FAIRCHILD FDW2511NZ_08

May 2008
FDW2511NZ
Dual N-Channel 2.5V Specified PowerTrench®
MOSFET
Features
! 7.1A, 20V
tmM
General Description
rDS(ON) =0.020Ω, VGS = 4.5V
This N-Channel MOSFET is produced using Fairchild
Semiconductor’s advanced PowerTrench process that has
been especially tailored to minimize the on-state resistance
and yet maintain low gate charge for superior switching
performance. These devices are well suited for portable
electronics applications.
rDS(ON) =0.025Ω, VGS = 2.5V
! Extended VGS range (±12 V) for battery applications
! HBM ESD Protection Level of 3.5kV Typical (note 3)
! High performance trench technology for extremely low
rDS(ON)
! Low profile TSSOP-8 package
Applications
! Load switch
! Battery charge
! Battery disconnect circuits
D1
G2
S2
S2
D2
G1
S1
S1
D1
TSSOP-8
FDW2511NZ Rev. A1
G1
Pin 1
©2008 Fairchild Semiconductor Corporation
D2
G2
S1
1
S2
www.fairchildsemi.com
FDW2511NZ Dual N-Channel 2.5V Specified PowerTrench® MOSFET
D
Symbol
VDSS
Drain to Source Voltage
Ratings
20
Units
V
VGS
Gate to Source Voltage
±12
V
Drain Current
Continuous (TC = 25oC, VGS = 4.5V, RθJA = 77oC/W)
Continuous (TC = 100oC, VGS = 2.5V, RθJA = 77oC/W)
7.1
A
4.0
A
ID
Parameter
Figure 4
A
PD
Power dissipation
Pulsed
1.6
W
Derate above 25°C
13
mW/oC
TJ, TSTG
Operating and Storage Temperature
o
-55 to 150
C
Thermal Characteristics
RθJA
Thermal Resistance Junction to Ambient (Note 1)
77
RθJA
Thermal Resistance Junction to Ambient (Note 2)
114
o
C/W
oC/W
Package Marking and Ordering Information
Device Marking
2511NZ
Device
FDW2511NZ
Package
TSSOP-8
Reel Size
13”
Tape Width
12 mm
Quantity
2500 units
2
Electrical Characteristics TA = 25°C unless otherwise noted
Symbol
Parameter
Test Conditions
Min
Typ
Max
Units
20
-
-
-
V
-
1
-
-
5
µA
-
-
Off Characteristics
BVDSS
Drain to Source Breakdown Voltage
IDSS
Zero Gate Voltage Drain Current
IGSS
Gate to Source Leakage Current
ID = 250µA, VGS = 0V
VDS = 16V
TA=100oC
VGS = 0V
VGS = ±12V
VGS = ±4.5V
±10
µA
±250
nA
On Characteristics
VGS(TH)
rDS(ON)
Gate to Source Threshold Voltage
Drain to Source On Resistance
VGS = VDS, ID = 250µA
0.6
0.8
1.5
V
ID = 7.1A, VGS = 4.5V
-
0.015
0.020
Ω
ID = 6.9A, VGS = 4.0V
-
0.015
0.021
Ω
ID = 6.5A, VGS = 3.1V
-
0.016
0.024
Ω
ID = 6.3A, VGS = 2.5V
-
0.017
0.025
Ω
-
1000
-
pF
-
250
-
pF
-
175
-
pF
Dynamic Characteristics
CISS
Input Capacitance
COSS
Output Capacitance
CRSS
Reverse Transfer Capacitance
RG
Gate Resistance
VGS = 0.5V, f = 1MHz
-
2.8
-
Ω
Qg(TOT)
Total Gate Charge at 4.5V
VGS = 0V to 4.5V
-
11.5
17.3
nC
Qg(2.5)
Total Gate Charge at 2.5V
VGS = 0V to 2.5V
-
7.6
11.4
nC
Qgs
Gate to Source Gate Charge
-
1.7
-
nC
Qgd
Gate to Drain “Miller” Charge
-
3.5
-
nC
FDW2511NZ Rev. A1
VDS = 10V, VGS = 0V,
f = 1MHz
2
VDD = 10V
ID = 7.1A
Ig = 1.0mA
www.fairchildsemi.com
FDW2511NZ Dual N-Channel 2.5V Specified PowerTrench® MOSFET
Absolute Maximum Ratings TA=25°C unless otherwise noted
(VGS = 4.5V)
tON
Turn-On Time
-
-
146
ns
td(ON)
Turn-On Delay Time
-
13
-
ns
tr
Rise Time
td(OFF)
Turn-Off Delay Time
tf
tOFF
-
84
-
ns
-
41
-
ns
Fall Time
-
55
-
ns
Turn-Off Time
-
-
144
ns
VDD = 10V, ID = 7.1A
VGS = 4.5V, RGS = 6.8Ω
Drain-Source Diode Characteristics
VSD
Source to Drain Diode Voltage
ISD = 1.3A
-
0.7
1.2
V
trr
Reverse Recovery Time
ISD = 7.1A, dISD/dt = 100A/µs
-
-
27
ns
QRR
Reverse Recovered Charge
ISD = 7.1A, dISD/dt = 100A/µs
-
-
16
nC
Notes:
1. RθJA is 77 oC/W (steady state) when mounted on a 1 inch2 copper pad on FR-4.
2. RθJA is 114 oC/W (steady state) when mounted on a mininum copper pad on FR-4.
3 The diode connected to the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.
4
FDW2511NZ Rev. A1
3
www.fairchildsemi.com
FDW2511NZ Dual N-Channel 2.5V Specified PowerTrench® MOSFET
Switching Characteristics
TA = 25°C unless otherwise noted
8
1.2
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.0
0.8
0.6
0.4
6
VGS = 4.5V
4
VGS = 2.5V
2
0.2
0
0
0
25
50
75
100
125
150
25
50
TA , AMBIENT TEMPERATURE (oC)
75
100
125
150
TA, AMBIENT TEMPERATURE (oC)
Figure 1. Normalized Power Dissipation vs
Ambient Temperature
Figure 2. Maximum Continuous Drain Current vs
Ambient Temperature
2
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
ZθJA, NORMALIZED
THERMAL IMPEDANCE
1
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJA x RθJA + TA
0.01
10-5
10-4
10-3
10-2
10-1
100
101
102
103
t, RECTANGULAR PULSE DURATION (s)
Figure 3. Normalized Maximum Transient Thermal Impedance
400
TA = 25oC
IDM, PEAK CURRENT (A)
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
100
I = I25
150 - TA
125
VGS = 2.5V
10
5
10-5
10-4
10-3
10-2
10-1
100
101
102
103
t, PULSE WIDTH (s)
Figure 4. Peak Current Capability
FDW2511NZ Rev. A1
4
www.fairchildsemi.com
FDW2511NZ Dual N-Channel 2.5V Specified PowerTrench® MOSFET
Typical Characteristic
400
40
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 10V
100µs
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
100
1ms
10
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
10ms
30
TJ = 150oC
20
TJ = 25oC
10
TJ = -55oC
SINGLE PULSE
TJ = MAX RATED
TA = 25oC
1
0.5
0
0.1
1.0
10
30
1.0
VDS, DRAIN TO SOURCE VOLTAGE (V)
Figure 5. Forward Bias Safe Operating Area
2.0
2.5
Figure 6. Transfer Characteristics
40
40
VGS = 10V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 2.5V
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (mΩ)
ID, DRAIN CURRENT (A)
1.5
VGS , GATE TO SOURCE VOLTAGE (V)
30
VGS = 4.5V
VGS = 1.8V
20
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
10
ID = 7.1A
30
20
ID = 1A
TA = 25oC
0
10
0
0.5
1.0
1.5
1
Figure 7. Saturation Characteristics
3
4
5
Figure 8. Drain to Source On Resistance vs Gate
Voltage and Drain Current
1.25
1.50
VGS = VDS, ID = 250µA
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
NORMALIZED GATE
THRESHOLD VOLTAGE
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
2
VGS, GATE TO SOURCE VOLTAGE (V)
VDS , DRAIN TO SOURCE VOLTAGE (V)
1.25
1.00
1.00
0.75
VGS = 4.5V, ID = 7.1A
0.75
-80
0.50
-40
0
40
80
120
160
-80
TJ, JUNCTION TEMPERATURE (oC)
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
Figure 9. Normalized Drain to Source On
Resistance vs Junction Temperature
FDW2511NZ Rev. A1
-40
Figure 10. Normalized Gate Threshold Voltage vs
Junction Temperature
5
www.fairchildsemi.com
FDW2511NZ Dual N-Channel 2.5V Specified PowerTrench® MOSFET
Typical Characteristic (Continued) TA = 25°C unless otherwise noted
2000
ID = 250µA
CISS = CGS + CGD
1000
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
1.10
1.05
1.00
COSS ≅ CDS + CGD
CRSS = CGD
VGS = 0V, f = 1MHz
0.95
100
-80
-40
0
40
80
120
160
0.1
1
TJ , JUNCTION TEMPERATURE (oC)
10
20
VDS , DRAIN TO SOURCE VOLTAGE (V)
Figure 11. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
Figure 12. Capacitance vs Drain to Source
Voltage
VGS , GATE TO SOURCE VOLTAGE (V)
4.5
VDD = 10V
3.0
1.5
WAVEFORMS IN
DESCENDING ORDER:
ID = 1A
ID = 7.1A
0
0
3
6
Qg, GATE CHARGE (nC)
9
12
Figure 13. Gate Charge Waveforms for Constant Gate Currents
FDW2511NZ Rev. A1
6
www.fairchildsemi.com
FDW2511NZ Dual N-Channel 2.5V Specified PowerTrench® MOSFET
Typical Characteristic (Continued) TA = 25°C unless otherwise noted
VDS
BVDSS
tP
L
VDS
VARY tP TO OBTAIN
REQUIRED PEAK IAS
IAS
+
RG
VDD
VDD
-
VGS
DUT
tP
IAS
0V
0
0.01Ω
tAV
Figure 14. Unclamped Energy Test Circuit
Figure 15. Unclamped Energy Waveforms
VDS
VDD
Qg(TOT)
L
VDS
VGS
VGS
VGS = 4.5V
+
Qgs2
VDD
DUT
VGS = 1V
Ig(REF)
0
Qg(TH)
Qgs
Qgd
Ig(REF)
0
Figure 16. Gate Charge Test Circuit
Figure 17. Gate Charge Waveforms
VDS
tON
tOFF
td(ON)
td(OFF)
RL
tr
VDS
tf
90%
90%
+
VGS
VDD
-
10%
10%
0
DUT
90%
RGS
VGS
VGS
0
Figure 18. Switching Time Test Circuit
FDW2511NZ Rev. A1
50%
10%
50%
PULSE WIDTH
Figure 19. Switching Time Waveforms
7
www.fairchildsemi.com
FDW2511NZ Dual N-Channel 2.5V Specified PowerTrench® MOSFET
Test Circuits and Waveforms
.SUBCKT FDW2511NZ 2 1 3 ;
rev July 2004
Ca 12 8 1.1e-9
Cb 15 14 1.1e-9
Cin 6 8 0.8e-9
LDRAIN
DPLCAP
10
Dbody 7 5 DbodyMOD
Dbreak 5 11 DbreakMOD
DESD2 91 9 DESD2MOD
DESD1 91 7 DESD1MOD
Dplcap 10 5 DplcapMOD
RLDRAIN
RSLC1
51
5
51
ESLC
EVTHRES
+ 19 8
+
LGATE
GATE
1
EVTEMP
RGATE + 18 22
9
20
21
DBODY
MWEAK
MMED
MSTRO
RLGATE
LSOURCE
CIN
8
SOURCE
3
7
RSOURCE
Lgate 1 9 9.1e-10
Ldrain 2 5 1e-9
Lsource 3 7 2.1e-10
RLSOURCE
S1A
12
S2A
14
13
13
8
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
VBAT
5
8
EDS
-
-
IT
14
+
+
Mmed 16 6 8 8 MmedMOD
Mstro 16 6 8 8 MstroMOD
Mweak 16 21 8 8 MweakMOD
+
17
EBREAK 18
-
16
6
It 8 17 1
RLgate 1 9 9.1
RLdrain 2 5 10
RLsource 3 7 2.1
11
50
RDRAIN
6
8
ESG
DBREAK
+
RSLC2
-
Ebreak 11 7 17 18 24
Eds 14 8 5 8 1
Egs 13 8 6 8 1
Esg 6 10 6 8 1
Evthres 6 21 19 8 1
Evtemp 20 6 18 22 1
DRAIN
2
5
+
8
22
RVTHRES
Rbreak 17 18 RbreakMOD 1
Rdrain 50 16 RdrainMOD 1.0e-2
Rgate 9 20 2.75
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
Rsource 8 7 RsourceMOD 1.7e-3
Rvthres 22 8 Rvthresmod 1
Rvtemp 18 19 RvtempMOD 1
S1a 6 12 13 8 S1AMOD
S1b 13 12 13 8 S1BMOD
S2a 6 15 14 13 S2AMOD
S2b 13 15 14 13 S2BMOD
Vbat 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*120),2.5))}
MODEL DbodyMOD D (IS=3.5E-11 RS=1.08e-2 IKF=.5 N= TRS1=8e-4 TRS2=6e-6 XTI=.1
+CJO=3.2e-10 TT=1.07e-8 M=0.68 TIKF=0.001)
.MODEL DbreakMOD D (RS=1e-1 TRS1=9e-3 TRS2=-2.0e-5)
.MODEL DESD1MOD D (BV=15.0 RS=1)
.MODEL DESD2MOD D (BV=14.3 RS=1)
.MODEL DplcapMOD D (CJO=0.70e-9 IS=1e-30 N=10 M=0.3)
MODEL MstroMOD NMOS (VTO=1.21 KP=147 IS=1e-30 N=10 TOX=1 L=1u W=1u)
.MODEL MmedMOD NMOS (VTO=0.93 KP=1.7 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.75)
.MODEL MweakMOD NMOS (VTO=0.752 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=27.5 RS=.1)
MODEL RbreakMOD RES (TC1=5.0e-4 TC2=8e-7)
.MODEL RdrainMOD RES (TC1=2.1e-3 TC2=3.4e-6)
.MODEL RSLCMOD RES (TC1=1e-3 TC2=1e-5)
.MODEL RsourceMOD RES (TC1=5e-3 TC2=1e-6)
.MODEL RvtempMOD RES (TC1=-.9e-3 TC2=1e-7)
.MODEL RvthresMOD RES (TC1=-1.1e-3 TC2=-4.0e-6)
MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-6 VOFF=-1.5)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.5 VOFF=-6)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=0.3)
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.3 VOFF=-0.5)
ENDS
*$
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank
Wheatley.
FDW2511NZ Rev. A1
8
www.fairchildsemi.com
FDW2511NZ Dual N-Channel 2.5V Specified PowerTrench® MOSFET
PSPICE Electrical Model
REV July 2004
template fdw2511nz n2,n1,n3
electrical n2,n1,n3
{
var i iscl
dp..model dbodymod = (isl=3.5e-11,rs=1.08e-2,ikf=.5,trs1=8e-4,trs2=6e-6,xti=.1,cjo=3.2e-10,tt=1.07e-8,m=0.68,tikf=0.001)
dp..model dbreakmod = (rs=1e-1,trs1=9e-3,trs2=-2.0e-5)
dp..model dplcapmod = (cjo=0.70e-9,isl=10e-30,nl=10,m=0.3)
m..model mstrongmod = (type=_n,vto=1.21,kp=147,is=1e-30, tox=1)
m..model mmedmod = (type=_n,vto=0.93,kp=1.7,is=1e-30, tox=1)
m..model mweakmod = (type=_n,vto=0.752,kp=0.05,is=1e-30, tox=1,rs=0.1)
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-6,voff=-1.5)
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-1.5,voff=-6)
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-0.5,voff=0.3)
LDRAIN
DPLCAP 5
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.3,voff=-0.5)
c.ca n12 n8 = 1.1e-9
10
c.cb n15 n14 = 1.1e-9
RLDRAIN
RSLC1
c.cin n6 n8 = 0.8e-9
51
DRAIN
2
RSLC2
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakmod
desd2 91 9 desd2mod
desd1 91 7 desd1mod
dp.dplcap n10 n5 = model=dplcapmod
spe.ebreak n11 n7 n17 n18 = 24
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evthres n6 n21 n19 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
ISCL
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
LGATE
GATE
1
DBREAK
50
-
EVTEMP
RGATE +
18 22
9
20
21
11
DBODY
16
MWEAK
6
EBREAK
+
17
18
-
MMED
MSTRO
RLGATE
CIN
8
LSOURCE
SOURCE
3
7
RSOURCE
RLSOURCE
S1A
i.it n8 n17 = 1
l.lgate n1 n9 = 9.1e-10
l.ldrain n2 n5 = 1e-9
l.lsource n3 n7 = 2.1e-10
12
S2A
13
8
14
13
S1B
15
18
RVTEMP
CB
6
8
EGS
-
19
IT
14
+
+
res.rlgate n1 n9 = 9.1
res.rldrain n2 n5 = 10
res.rlsource n3 n7 = 2.1
17
S2B
13
CA
RBREAK
VBAT
5
8
EDS
-
+
8
22
RVTHRES
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1=5.0e-4,tc2=8e-7
m.desd1mod bv=15.0 rs=1)
m.desd2mod bv=14.3 rs=1)
res.rdrain n50 n16 = 1.0e-2, tc1=2.1e-3,tc2=3.4e-6
res.rgate n9 n20 = 2.75
res.rslc1 n5 n51 = 1e-6, tc1=1e-3,tc2=1e-5
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 1.7e-3, tc1=5e-3,tc2=1e-6
res.rvthres n22 n8 = 1, tc1=-1.1e-3,tc2=-4.0e-6
res.rvtemp n18 n19 = 1, tc1=-.9e-3,tc2=1e-7
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/120))** 2.5))
}
}
FDW2511NZ Rev. A1
9
www.fairchildsemi.com
FDW2511NZ Dual N-Channel 2.5V Specified PowerTrench® MOSFET
SABER Electrical Model
th
REV July 2004
FDW2511NZ_JA Junction Ambient
Minimum copper pad area
CTHERM1 Junction c2 5.7e-4
CTHERM2 c2 c3 5.72e-4
CTHERM3 c3 c4 5.8e-4
CTHERM4 c4 c5 4.7e-3
CTHERM5 c5 c6 5.1e-3
CTHERM6 c6 c7 0.02
CTHERM7 c7 c8 0.2
CTHERM8 c8 Ambient 6
RTHERM1
CTHERM1
2
RTHERM2
RTHERM1 Junction c2 0.003
RTHERM2 c2 c3 0.25
RTHERM3 c3 c4 1.0
RTHERM4 c4 c5 1.1
RTHERM5 c5 c6 7.5
RTHERM6 c6 c7 33.6
RTHERM7 c7 c8 33.7
RTHERM8 c8 Ambient 33.8
CTHERM2
3
RTHERM3
CTHERM3
4
RTHERM4
CTHERM4
5
SABER Thermal Model
SABER thermal model FDW2511NZ
Minimum copper pad area
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th c2 = 5.7e-4
ctherm.ctherm2 c2 c3 = 5.72e-4
ctherm.ctherm3 c3 c4 = 5.8e-4
ctherm.ctherm4 c4 c5 = 4.7e-3
ctherm.ctherm5 c5 c6 = 5.1e-3
ctherm.ctherm6 c6 c7 = 0.02
ctherm.ctherm7 c7 c8 = 0.2
ctherm.ctherm8 c8 tl = 6
RTHERM5
CTHERM5
6
RTHERM6
CTHERM6
7
RTHERM7
rtherm.rtherm1 th c2 = 0.003
rtherm.rtherm2 c2 c3 = 0.25
rtherm.rtherm3 c3 c4 = 1.0
rtherm.rtherm4 c4 c5 = 1.1
rtherm.rtherm5 c5 c6 = 7.5
rtherm.rtherm6 c6 c7 = 33.6
rtherm.rtherm7 c7 c8 = 33.7
rtherm.rtherm8 c8 tl = 33.8
}
CTHERM7
8
RTHERM8
CTHERM8
tl
FDW2511NZ Rev. A1
JUNCTION
10
AMBIENT
www.fairchildsemi.com
FDW2511NZ Dual N-Channel 2.5V Specified PowerTrench® MOSFET
SPICE Thermal Model
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global
subsidianries, and is not intended to be an exhaustive list of all such trademarks.
ACEx®
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
EcoSPARK®
EfficentMax™
EZSWITCH™ *
FPS™
F-PFS™
FRFET®
Global Power ResourceSM
Green FPS™
Green FPS™ e-Series™
GTO™
IntelliMAX™
ISOPLANAR™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MillerDrive™
MotionMax™
Motion-SPM™
OPTOLOGIC®
OPTOPLANAR®
™
®
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™
FlashWriter® *
®
PDP-SPM™
Power-SPM™
PowerTrench®
Programmable Active Droop™
QFET®
QS™
Quiet Series™
RapidConfigure™
Saving our world 1mW at a time™
SmartMax™
SMART START™
SPM®
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SuperMOS™
®
The Power Franchise®
tm
TinyBoost™
TinyBuck™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
µSerDes™
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
tm
* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS
HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE
APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER
ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S
WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1.
Life support devices or systems are devices or systems which,
(a) are intended for surgical implant into the body or (b)
support or sustain life, and (c) whose failure to perform when
properly used in accordance with instructions for use provided
in the labeling, can be reasonably expected to result in a
significant injury of the user.
2.
A critical component in any component of a life support,
device, or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or
system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or In Design
This datasheet contains the design specifications for product development.
Specifications may change in any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make
changes at any time without notice to improve design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild Semiconductor reserves
the right to make changes at any time without notice to improve the design.
Obsolete
Not In Production
This datasheet contains specifications on a product that is discontinued by
Fairchild Semiconductor. The datasheet is for reference information only.
Rev. I34
FDW2511NZ Rev.A1
WWW. fairchildsemicom