VND830ASP ® DOUBLE CHANNEL HIGH SIDE SOLID STATE RELAY TYPE VND830ASP RDS(on) 60 mΩ (*) IOUT 6 A (*) VCC 36 V (*) (*) Per channel 10 DC SHORT CIRCUIT CURRENT: 6A ■ CMOS COMPATIBLE INPUTS ■ PROPORTIONAL LOAD CURRENT SENSE ■ UNDERVOLTAGE AND OVERVOLTAGE SHUT-DOWN ■ OVERVOLTAGE CLAMP ■ THERMAL SHUT-DOWN ■ CURRENT LIMITATION ■ VERY LOW STAND-BY POWER DISSIPATION ■ PROTECTION AGAINST: LOSS OF GROUND AND LOSS OF VCC ■ REVERSE BATTERY PROTECTION (**) ■ DESCRIPTION The VND830ASP is a monolithic device made using STMicroelectronics VIPower M0-3 technology. It is intended for driving any kind of load with one 1 PowerSO-10™ ORDER CODES PACKAGE TUBE T&R PowerSO-10™ VND830ASP VND830ASP13TR side connected to ground. Active VCC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). This device has two channels in high side configuration; each channel has an analog sense output on which the sensing current is proportional (according to a known ratio) to the corresponding load current. Built-in thermal shut-down and outputs current limitation protect the chip from over temperature and short circuit. Device turns off in case of ground pin disconnection. BLOCK DIAGRAM VCC OVERVOLTAGE VCC CLAMP UNDERVOLTAGE PwCLAMP 1 DRIVER 1 OUTPUT 1 ILIM1 INPUT 1 Vdslim1 LOGIC IOUT1 INPUT 2 Ot1 CURRENT SENSE 1 K PwCLAMP 2 DRIVER 2 GND Ot1 OVERTEMP. 1 OVERTEMP. 2 Vdslim2 Ot2 OUTPUT 2 ILIM2 IOUT2 K Ot2 CURRENT SENSE 2 (**) See application schematic at page 8 November 2003 1/17 VND830ASP ABSOLUTE MAXIMUM RATING Symbol VCC -VCC -IGND IOUT IR IIN VCSENSE Parameter DC Supply Voltage Reverse Supply Voltage DC Reverse Ground Pin Current Output Current Reverse Output Current Input Current Value 41 - 0.3 - 200 Internally Limited -6 +/- 10 -3 Unit V V mA A A mA V +15 V - INPUT 4000 V - CURRENT SENSE 2000 V - OUTPUT 5000 V - VCC Maximum Switching Energy 5000 V 100 mJ 74 Internally Limited - 40 to 150 - 55 to 150 W °C °C °C Current Sense Maximum Voltage Electrostatic Discharge (Human Body Model: R=1.5Ω; C=100pF) VESD EMAX Ptot Tj Tc Tstg (L=1.8mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=9A) Power Dissipation at TC=25°C Junction Operating Temperature Case Operating Temperature Storage Temperature CONNECTION DIAGRAM (TOP VIEW) OUTPUT 2 OUTPUT 2 N.C. OUTPUT 1 OUTPUT 1 5 4 3 6 7 GROUND INPUT2 INPUT1 C.SENSE1 C.SENSE2 8 9 2 10 1 11 VCC CURRENT AND VOLTAGE CONVENTIONS IS VCC IIN1 INPUT1 VIN1 OUTPUT1 VIN2 IOUT2 INPUT2 VOUT1 ISENSE1 CURRENT SENSE 1 IIN2 OUTPUT2 CURRENT SENSE 2 GROUND IGND 2/17 VCC IOUT1 VSENSE1 VOUT2 ISENSE2 VSENSE2 VND830ASP THERMAL DATA Symbol Rthj-case Parameter Thermal Resistance Junction-case Value 1.2 Unit °C/W Rthj-amb Thermal Resistance Junction-ambient 51.2 (*) °C/W (*) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick). Horizontal mounting and no artificial air flow ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C< Tj <150°C, unless otherwise specified) (Per each channel) POWER OUTPUT Symbol VCC VUSD VOV RON Parameter Operating Supply Voltage Undervoltage Shut-down Overvoltage Shut-down On State Resistance Vclamp Clamp voltage IS Supply Current Test Conditions Min 5.5 3 36 Typ 13 4 Max 36 5.5 IOUT =2A; Tj=25°C 60 Unit V V V mΩ IOUT =2A; Tj=150°C ICC=20 mA (see note 1) Off State; VCC=13V; VIN=VOUT=0V 48 12 120 55 40 mΩ V µA 12 25 µA 7 50 0 5 3 mA µA µA µA µA Max Unit 41 Off State; VCC=13V; VIN=VOUT=0V; Tj =25°C On State; VIN=5V; VCC=13V; IOUT=0A; IL(off1) IL(off2) IL(off3) IL(off4) Off State Output Current Off State Output Current Off State Output Current Off State Output Current RSENSE=3.9KΩ VIN=VOUT=0V; VCC=36V; Tj=125°C VIN=0V; VOUT=3.5V VIN=VOUT=0V; VCC=13V; Tj =125°C VIN=VOUT=0V; VCC=13V; Tj =25°C 0 -75 SWITCHING (VCC =13V) Symbol Parameter td(on) Turn-on Delay Time td(off) Turn-off Delay Time Test Conditions RL=6.5Ω from VIN rising edge to VOUT=1.3V RL=6.5Ω from VIN falling edge to VOUT=11.7V dVOUT/dt(on) Turn-on Voltage Slope RL=6.5Ω from VOUT=1.3V to VOUT=10.4V dVOUT/dt(off) Turn-off Voltage Slope RL=6.5Ω from VOUT=11.7V to VOUT=1.3V Min Typ 30 µs 30 µs See relative diagram See relative diagram V/µs V/µs LOGIC INPUT (Channels 1,2) Symbol VIL IIL VIH IIH VI(hyst) VICL Parameter Input low level voltage Low level input current Input high level voltage High level input current Input hysteresis voltage Input clamp voltage Test Conditions VIN=1.25V Min Typ 1 3.25 VIN=3.25V IIN=1mA IIN=-1mA Max 1.25 10 0.5 6 6.8 -0.7 8 Unit V µA V µA V V V Note 1: Vclamp and VOV are correlated. Typical difference is 5V. 3/17 1 VND830ASP ELECTRICAL CHARACTERISTICS (continued) VCC - OUTPUT DIODE Symbol VF Parameter Forward on Voltage Test Conditions -IOUT=2A; Tj=150°C Min Typ Max 0.6 Unit V PROTECTIONS Symbol Ilim TTSD TR THYST Vdemag VON Parameter Current limitation Test Conditions Vcc=13V 5.5V<Vcc<36V Thermal shut-down temperature Thermal reset temperature Thermal hysteresis Turn-off output voltage clamp IOUT=2A; VIN=0V; L=6mH Output voltage drop limitation IOUT=10mA Min 6 150 Typ 9 175 Max 15 Unit A 15 A 200 °C 135 7 15 VCC-41 VCC-48 VCC-55 50 °C °C V mV CURRENT SENSE (9V≤VCC≤16V) (See figure 1) Symbol Parameter K0 IOUT/I SENSE K1 IOUT/I SENSE dK1/K1 K2 dK2/K2 K3 Current Sense Ratio Drift IOUT/I SENSE Current Sense Ratio Drift IOUT/I SENSE Test Conditions IOUT1 or IOUT2=0.05A; VSENSE=0.5V; other channels open; Tj= -40°C...150°C IOUT1 or IOUT2=0.25A; VSENSE=0.5V; other channels open; Tj= -40°C...150°C IOUT1 or IOUT2=0.25A; VSENSE=0.5V; other channels open; Tj= -40°C...150°C Analog Sense Output RVSENSEH Impedance in Overtemperature Condition Current sense delay tDSENSE response 4/17 2000 1000 1400 1900 -10 +10 Tj=25°C...150°C 1300 1500 1780 IOUT1 or IOUT2=1.6A; VSENSE=4V; other channels open; Tj=-40°C...150°C -6 +6 IOUT1 or IOUT2=2.5A; VSENSE=4V; other channels open; Tj=-40°C 1280 1500 1680 Tj=25°C...150°C 1340 1500 1600 IOUT1 or IOUT2=2.5A; VSENSE=4V; other channels open; Tj=-40°C...150°C VIN=0V; IOUT=0A; VSENSE=0V; Tj=-40°C...150°C VCC=5.5V; IOUT1,2=1.3A; RSENSE=10kΩ VCC>8V, IOUT1,2=2.5A; RSENSE=10kΩ VCC=13V; RSENSE=3.9kΩ VCC=13V; Tj>TTSD; All Channels Open to 90% ISENSE (see note 2) Note 2: current sense signal delay after positive input slope. Note: Sense pin doesn’t have to be left floating. 1300 1800 Analog Sense Leakage Cur- Tj=-40°C...150°C rent VIN=5V; IOUT=0A; VSENSE=0V; VSENSEH 600 1500 ISENSE Sense Voltage in Overtemperature conditions Max 1280 Current Sense Ratio Drift Max Analog Sense Output Voltage Typ IOUT1 or IOUT2=1.6A; VSENSE=4V; other channels open; Tj=-40°C dK3/K3 VSENSE Min Unit % % -6 +6 % 0 5 µA 0 10 µA 2 V 4 V 5.5 V 400 Ω 500 µs VND830ASP TRUTH TABLE (per channel) CONDITIONS Normal operation Overtemperature Undervoltage Overvoltage Short circuit to GND Short circuit to VCC Negative output voltage clamp INPUT OUTPUT SENSE L L H L H L 0 Nominal H L L L VSENSEH 0 H L L L 0 0 H L L L 0 0 H L (Tj<TTSD) 0 H L L H (Tj>TTSD) VSENSEH 0 H H < Nominal L L 0 0 ELECTRICAL TRANSIENT REQUIREMENTS ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E I II TEST LEVELS III IV -25 V +25 V -25 V +25 V -4 V +26.5 V -50 V +50 V -50 V +50 V -5 V +46.5 V -75 V +75 V -100 V +75 V -6 V +66.5 V -100 V +100 V -150 V +100 V -7 V +86.5 V I C C C C C C TEST LEVELS RESULTS II III C C C C C C C C C C E E Delays and Impedance 2 ms 10 Ω 0.2 ms 10 Ω 0.1 µs 50 Ω 0.1 µs 50 Ω 100 ms, 0.01 Ω 400 ms, 2 Ω IV C C C C C E CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. 5/17 VND830ASP Figure 1: IOUT/ISENSE versus IOUT Iout/Isense 2250 2000 m ax Tj= -40ºC 1750 m ax Tj=25...150ºC 1500 typical value m in Tj=25...150ºC 1250 m in Tj= -40ºC 1000 750 500 0 0.5 1 1.5 2 2.5 3 Iout (A) Figure 2: Switching Characteristics (Resistive load RL=6.5Ω) VOUT 90% 80% dVOUT /dt(off) dVOUT /dt(on) tr 10% tf t ISENSE 90% INPUT t tDSENSE td(on) td(off) t 6/17 VND830ASP Figure 3: Waveforms NORMAL OPERATION INPUTn LOAD CURRENTn SENSEn UNDERVOLTAGE VCC VUSDhyst VUSD INPUTn LOAD CURRENTn SENSEn OVERVOLTAGE VOV VCC VCC < VOV VCC > VOV INPUTn LOAD CURRENTn SENSEn SHORT TO GROUND INPUTn LOAD CURRENTn LOAD VOLTAGEn SENSEn SHORT TO VCC INPUTn LOAD VOLTAGEn LOAD CURRENTn SENSEn <Nominal <Nominal OVERTEMPERATURE Tj TTSD TR INPUTn LOAD CURRENTn SENSEn ISENSE= VSENSEH RSENSE 7/17 VND830ASP APPLICATION SCHEMATIC +5V Rprot INPUT1 VCC Dld µC Rprot CURRENT SENSE1 Rprot INPUT2 Rprot CURRENT SENSE2 OUTPUT1 GND RSENSE1 RSENSE2 GND PROTECTION REVERSE BATTERY NETWORK VGND AGAINST Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND ≤ 600mV / IS(on)max. 2) RGND ≥ (−VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device’s datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. 8/17 RGND OUTPUT2 DGND If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1kΩ) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input thresholds and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT line is also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT pin is to leave it unconnected, while unused SENSE pin has to be connected to Ground pin. LOAD DUMP PROTECTION Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. VND830ASP µC I/Os PROTECTION: If a ground protection network is used and negative transient are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the µC I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os. -VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V 5kΩ ≤ Rprot ≤ 65kΩ. Recommended Rprot value is 10kΩ. 9/17 VND830ASP High Level Input Current Off State Output Current IL(off1) (uA) Iih (uA) 8 5 7 4.5 Vin=3.25V Off state Vcc=13V Vin=Vout=0V 6 4 5 3.5 4 3 3 2.5 2 2 1 1.5 0 1 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (ºC) 50 75 100 125 150 175 100 125 150 175 100 125 150 175 Tc (ºC) Input Clamp Voltage Input High Level Vicl (V) Vih (V) 3.6 8 7.8 3.4 Iin=1mA Vcc=13V 7.6 3.2 7.4 3 7.2 2.8 7 6.8 2.6 6.6 2.4 6.4 2.2 6.2 2 6 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 Tc (ºC) Tc (ºC) Input Low Level Input Hysteresis Voltage Vil (V) Vhyst (V) 2.6 1.5 1.4 2.4 Vcc=13V Vcc=13V 1.3 2.2 1.2 2 1.1 1.8 1 0.9 1.6 0.8 1.4 0.7 1.2 0.6 1 0.5 -50 -25 0 25 50 75 Tc (ºC) 10/17 100 125 150 175 -50 -25 0 25 50 75 Tc (ºC) VND830ASP ILIM Vs Tcase Overvoltage Shutdown Vov (V) Ilim (A) 50 20 47.5 17.5 45 15 42.5 12.5 40 10 37.5 7.5 35 5 32.5 2.5 Vcc=13V 30 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 Tc (ºC) 75 100 125 150 175 100 125 150 175 Tc (ºC) Turn-on Voltage Slope Turn-off Voltage Slope dVout/dt(on) (V/ms) dVout/dt(off) (V/ms) 600 500 450 550 Vcc=13V Rl=6.5Ohm 500 Vcc=13V Rl=6.5Ohm 400 350 450 300 400 250 200 350 150 300 100 250 50 200 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (ºC) 50 75 Tc (ºC) On State Resistance Vs Tcase On State Resistance Vs VCC Ron (mOhm) Ron (mOhm) 100 100 90 Tc=150ºC 90 Iout=5A Vcc=8V & 36V 80 80 70 Iout=5A 70 60 60 50 40 50 30 Tc=25ºC 40 20 Tc= -40ºC 30 10 20 0 -50 -25 0 25 50 75 Tc (ºC) 100 125 150 175 5 10 15 20 25 30 35 40 Vcc (V) 11/17 VND830ASP Maximum turn off current versus load inductance ILMAX (A) 100 10 A B C 1 0.1 1 10 100 L(mH) A = Single Pulse at TJstart=150ºC B= Repetitive pulse at TJstart=100ºC C= Repetitive Pulse at TJstart=125ºC Conditions: VCC=13.5V Values are generated with RL=0Ω In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization t 12/17 VND830ASP PowerSO-10™ THERMAL DATA PowerSO-10™ PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: from minimum pad lay-out to 8cm2). Rthj-amb Vs PCB copper area in open box free air condition RTHj_amb (°C/W) 55 Tj-Tamb=50°C 50 45 40 35 30 0 2 4 6 8 10 PCB Cu heatsink area (cm^2) 13/17 VND830ASP PowerSO-10 Thermal Impedance Junction Ambient Single Pulse ZTH (°C/W) 1000 100 0.5 cm2 6 cm2 10 1 0.1 0.0001 0.001 0.01 0.1 1 Time (s) Thermal fitting model of a double channel HSD in PowerSO-10 10 100 1000 Pulse calculation formula Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ ) where δ = tp ⁄ T Thermal Parameter Tj_1 C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 Pd1 Tj_2 C1 C2 R1 R2 Pd2 T_amb 14/17 Area/island (cm2) R1 (°C/W) R2 (°C/W) R3( °C/W) R4 (°C/W) R5 (°C/W) R6 (°C/W) C1 (W.s/°C) C2 (W.s/°C) C3 (W.s/°C) C4 (W.s/°C) C5 (W.s/°C) C6 (W.s/°C) 0.5 0.15 0.8 0.7 0.8 12 37 0.0006 2.10E-03 0.013 0.3 0.75 3 6 22 5 VND830ASP PowerSO-10™ MECHANICAL DATA mm. DIM. MIN. A A (*) A1 B B (*) C C (*) D D1 E E2 E2 (*) E4 E4 (*) e F F (*) H H (*) h L L (*) α α (*) inch TYP 3.35 3.4 0.00 0.40 0.37 0.35 0.23 9.40 7.40 9.30 7.20 7.30 5.90 5.90 MAX. MIN. 3.65 3.6 0.10 0.60 0.53 0.55 0.32 9.60 7.60 9.50 7.60 7.50 6.10 6.30 0.132 0.134 0.000 0.016 0.014 0.013 0.009 0.370 0.291 0.366 0.283 0.287 0.232 0.232 1.35 1.40 14.40 14.35 0.049 0.047 0.543 0.545 1.80 1.10 8º 8º 0.047 0.031 0º 2º TYP. MAX. 0.144 0.142 0.004 0.024 0.021 0.022 0.0126 0.378 0.300 0.374 300 0.295 0.240 0.248 1.27 0.050 1.25 1.20 13.80 13.85 0.053 0.055 0.567 0.565 0.50 0.002 1.20 0.80 0º 2º 0.070 0.043 8º 8º (*) Muar only POA P013P B 0.10 A B 10 H E E2 E4 1 SEATING PLANE e B DETAIL "A" h A C 0.25 D = D1 = = = SEATING PLANE A F A1 A1 L DETAIL "A" α P095A 15/17 VND830ASP PowerSO-10™ SUGGESTED PAD LAYOUT TUBE SHIPMENT (no suffix) 14.6 - 14.9 CASABLANCA B 10.8- 11 MUAR C 6.30 C A A 0.67 - 0.73 10 9 1 9.5 2 3 B 0.54 - 0.6 All dimensions are in mm. 8 7 4 5 1.27 Base Q.ty Bulk Q.ty Tube length (± 0.5) 6 Casablanca Muar 50 50 1000 1000 532 532 A B C (± 0.1) 10.4 16.4 4.9 17.2 0.8 0.8 TAPE AND REEL SHIPMENT (suffix “13TR”) REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 600 600 330 1.5 13 20.2 24.4 60 30.4 All dimensions are in mm. TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.05) K (max) P1 (± 0.1) All dimensions are in mm. 24 4 24 1.5 1.5 11.5 6.5 2 End Start Top No components Components No components cover tape 500mm min Empty components pockets saled with cover tape. 500mm min User direction of feed 16/17 1 VND830ASP Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics 2003 STMicroelectronics - Printed in ITALY- All Rights Reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 17/17