FAIRCHILD FDS6612A_03

FDS6612A
Single N-Channel, Logic-Level, PowerTrench MOSFET
General Description
Features
This N-Channel Logic Level MOSFET is produced
using
Fairchild
Semiconductor’s
advanced
PowerTrench process that has been especially tailored
to minimize the on-state resistance and yet maintain
superior switching performance.
• 8.4 A, 30 V.
RDS(ON) = 22 mΩ @ VGS = 10 V
RDS(ON) = 30 mΩ @ VGS = 4.5 V
• Fast switching speed
• Low gate charge
These devices are well suited for low voltage and
battery powered applications where low in-line power
loss and fast switching are required.
• High performance trench technology for extremely
low RDS(ON)
• High power and current handling capability
DD
DD
DD
DD
G
SS G
S
SS S
SO-8
Pin 1 SO-8
Absolute Maximum Ratings
Symbol
Drain-Source Voltage
VGSS
Gate-Source Voltage
ID
Drain Current
– Continuous
(Note 1a)
– Pulsed
TJ, TSTG
6
3
7
2
8
1
Ratings
Units
30
V
±20
V
8.4
A
40
Power Dissipation for Single Operation
PD
4
TA=25oC unless otherwise noted
Parameter
VDSS
5
(Note 1a)
2.5
(Note 1b)
1.0
Operating and Storage Junction Temperature Range
W
–55 to +150
°C
°C/W
Thermal Characteristics
RθJA
Thermal Resistance, Junction-to-Ambient
(Note 1a)
50
RθJA
Thermal Resistance, Junction-to-Ambient
(Note 1b)
125
RθJC
Thermal Resistance, Junction-to-Case
(Note 1)
25
Package Marking and Ordering Information
Device Marking
Device
Reel Size
Tape width
Quantity
FDS6612A
FDS6612A
13’’
12mm
2500 units
2003 Fairchild Semiconductor Corporation
FDS6612A Rev D (W)
FDS6612A
June 2003
Symbol
TA = 25°C unless otherwise noted
Parameter
Test Conditions
Min Typ
Max
Units
Off Characteristics
BVDSS
∆BVDSS
∆TJ
IDSS
Drain–Source Breakdown Voltage
Breakdown Voltage Temperature
Coefficient
Zero Gate Voltage Drain Current
VGS = 0 V,
ID = 250 µA
30
ID = 250 µA, Referenced to 25°C
VDS = 24 V,
V
26
VGS = 0 V
VDS = 24 V, VGS = 0 V, TJ=55°C
IGSS
VGS = ±20 V,
Gate–Body Leakage
On Characteristics
VDS = 0 V
mV/°C
1
µA
10
µA
±100
nA
3
V
(Note 2)
VGS(th)
∆VGS(th)
∆TJ
RDS(on)
Gate Threshold Voltage
Gate Threshold Voltage
Temperature Coefficient
Static Drain–Source
On–Resistance
VDS = VGS,
ID = 250 µA
ID = 250 µA, Referenced to 25°C
ID(on)
On–State Drain Current
VGS = 10 V,
VDS = 5 V
gFS
Forward Transconductance
VDS = 15 V,
ID = 8.4 A
30
S
VDS = 15 V,
f = 1.0 MHz
V GS = 0 V,
560
pF
1
1.9
–4.4
VGS = 10 V,
ID = 8.4 A
VGS = 4.5 V,
ID = 7.2 A
VGS= 10 V, ID = 8.4 A, TJ=125°C
19
24
25
mV/°C
22
30
37
20
mΩ
A
Dynamic Characteristics
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
RG
Gate Resistance
VGS = 15 mV, f = 1.0 MHz
Switching Characteristics
td(on)
Turn–On Delay Time
tr
Turn–On Rise Time
td(off)
Turn–Off Delay Time
tf
Turn–Off Fall Time
Qg
Total Gate Charge
Qgs
Gate–Source Charge
Qgd
Gate–Drain Charge
140
pF
55
pF
2.5
Ω
(Note 2)
VDD = 15 V,
VGS = 10 V,
VDS = 15 V,
VGS = 5 V
ID = 1 A,
RGEN = 6 Ω
ID = 8.4 A,
7
14
ns
5
10
ns
22
35
ns
3
6
ns
5.4
7.6
nC
1.7
nC
1.9
nC
Drain–Source Diode Characteristics and Maximum Ratings
IS
VSD
trr
Qrr
Maximum Continuous Drain–Source Diode Forward Current
Drain–Source Diode Forward
VGS = 0 V,
IS = 2.1 A (Note 2)
Voltage
Diode Reverse Recovery Time
IF = 8.4 A, diF/dt = 100 A/µs
Diode Reverse Recovery Charge
0.77
2.1
A
1.2
V
19
nS
9
nC
Notes:
1. RθJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of
the drain pins. RθJC is guaranteed by design while RθCA is determined by the user's board design.
a)
50°C/W when mounted
on a 1in2 pad of 2 oz
copper
b) 125°C/W when mounted on a
minimum pad.
Scale 1 : 1 on letter size paper
2 Test: Pulse Width < 300µs, Duty Cycle < 2.0%
FDS6612A Rev D (W)
FDS6612A
Electrical Characteristics
FDS6612A
Typical Characteristics
2
40
VGS = 3.5V
4.5V
RDS(ON), NORMALIZED
DRAIN-SOURCE ON-RESISTANCE
VGS = 10V
ID, DRAIN CURRENT (A)
4.0V
30
6.0V
20
3.5V
10
3.0V
0
0.5
1
1.5
2
2.5
VDS, DRAIN TO SOURCE VOLTAGE (V)
4.0V
1.4
4.5V
5.0V
1.2
6.0V
10V
1
3
0
Figure 1. On-Region Characteristics.
10
20
ID, DRAIN CURRENT (A)
30
40
Figure 2. On-Resistance Variation with
Drain Current and Gate Voltage.
0.1
1.6
ID = 8.4A
VGS = 10V
ID = 4.2A
RDS(ON), ON-RESISTANCE (OHM)
RDS(ON), NORMALIZED
DRAIN-SOURCE ON-RESISTANCE
1.6
0.8
0
1.4
1.2
1
0.8
0.6
0.08
0.06
TA = 125oC
0.04
TA = 25oC
0.02
0
-50
-25
0
25
50
75
100
TJ, JUNCTION TEMPERATURE (oC)
125
150
2
Figure 3. On-Resistance Variation with
Temperature.
4
6
8
VGS, GATE TO SOURCE VOLTAGE (V)
10
Figure 4. On-Resistance Variation with
Gate-to-Source Voltage.
40
100
VGS = 0V
IS, REVERSE DRAIN CURRENT (A)
VDS = 5V
ID, DRAIN CURRENT (A)
1.8
30
20
TA = 125oC
o
-55 C
10
10
1
o
TA = 125 C
0.1
25oC
0.01
o
-55 C
0.001
25oC
0.0001
0
1.5
2
2.5
3
3.5
VGS, GATE TO SOURCE VOLTAGE (V)
4
Figure 5. Transfer Characteristics.
4.5
0
0.2
0.4
0.6
0.8
1
VSD, BODY DIODE FORWARD VOLTAGE (V)
1.2
Figure 6. Body Diode Forward Voltage Variation
with Source Current and Temperature.
FDS6612A Rev D (W)
FDS6612A
Typical Characteristics
800
f = 1 MHz
VGS = 0 V
ID = 8.4A
8
VDS = 10V
600
CAPACITANCE (pF)
VGS, GATE-SOURCE VOLTAGE (V)
10
20V
6
15V
4
Ciss
400
Coss
200
2
Crss
0
0
0
2
4
6
8
Qg, GATE CHARGE (nC)
10
0
12
Figure 7. Gate Charge Characteristics.
25
30
50
P(pk), PEAK TRANSIENT POWER (W)
100µs
RDS(ON) LIMIT
1ms
10ms
100ms
10
1s
10s
1
DC
VGS = 10V
SINGLE PULSE
RθJA = 125oC/W
0.1
o
TA = 25 C
0.01
0.01
0.1
1
10
VDS, DRAIN-SOURCE VOLTAGE (V)
100
SINGLE PULSE
o
RθJA = 125 C/W
40
TA = 25oC
30
20
10
0
0.001
Figure 9. Maximum Safe Operating Area.
r(t), NORMALIZED EFFECTIVE
TRANSIENT THERMAL RESISTANCE
10
15
20
VDS, DRAIN TO SOURCE VOLTAGE (V)
Figure 8. Capacitance Characteristics.
100
ID, DRAIN CURRENT (A)
5
0.01
0.1
1
t1, TIME (sec)
10
100
Figure 10. Single Pulse Maximum
Power Dissipation.
1
D = 0.5
RθJA(t) = r(t) * RθJA
0.2
0.1
o
RθJA = 125 C/W
0.1
0.05
P(pk)
0.02
0.01
t1
t2
0.01
TJ - TA = P * RθJA(t)
Duty Cycle, D = t1 / t2
SINGLE PULSE
0.001
0.0001
0.001
0.01
0.1
1
10
100
1000
t1, TIME (sec)
Figure 11. Transient Thermal Response Curve.
Thermal characterization performed using the conditions described in Note 1c.
Transient thermal response will change depending on the circuit board design.
FDS6612A Rev D (W)
FDS6612A
PSPICE Electrical Model N-Channel
.SUBCKT FDS6612A 2 1 3
*NOM TEMP=25 DEG C
*REV A - JULY 2003
CA 12 8 1E-9
CB 15 14 4.0E-10
CIN 6 8 5.1E-10
LDRAIN
DPLCAP
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
DRAIN
2
10
DBREAK
+
RSLC2
5
51
ESLC
11
-
RDRAIN
6
8
EVTHRES
+ 19 8
+
LGATE
GATE
1
+
50
ESG
IT 8 17 1
EVTEMP
RGATE +
18 9
20 22
21
EBREAK
16
17
18
-
D BODY
MWEAK
6
MMED
MSTRO
RLGATE
LSOURCE
CIN
8
RLGATE 1 9 38.4
RLDRAIN 2 5 10
RLSOURCE 3 7 40
SOURC E
3
7
RSOURCE
RLSOURCE
S1A
12
13
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 8E-3
RGATE 9 20 4.2
RLDRAIN
RSLC1
51
EBREAK 11 7 17 18 34.2
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
LGATE 1 9 3.84E-9
LDRAIN 2 5 1.00E-9
LSOURCE 3 7 4E-9
5
S2A
S1B
CA
15
14
13
8
RBREAK
17
18
S2B
13
RVTEMP
CB
6
8
EGS
RSLC1 5 51 RSLCMOD 1E-6
RSLC2 5 50 1E3
RSOURCE 8 7 RSOURCEMOD 7.5E-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
-
19
VBAT
+
IT
14
+
+
5
8
EDS
-
8
22
RVTHRES
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1E-6*105),3))}
.MODEL DBODYMOD D (IS=7E-15 RS=6.1E-3 N=0.84 TRS1=1.7E-3 TRS2=1.0E-6
+ CJO=3.2E-10 TT=10E-9 M=0.5 IKF=0.3 XTI=3.0)
.MODEL DBREAKMOD D (RS=1E-1 TRS1=1.12E-3 TRS2=1.25E-6)
.MODEL DPLCAPMOD D (CJO=14E-11 IS=1E-30 N=10 M=0.34)
.MODEL MWEAKMOD NMOS (VTO=1.82 KP=0.05 IS=1E-30 N=10 TOX=1 L=1U W=1U RG=42 RS=.1)
.MODEL MMEDMOD NMOS (VTO=2.1 KP=6 IS=1E-30 N=10 TOX=1 L=1U W=1U RG=4.2)
.MODEL MSTROMOD NMOS (VTO=2.55 KP=50 IS=1E-30 N=10 TOX=1 L=1U W=1U)
.MODEL RBREAKMOD RES (TC1=0.83E-3 TC2=1E-7)
.MODEL RDRAINMOD RES (TC1=6E-3 TC2=5E-6)
.MODEL RSLCMOD RES (TC1=2.5E-3 TC2=4.5E-6)
.MODEL RSOURCEMOD RES (TC1=1.0E-3 TC2=1E-6)
.MODEL RVTHRESMOD RES (TC1=-2.013E-3 TC2=-7E-6)
.MODEL RVTEMPMOD RES (TC1=-1.5E-3 TC2=1E-6)
.MODEL S1AMOD VSWITCH (RON=1E-5 ROFF=0.1 VON=-4 VOFF=-3)
.MODEL S1BMOD VSWITCH (RON=1E-5 ROFF=0.1 VON=-3 VOFF=-4)
.MODEL S2AMOD VSWITCH (RON=1E-5 ROFF=0.1 VON=-1.3 VOFF=-0.5)
.MODEL S2BMOD VSWITCH (RON=1E-5 ROFF=0.1 VON=-0.5 VOFF=-1.3)
.ENDS
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
FDS6612A Rev D (W)
FDS6612A
SPICE Thermal Model
.SUBCKT FDS6612A_THERM TH TL
*THERMAL MODEL SUBCIRCUIT
*REV A - JULY 2003
*MIN PAD RJA
th
RTHERM1
CTHERM1
CTHERM2
CTHERM3
CTHERM4
CTHERM5
CTHERM6
CTHERM7
CTHERM8
TH
8
7
6
5
4
3
2
8
7
6
5
4
3
2
TL
0.005
0.05
0.10
0.35
0.45
0.50
0.55
3.00
RTHERM1
RTHERM2
RTHERM3
RTHERM4
RTHERM5
RTHERM6
RTHERM7
RTHERM8
TH
8
7
6
5
4
3
2
8
7
6
5
4
3
2
TL
5.000
6.250
7.500
8.750
10.625
11.875
31.250
43.750
.ENDS
JUNCTION
CTHERM1
8
RTHERM2
CTHERM2
7
RTHERM3
CTHERM3
6
RTHERM4
CTHERM4
5
RTHERM5
CTHERM5
4
CTHERM6
RTHERM6
3
CTHERM7
RTHERM7
2
CTHERM8
RTHERM8
tl
AMBIENT
FDS6612A Rev D (W)
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
ACEx™
FACT Quiet Series™
ActiveArray™
FAST
Bottomless™
FASTr™
CoolFET™
FRFET™
CROSSVOLT™ GlobalOptoisolator™
DOME™
GTO™
EcoSPARK™ HiSeC™
E2CMOSTM
I2C™
TM
EnSigna
ImpliedDisconnect™
FACT™
ISOPLANAR™
Across the board. Around the world.™
The Power Franchise™
Programmable Active Droop™
LittleFET™
MICROCOUPLER™
MicroFET™
MicroPak™
MICROWIRE™
MSX™
MSXPro™
OCX™
OCXPro™
OPTOLOGIC
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench
QFET
QS™
QT Optoelectronics™
Quiet Series™
RapidConfigure™
RapidConnect™
SILENT SWITCHER
SMART START™
SPM™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic
TINYOPTO™
TruTranslation™
UHC™
UltraFET
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY
ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT
CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
2. A critical component is any component of a life
1. Life support devices or systems are devices or
support device or system whose failure to perform can
systems which, (a) are intended for surgical implant into
be reasonably expected to cause the failure of the life
the body, or (b) support or sustain life, or (c) whose
support device or system, or to affect its safety or
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
effectiveness.
reasonably expected to result in significant injury to the
user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or
In Design
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Rev. I5