short circuit current
Test Conditions
VCC=13V
45
75
150
temperature
Thermal reset temperature
175
120
A
120
A
200
°C
135
Thermal hysteresis
Output voltage drop limitation
Typ.
5.5V<VCC<36V
Thermal shutdown
Turn-off output voltage
clamp
Min.
IOUT =2A; VIN=0; L=6mH
°C
7
15
VCC-41
VCC-48
IOUT =1.5A; Tj= -40°C...+150°C
°C
VCC-55
50
V
mV
Note: 2. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be
used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration
and number of activation cycles
Table 7. VCC - Output Diode
Symbol
VF
4/18
Parameter
Forward on Voltage
Test Conditions
-IOUT=8A; Tj=150°C
Min
Typ
Max
0.6
Unit
V
VN610SP-E
ELECTRICAL CHARACTERISTICS (continued)
Table 8. Current Sense (9V≤VCC≤16V) (See Figure 5)
Symbol
K1
dK1/K1
K2
dK2/K2
K3
dK3/K3
Parameter
IOUT /ISENSE
Current Sense Ratio Drift
IOUT /ISENSE
Current Sense Ratio Drift
IOUT /ISENSE
Current Sense Ratio Drift
Test Conditions
IOUT =1.5A; VSENSE=0.5V;
Tj= -40°C...150°C
IOUT =1.5A; VSENSE=0.5V;
Tj= -40°C...150°C
IOUT =15A; VSENSE=4V; Tj=-40°C
Tj=25°C...150°C
IOUT =15A; VSENSE=4V; Tj=-40°C
Tj=25°C...150°C
IOUT =45A; VSENSE=4V; Tj=-40°C
Tj=25°C...150°C
IOUT =45A; VSENSE=4V; Tj=-40°C
Tj=25°C...150°C
Min
Typ
Max
3300
4400
6000
-10
+10
4200
4900
6000
4400
4900
5750
-6
+6
4200
4900
5500
4400
4900
5250
-6
Unit
%
%
+6
%
Vcc=6...16V; IOUT=0A; VSENSE=0V; Tj=40°C...150°C
ISENSE0
VSENSE
VSENSEH
Analog sense current
Off State; VIN=0V
0
5
µA
On State; VIN=5V
0
3.5
10
µA
V
Max analog sense
VCC=5.5V; IOUT =7.5A; RSENSE=10KΩ
output voltage
VCC >8V; IOUT=15A; RSENSE=10KΩ
5
Analog sense output
voltage in overtemperature VCC=13V; RSENSE=3.9KΩ
condition
Analog sense output
RVSENSEH impedance in
overtemperature condition
Current sense delay
tDSENSE
reponse
VCC=13V; Tj>TTSD; Output Open
V
5.5
V
400
Ω
to 90% ISENSE (see note 3)
500
µs
Max
Unit
µs
µs
Note: 3. Current sense signal delay after positive input slope.
Table 9. Switching (V CC=13V)
Symbol
td(on)
td(off)
Parameter
Turn-on delay time
Turn-off delay time
(dVOUT/dt)on Turn-on voltage slope
Test Conditions
RL=0.87Ω
RL=0.87Ω
RL=0.87Ω
Min
Typ
50
50
See
relative
V/µs
diagram
See
(dVOUT/dt)off Turn-off voltage slope
RL=0.87Ω
relative
V/µs
diagram
5/18
VN610SP-E
Table 10. Logic Input
Symbol
VIL
IIL
VIH
IIH
VI(hyst)
VICL
Parameter
Test Conditions
Input low level voltage
Low level input current VIN=1.25V
Input high level voltage
High level input current VIN=3.25V
Input hysteresis voltage
IIN=1mA
Input clamp voltage
IIN=-1mA
Min
Typ
Max
1.25
1
3.25
10
0.5
6
6.8
8
Unit
V
µA
V
µA
V
V
-0.7
V
Figure 5.
IOUT/ISENSE
6500
6000
max.Tj=-40°C
5500
max.Tj=25...150°C
5000
min.Tj=25...150°C
typical value
4500
4000
min.Tj=-40°C
3500
3000
0
5
10
15
20
25
30
35
40
45
50
IOUT
Table 11. Truth Table
CONDITIONS
Normal operation
Overtemperature
Undervoltage
Overvoltage
Short circuit to GND
Short circuit to VCC
Negative output voltage
clamp
6/18
INPUT
OUTPUT
SENSE
L
L
H
H
0
Nominal
L
L
0
H
L
VSENSEH
L
L
0
H
L
0
L
L
0
H
L
0
L
L
0
H
L
(Tj<TTSD) 0
H
L
(Tj>TTSD) VSENSEH
L
H
0
H
H
< Nominal
L
L
0
VN610SP-E
Figure 6. Switching Characteristics (Resistive load RL=0.87Ω)
VOUT
90%
80%
dVOUT/dt(off)
dVOUT/dt(on)
10%
tr
tf
t
ISENSE
90%
t
tDSENSE
INPUT
td(on)
td(off)
t
Table 12. Electrical Transient Requirements On V CC Pin
ISO T/R 7637/1
Test Pulse
1
2
3a
3b
4
5
ISO T/R 7637/1
Test Pulse
1
2
3a
3b
4
5
CLASS
C
E
I
II
TEST LEVELS
III
IV
-25 V
+25 V
-25 V
+25 V
-4 V
+26.5 V
-50 V
+50 V
-50 V
+50 V
-5 V
+46.5 V
-75 V
+75 V
-100 V
+75 V
-6 V
+66.5 V
-100 V
+100 V
-150 V
+100 V
-7 V
+86.5 V
I
C
C
C
C
C
C
TEST LEVELS RESULTS
II
III
C
C
C
C
C
C
C
C
C
C
E
E
Delays and
Impedance
2 ms 10 Ω
0.2 ms 10 Ω
0.1 µs 50 Ω
0.1 µs 50 Ω
100 ms, 0.01 Ω
400 ms, 2 Ω
IV
C
C
C
C
C
E
CONTENTS
All functions of the device are performed as designed after exposure to disturbance.
One or more functions of the device is not performed as designed after exposure to disturbance
and cannot be returned to proper operation without replacing the device.
7/18
VN610SP-E
Figure 7. Waveforms
NORMAL OPERATION
INPUT
LOAD CURRENT
SENSE CURRENT
UNDERVOLTAGE
VCC
VUSDhyst
VUSD
INPUT
LOAD CURRENT
SENSE CURRENT
OVERVOLTAGE
VOV
VCC
VOVhyst
VCC > VUSD
INPUT
LOAD CURRENT
SENSE
SHORT TO GROUND
INPUT
LOAD CURRENT
LOAD VOLTAGE
SENSE CURRENT
SHORT TO VCC
INPUT
LOAD VOLTAGE
LOAD CURRENT
SENSE CURRENT
<Nominal
<Nominal
OVERTEMPERATURE
Tj
TTSD
TR
INPUT
LOAD CURRENT
SENSE CURRENT
ISENSE=V SENSEH/(RSENSE+RSENSEH )
8/18
VN610SP-E
Figure 8. Application Schematic
+5V
VCC
Rprot
INPUT
Dld
µC
Rprot
OUTPUT
CURRENT SENSE
RSENSE
GND
VGND
GND PROTECTION
REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This
can be used with any type of load.
The following is an indication on how to dimension the
RGND resistor.
1) RGND ≤ 600mV / (IS(on)max).
2) RGND ≥ (−VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can
be found in the absolute maximum rating section of the
device’s datasheet.
Power Dissipation in RGND (when VCC<0: during reverse
battery situations) is:
PD= (-VCC)2/RGND
This resistor can be shared amongst several different
HSD. Please note that the value of this resistor should be
calculated with formula (1) where IS(on)max becomes the
sum of the maximum on-state currents of the different
devices.
Please note that if the microprocessor ground is not
common with the device ground then the RGND will
produce a shift (IS(on)max * RGND) in the input thresholds
and the status output values. This shift will vary
depending on how many devices are ON in the case of
several high side drivers sharing the same RGND.
If the calculated power dissipation leads to a large
resistor or several devices have to share the same
resistor then the ST suggests to utilize Solution 2 (see
below).
Solution 2: A diode (DGND) in the ground line.
A resistor (RGND=1kΩ) should be inserted in parallel to
DGND if the device will be driving an inductive load.
RGND
DGND
This small signal diode can be safely shared amongst
several different HSD. Also in this case, the presence of
the ground network will produce a shift (j600mV) in the
input threshold and the status output values if the
microprocessor ground is not common with the device
ground. This shift will not vary if more than one HSD
shares the same diode/resistor network.
Series resistor in INPUT line is also required to prevent
that, during battery voltage transient, the current exceeds
the Absolute Maximum Rating.
Safest configuration for unused INPUT pin is to leave it
unconnected, while unused SENSE pin has to be
connected to Ground pin.
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the
load dump peak voltage exceeds VCC max DC rating.
The same applies if the device will be subject to
transients on the VCC line that are greater than the ones
shown in the ISO T/R 7637/1 table.
µC I/Os PROTECTION:
If a ground protection network is used and negative
transients are present on the VCC line, the control pins will
be pulled negative. ST suggests to insert a resistor (Rprot)
in line to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the
leakage current of µC and the current required by the
HSD I/Os (Input levels compatibility) with the latch-up
limit of µC I/Os.
-VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax
Calculation example:
For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V
5kΩ ≤ Rprot ≤ 65kΩ.
Recommended Rprot value is 10kΩ.
9/18
VN610SP-E
Figure 9. Off State Output Current
Figure 10. High Level Input Current
Iih (uA)
IL(off1) (µA)
9
5
4.5
8
Vin=3.25V
Off state
Vcc=36V
Vin=Vout=0V
7
4
3.5
6
3
5
2.5
4
2
3
1.5
2
1
1
0.5
0
0
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
Figure 11. Input Low Level
75
100
125
150
175
100
125
150
175
150
175
Figure 13. Input High Level
Vil (V)
Vih (V)
2.6
3.6
2.4
3.4
2.2
3.2
2
3
1.8
2.8
1.6
2.6
1.4
2.4
1.2
2.2
1
2
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
50
75
Tc (°C)
Figure 12. Input Clamp Voltage
Figure 14. Input Hysteresis Voltage
Vhyst (V)
Vicl (V)
1.5
8
1.4
7.8
Iin=1mA
7.6
1.3
7.4
1.2
7.2
1.1
7
1
6.8
0.9
6.6
0.8
6.4
0.7
6.2
0.6
0.5
6
-50
-25
0
25
50
75
Tc (°C)
10/18
50
Tc (°C)
Tc (°C)
100
125
150
175
-50
-25
0
25
50
75
Tc (°C)
100
125
VN610SP-E
Figure 15. Overvoltage Shutdown
Figure 18. ILIM Vs Tcase
Vov (V)
Ilim (A)
50
160
48
140
Vcc=13V
46
120
44
100
42
40
80
38
60
36
40
34
20
32
30
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
100
125
150
175
150
175
Figure 19. Turn-off Voltage Slope
dVout/dt(on) (V/ms)
dVout/dt(off) (V/ms)
700
900
800
Vcc=13V
Rl=0.87Ohm
600
75
Tc (ºC)
Figure 16. Turn-on Voltage Slope
650
50
Vcc=13V
Rl=0.87Ohm
700
550
600
500
500
450
400
400
300
350
200
300
100
250
-50
-25
0
25
50
75
100
125
150
175
0
-50
Tc (ºC)
Figure 17. On State Resistance Vs Tcase
-25
0
25
50
75
100
125
Figure 20. On State Resistance Vs VCC
Ron (mOhm)
Ron (mOhm)
25
25
22.5
22.5
Iout=15A
Iout=15A
Vcc=8V; 36V
20
20
Tc= 125ºC
17.5
17.5
15
15
12.5
12.5
10
10
7.5
7.5
5
5
2.5
2.5
0
Tc= 25ºC
Tc= - 40ºC
0
-50
-25
0
25
50
75
Tc (ºC)
100
125
150
175
5
10
15
20
25
30
35
40
Vcc (V)
11/18
VN610SP-E
Figure 21. Maximum turn off current versus load inductance
ILMAX (A)
1000
100
A
C
10
1
0.01
0.1
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at T Jstart=100ºC
C= Repetitive Pulse at T Jstart=125ºC
Conditions:
VCC=13.5V
B
1
L(mH )
10
100
Values are generated with R L=0Ω
In case of repetitive pulses, Tjstart (at beginning of
each demagnetization) of every pulse must not
exceed the temperature specified above for
curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
12/18
VN610SP-E
PowerSO-10™ Thermal Data
Figure 22. PowerSO-10™ PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: from minimum pad lay-out to 8cm2).
Figure 23. Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (°C/W)
55
Tj-Tamb=50°C
50
45
40
35
30
0
2
4
6
8
10
PCB Cu heatsink area (cm^2)
13/18
VN610SP-E
Figure 24. PowerSO-10 Thermal Impedance Junction Ambient Single Pulse
ZTH (°C/W)
100
Footprint
6 cm2
10
1
0.1
0.01
0.0001
0.0 01
0.01
0.1
1
Time (s)
Figure 25. Thermal fitting model of a double
channel HSD in PowerSO-10
10
100
1000
Pulse calculation formula
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Table 13. Thermal Parameter
Tj_1
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd1
Tj_2
C1
C2
R1
R2
Pd2
T_amb
14/18
Area/island (cm2)
R1 (°C/W)
R2 (°C/W)
R3( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1 (W.s/°C)
C2 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
Footprint
0.05
0.3
0.3
0.8
12
37
0.001
5.00E-03
0.02
0.3
0.75
3
6
22
5
VN610SP-E
PACKAGE MECHANICAL
Table 14. PowerSO-10™ Mechanical Data
millimeters
Symbol
Min
A
A (*)
A1
B
B (*)
C
C (*)
D
D1
E
E2
E2 (*)
E4
E4 (*)
e
F
F (*)
H
H (*)
h
L
L (*)
a
α (*)
Typ
Max
3.35
3.4
0.00
0.40
0.37
0.35
0.23
9.40
7.40
9.30
7.20
7.30
5.90
5.90
3.65
3.6
0.10
0.60
0.53
0.55
0.32
9.60
7.60
9.50
7.60
7.50
6.10
6.30
1.27
1.25
1.20
13.80
13.85
1.35
1.40
14.40
14.35
0.50
1.20
0.80
0º
2º
1.80
1.10
8º
8º
Note: (*) Muar only POA P013P
Figure 26. PowerSO-10™ Package Dimensions
B
0.10 A B
10
H
E
E2
E4
1
SEATING
PLANE
e
B
DETAIL "A"
h
A
C
0.25
D
= D1 =
=
=
SEATING
PLANE
A
F
A1
A1
L
DETAIL "A"
α
P095A
15/18
VN610SP-E
Figure 27. PowerSO-10™ Suggested Pad Layout and Tube Shipment (no suffix)
CASABLANCA
14.6 - 14.9
MUAR
B
10.8 - 11
C
6.30
C
A
A
B
0.67 - 0.73
1
9.5
2
3
4
5
10
9
8
7
6
0.54 - 0.6
All dimensions are in mm.
1.27
Base Q.ty Bulk Q.ty Tube length (± 0.5)
A
B
C (± 0.1)
Casablanca
50
1000
532
10.4 16.4
0.8
Muar
50
1000
532
4.9 17.2
0.8
Figure 28. Tape And Reel Shipment (suffix “TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
600
600
330
1.5
13
20.2
24.4
60
30.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb. 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
24
4
24
1.5
1.5
11.5
6.5
2
End
All dimensions are in mm.
Start
Top
No components
Components
No components
cover
tape
500mm min
Empty components pockets
saled with cover tape.
User direction of feed
16/18
500mm min
VN610SP-E
REVISION HISTORY
Date
Oct. 2004
Revision
1
- First Issue.
Description of Changes
17/18
VN610SP-E
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
18/18