FAIRCHILD FDS5672

FDS5672
N-Channel PowerTrench® MOSFET
60V, 12A, 10mΩ
Features
General Description
„ rDS(ON) = 10mΩ, VGS = 10V, ID = 12A
This N-Channel MOSFET has been designed specifically to
improve the overall efficiency of DC/DC converters using
either synchronous or conventional switching PWM
controllers. It has been optimized for low gate charge, low
rDS(ON) and fast switching speed.
„ rDS(ON) = 14mΩ, VGS = 6V, ID = 10A
„ High performance trench technology for extremely low
rDS(ON)
„ Low gate charge
„ High power and current handling capability
Applications
„ DC/DC converters
Branding Dash
5
1
2
3
4
5
4
6
3
7
2
8
1
SO-8
©2005 Fairchild Semiconductor Corporation
FDS5672 Rev. A
1
www.fairchildsemi.com
FDS5672 N-Channel PowerTrench® MOSFET
July 2005
Symbol
VDSS
Drain to Source Voltage
Parameter
Ratings
60
Units
V
VGS
Gate to Source Voltage
±20
V
12
A
Drain Current
Continuous (TC = 25 oC, VGS = 10V, RθJA = 50oC/W)
ID
o
o
Continuous (TC = 25 C, VGS = 6V, RθJA = 50 C/W)
10
Pulsed
EAS
PD
TJ, TSTG
Figure 4
A
Single Pulse Avalanche Energy (Note 1)
245
mJ
Power dissipation
2.5
W
Derate above 25oC
20
mW/oC
Operating and Storage Temperature
o
-55 to 150
C
Thermal Characteristics
RθJC
Thermal Resistance Junction to Case (Note 2)
25
oC/W
RθJA
Thermal Resistance Junction to Ambient at 10 seconds (Note 3)
50
oC/W
RθJA
Thermal Resistance Junction to Ambient at 1000 seconds (Note 3)
85
o
C/W
Package Marking and Ordering Information
Device Marking
FDS5672
Device
FDS5672
Package
SO-8
Reel Size
330mm
Tape Width
12mm
Quantity
2500 units
Electrical Characteristics TC = 25°C unless otherwise noted
Symbol
Parameter
Test Conditions
Min
Typ
Max
Units
60
-
-
-
V
-
1
-
-
250
VGS = ±20V
-
-
±100
nA
VGS = VDS, ID = 250µA
2
-
4
V
ID = 12A, VGS = 10V
-
0.0088
0.010
ID = 10A, VGS = 6V,
-
0.012
0.014
ID = 12A, VGS = 10V,
TC = 150oC
-
0.016
0.023
-
2200
-
pF
-
410
-
pF
-
130
-
pF
Off Characteristics
BVDSS
Drain to Source Breakdown Voltage
IDSS
Zero Gate Voltage Drain Current
IGSS
Gate to Source Leakage Current
ID = 250µA, VGS = 0V
VDS = 50V
VGS = 0V
TC = 150oC
µA
On Characteristics
VGS(TH)
rDS(ON)
Gate to Source Threshold Voltage
Drain to Source On Resistance
Ω
Dynamic Characteristics
CISS
Input Capacitance
COSS
Output Capacitance
CRSS
Reverse Transfer Capacitance
RG
Gate Resistance
VGS = 0.5V, f = 1MHz
-
1.4
-
Ω
Qg(TOT)
Total Gate Charge at 10V
VGS = 0V to 10V
-
34
45
nC
Qg(TH)
Threshold Gate Charge
VGS = 0V to 2V
-
4.2
5.5
nC
Qgs
Gate to Source Gate Charge
-
9.4
-
nC
Qgs2
Gate Charge Threshold to Plateau
-
5.2
-
nC
Qgd
Gate to Drain “Miller” Charge
-
9.3
-
nC
©2005 Fairchild Semiconductor Corporation
FDS5672 Rev. A
VDS = 25V, VGS = 0V,
f = 1MHz
2
VDD = 30V
ID = 12A
Ig = 1.0mA
www.fairchildsemi.com
FDS5672 N-Channel PowerTrench® MOSFET
MOSFET Maximum Ratings TC = 25°C unless otherwise noted
tON
Turn-On Time
-
-
50
ns
td(ON)
Turn-On Delay Time
-
13
-
ns
tr
Rise Time
-
20
-
ns
td(OFF)
Turn-Off Delay Time
-
35
-
ns
tf
Fall Time
-
14
-
ns
tOFF
Turn-Off Time
-
-
64
ns
ISD = 12A
-
-
1.25
V
ISD = 6A
-
-
1.0
V
VDD = 30V, ID = 12A
VGS = 10V, RGS = 9.1Ω
Drain-Source Diode Characteristics
VSD
Source to Drain Diode Voltage
trr
Reverse Recovery Time
ISD=12A, dISD/dt = 100A/µs
-
-
39
ns
QRR
Reverse Recovered Charge
ISD=12A, dISD/dt = 100A/µs
-
-
40
nC
Notes:
1: Starting TJ = 25°C, L = 1mH, IAS = 22A, VDD = 60V, VGS = 10V.
2: RθJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the
drain pins. RθJC is guaranteed by design while RθJA is determined by the user’s board design.
3: RθJA is measured with 1.0 in2 copper on FR-4 board.
©2005 Fairchild Semiconductor Corporation
FDS5672 Rev. A
3
www.fairchildsemi.com
FDS5672 N-Channel PowerTrench® MOSFET
Resistive Switching Characteristics (VGS = 10V)
1.2
15
12
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.0
0.8
0.6
0.4
VGS = 10V
9
6
3
0.2
0
0
0
25
50
75
100
150
125
25
50
75
100
125
150
TA, AMBIENT TEMPERATURE (oC)
TA , AMBIENT TEMPERATURE (oC)
Figure 1. Normalized Power Dissipation vs
Ambient Temperature
Figure 2. Maximum Continuous Drain Current vs
Ambient Temperature
2
ZθJA, NORMALIZED
THERMAL IMPEDANCE
1
0.1
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
PDM
SINGLE PULSE
0.01
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJA x RθJA + TA
0.001
10-5
10-4
10-3
10-2
10-1
100
101
102
103
t, RECTANGULAR PULSE DURATION (s)
Figure 3. Normalized Maximum Transient Thermal Impedance
1100
IDM, PEAK CURRENT (A)
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
TA = 25oC
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
VGS = 10V
I = I25
150 - TA
125
100
10
10-5
10-4
10-3
10-2
10-1
100
101
102
103
t, PULSE WIDTH (s)
Figure 4. Peak Current Capability
©2005 Fairchild Semiconductor Corporation
FDS5672 Rev. A
4
www.fairchildsemi.com
FDS5672 N-Channel PowerTrench® MOSFET
Typical Characteristics TC = 25°C unless otherwise noted
400
50
100µs
IAS, AVALANCHE CURRENT (A)
ID, DRAIN CURRENT (A)
100
1ms
10
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
1
10ms
SINGLE PULSE
TJ = MAX RATED
TA = 25oC
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
10
STARTING TJ = 25oC
STARTING TJ = 150oC
1
0.1
0.1
1
10
70
0.1
1
VDS, DRAIN TO SOURCE VOLTAGE (V)
Figure 5. Forward Bias Safe Operating Area
Figure 6. Unclamped Inductive Switching
Capability
25
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
VGS = 6V
VGS = 5V
20
ID, DRAIN CURRENT (A)
20
ID , DRAIN CURRENT (A)
100
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
25
15
TJ = 150oC
10
TJ = -55oC
TJ = 25oC
5
15
VGS = 10V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TA = 25oC
0
3.0
3.5
4.0
4.5
5.0
VGS = 4.5V
10
5
0
5.5
0
0.2
VGS , GATE TO SOURCE VOLTAGE (V)
0.4
0.6
0.8
1.0
VDS , DRAIN TO SOURCE VOLTAGE (V)
Figure 7. Transfer Characteristics
Figure 8. Saturation Characteristics
15.0
2.0
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
DRAIN TO SOURCE ON RESISTANCE (m Ω)
10
tAV, TIME IN AVALANCHE (ms)
VGS = 6V
12.5
10.0
VGS = 10V
7.5
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
1.5
1.0
VGS = 10V, ID = 12A
0.5
5.0
0
3
6
9
-80
12
Figure 9. Drain to Source On Resistance vs Drain
Current
©2005 Fairchild Semiconductor Corporation
FDS5672 Rev. A
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
ID, DRAIN CURRENT (A)
Figure 10. Normalized Drain to Source On
Resistance vs Junction Temperature
5
www.fairchildsemi.com
FDS5672 N-Channel PowerTrench® MOSFET
Typical Characteristics TC = 25°C unless otherwise noted
1.10
1.2
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
VGS = VDS, ID = 250µA
NORMALIZED GATE
THRESHOLD VOLTAGE
1.1
1.0
0.9
0.8
0.7
ID = 250µA
1.05
1.00
0.95
0.90
0.6
-80
-40
0
40
80
120
-80
160
-40
TJ, JUNCTION TEMPERATURE (oC)
Figure 11. Normalized Gate Threshold Voltage vs
Junction Temperature
40
80
120
160
Figure 12. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
10
6000
VGS , GATE TO SOURCE VOLTAGE (V)
CISS = CGS + CGD
C, CAPACITANCE (pF)
0
TJ , JUNCTION TEMPERATURE (oC)
COSS ≅ CDS + CGD
1000
CRSS = CGD
100
VGS = 0V, f = 1MHz
40
VDD = 50V
8
6
4
2
WAVEFORMS IN
DESCENDING ORDER:
ID = 12A
ID = 1A
0
0.1
1
10
60
0
VDS , DRAIN TO SOURCE VOLTAGE (V)
10
15
20
25
30
35
Qg, GATE CHARGE (nC)
Figure 13. Capacitance vs Drain to Source
Voltage
©2005 Fairchild Semiconductor Corporation
FDS5672 Rev. A
5
Figure 14. Gate Charge Waveforms for Constant
Gate Currents
6
www.fairchildsemi.com
FDS5672 N-Channel PowerTrench® MOSFET
Typical Characteristics TC = 25°C unless otherwise noted
BVDSS
VDS
tP
VDS
L
IAS
VDD
VARY tP TO OBTAIN
REQUIRED PEAK IAS
+
RG
VDD
-
VGS
DUT
tP
IAS
0V
0
0.01Ω
tAV
Figure 15. Unclamped Energy Test Circuit
Figure 16. Unclamped Energy Waveforms
VDS
VDD
Qg(TOT)
VDS
L
VGS = 10V
VGS
+
VDD
VGS
-
VGS = 2V
DUT
Qgs2
0
Ig(REF)
Qg(TH)
Qgs
Qgd
Ig(REF)
0
Figure 17. Gate Charge Test Circuit
Figure 18. Gate Charge Waveforms
VDS
tON
tOFF
td(ON)
td(OFF)
RL
tr
VDS
tf
90%
90%
+
VGS
VDD
10%
0
-
10%
DUT
90%
RGS
VGS
50%
50%
PULSE WIDTH
VGS
0
Figure 19. Switching Time Test Circuit
©2005 Fairchild Semiconductor Corporation
FDS5672 Rev. A
10%
Figure 20. Switching Time Waveforms
7
www.fairchildsemi.com
FDS5672 N-Channel PowerTrench® MOSFET
Test Circuits and Waveforms
maximum transient thermal impedance curve.
The maximum rated junction temperature, TJM, and the
thermal resistance of the heat dissipating path determines
the maximum allowable device power dissipation, PDM, in an
application.
Therefore the application’s ambient
temperature, TA (oC), and thermal resistance RθJA (oC/W)
must be reviewed to ensure that TJM is never exceeded.
Equation 1 mathematically represents the relationship and
serves as the basis for establishing the rating of the part.
(T
–T )
JM
A
P DM = ------------------------------Rθ JA
Thermal resistances corresponding to other copper areas
can be obtained from Figure 21 or by calculation using
Equation 2. The area, in square inches is the top copper
area including the gate and source pads.
26
0.23 + Area
(EQ. 2)
R θ JA = 64 + -------------------------------
(EQ. 1)
The transient thermal impedance (ZθJA) is also effected by
varied top copper board area. Figure 22 shows the effect of
copper pad area on single pulse transient thermal
impedance. Each trace represents a copper pad area in
square inches corresponding to the descending list in the
graph. Spice and SABER thermal models are provided for
each of the listed pad areas.
In using surface mount devices such as the SO8 package,
the environment in which it is applied will have a significant
influence on the part’s current and maximum power
dissipation ratings. Precise determination of PDM is complex
and influenced by many factors:
Copper pad area has no perceivable effect on transient
thermal impedance for pulse widths less than 100ms. For
pulse widths less than 100ms the transient thermal
impedance is determined by the die and package.
Therefore, CTHERM1 through CTHERM5 and RTHERM1
through RTHERM5 remain constant for each of the thermal
models. A listing of the model component values is available
in Table 1.
1. Mounting pad area onto which the device is attached and
whether there is copper on one side or both sides of the
board.
2. The number of copper layers and the thickness of the
board.
3. The use of external heat sinks.
4. The use of thermal vias.
200
5. Air flow and board orientation.
RθJA = 64 + 26/(0.23+Area)
RθJA (oC/W)
6. For non steady state applications, the pulse width, the
duty cycle and the transient thermal response of the part,
the board and the environment they are in.
Fairchild provides thermal information to assist the
designer’s preliminary application evaluation. Figure 21
defines the RθJA for the device as a function of the top
copper (component side) area. This is for a horizontally
positioned FR-4 board with 1oz copper after 1000 seconds
of steady state power with no air flow. This graph provides
the necessary information for calculation of the steady state
junction temperature or power dissipation. Pulse
applications can be evaluated using the Fairchild device
Spice thermal model or manually utilizing the normalized
150
100
50
0.001
0.01
0.1
1
AREA, TOP COPPER AREA (in2)
10
Figure 21. Thermal Resistance vs Mounting
Pad Area
ZθJA, THERMAL
IMPEDANCE (oC/W)
150
120
90
COPPER BOARD AREA - DESCENDING ORDER
0.04 in2
0.28 in2
0.52 in2
0.76 in2
1.00 in2
60
30
0
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
102
103
Figure 22. Thermal Impedance vs Mounting Pad Area
©2005 Fairchild Semiconductor Corporation
FDS5672 Rev. A
8
www.fairchildsemi.com
FDS5672 N-Channel PowerTrench® MOSFET
Thermal Resistance vs. Mounting Pad Area
rev June 2005
LDRAIN
DPLCAP
10
Dbody 7 5 DbodyMOD
Dbreak 5 11 DbreakMOD
Dplcap 10 5 DplcapMOD
RLDRAIN
RSLC1
51
RSLC2
5
51
Ebreak 11 7 17 18 67
Eds 14 8 5 8 1
Egs 13 8 6 8 1
Esg 6 10 6 8 1
Evthres 6 21 19 8 1
Evtemp 20 6 18 22 1
EVTHRES
+ 19 8
+
LGATE
GATE
1
Lgate 1 9 1.23e-9
Ldrain 2 5 1.0e-9
Lsource 3 7 0.18e-9
11
+
17
EBREAK 18
-
50
RDRAIN
6
8
ESG
DBREAK
ESLC
-
It 8 17 1
DRAIN
2
5
+
.SUBCKT FDS5672 2 1 3 ;
Ca 12 8 7e-10
Cb 15 14 7e-10
Cin 6 8 2.2e-10
EVTEMP
RGATE + 18 22
9
20
21
16
DBODY
MWEAK
6
MMED
MSTRO
RLGATE
LSOURCE
CIN
8
7
SOURCE
3
RSOURCE
RLSOURCE
RLgate 1 9 12.3
RLdrain 2 5 10
RLsource 3 7 1.8
Mmed 16 6 8 8 MmedMOD
Mstro 16 6 8 8 MstroMOD
Mweak 16 21 8 8 MweakMOD
S1A
12
S2A
S1B
CA
15
14
13
13
8
RBREAK
17
18
RVTEMP
S2B
13
CB
6
8
EGS
Rbreak 17 18 RbreakMOD 1
Rdrain 50 16 RdrainMOD 1e-3
Rgate 9 20 1.4
RSLC1 5 51 RSLCMOD 1.0e-6
RSLC2 5 50 1.0e3
Rsource 8 7 RsourceMOD 3.2e-3
Rvthres 22 8 RvthresMOD 1
Rvtemp 18 19 RvtempMOD 1
S1a 6 12 13 8 S1AMOD
S1b 13 12 13 8 S1BMOD
S2a 6 15 14 13 S2AMOD
S2b 13 15 14 13 S2BMOD
19
14
+
+
VBAT
5
8
EDS
-
IT
-
+
8
22
RVTHRES
Vbat 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*250),2.5))}
.MODEL DbodyMOD D (IS=4.5E-12 RS=4.7e-3 TRS1=1.5e-3 TRS2=2e-5
+ CJO=1.6e-9 M=0.55 TT=1.8e-8 XTI=3.0)
.MODEL DbreakMOD D (RS=2.5 TRS1=1.0e-3 TRS2=1e-6)
.MODEL DplcapMOD D (CJO=6.0e-10 IS=1.0e-30 N=10 M=0.45)
.MODEL MmedMOD NMOS (VTO=3.35 KP=4 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.4)
.MODEL MstroMOD NMOS (VTO=3.93 KP=50 IS=1e-30 N=10 TOX=1 L=1u W=1u)
.MODEL MweakMOD NMOS (VTO=2.82 KP=0.04 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=14 RS=0.1)
.MODEL RbreakMOD RES (TC1=7e-4 TC2=-1.3e-7)
.MODEL RdrainMOD RES (TC1=1.0e-4 TC2=1e-5)
.MODEL RSLCMOD RES (TC1=1.0e-2 TC2=1e-7)
.MODEL RsourceMOD RES (TC1=1.0e-2 TC2=1.0e-6)
.MODEL RvthresMOD RES (TC1=-3.9e-3 TC2=-1.4e-5)
.MODEL RvtempMOD RES (TC1=-4e-3 TC2=2e-7)
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4.0 VOFF=-2.0)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2.0 VOFF=-4.0)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=0)
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0 VOFF=-0.5)
.ENDS
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank
Wheatley.
©2005 Fairchild Semiconductor Corporation
FDS5672 Rev. A
9
www.fairchildsemi.com
FDS5672 N-Channel PowerTrench® MOSFET
PSPICE Electrical Model
REV June 2005
ttemplate FDS5672 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
dp..model dbodymod = (isl=4.5e-12,rs=4.7e-3,trs1=1.5e-3,trs2=2e-5,cjo=1.6e-9,m=0.55,tt=1.8e-8,xti=3.0)
dp..model dbreakmod = (rs=2.5,trs1=1e-4,trs2=1e-6)
dp..model dplcapmod = (cjo=6.0e-10,isl=10.0e-30,nl=10,m=0.45)
m..model mmedmod = (type=_n,vto=3.35,kp=4,is=1e-30, tox=1)
m..model mstrongmod = (type=_n,vto=3.93,kp=50,is=1e-30, tox=1)
m..model mweakmod = (type=_n,vto=2.82,kp=0.04,is=1e-30, tox=1,rs=0.1)
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4.0,voff=-2.0)
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-2.0,voff=-4.0)
DPLCAP 5
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-0.5,voff=0)
10
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0,voff=-0.5)
c.ca n12 n8 = 7e-10
RSLC1
51
c.cb n15 n14 = 7e-10
RSLC2
c.cin n6 n8 = 2.2e-9
LDRAIN
DRAIN
2
RLDRAIN
ISCL
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakmod
dp.dplcap n10 n5 = model=dplcapmod
spe.ebreak n11 n7 n17 n18 = 67
spe.eds n14 n8 n5 n8 = 1
GATE
spe.egs n13 n8 n6 n8 = 1
1
spe.esg n6 n10 n6 n8 = 1
spe.evthres n6 n21 n19 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
-
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
LGATE
DBREAK
50
EVTEMP
RGATE + 18 22
9
20
21
DBODY
MWEAK
6
EBREAK
+
17
18
-
MMED
MSTRO
RLGATE
CIN
8
i.it n8 n17 = 1
LSOURCE
7
SOURCE
3
RSOURCE
RLSOURCE
S1A
l.lgate n1 n9 = 1.23e-9
l.ldrain n2 n5 = 1.0e-9
l.lsource n3 n7 = 0.18e-9
12
S2A
14
13
13
8
S1B
res.rlgate n1 n9 = 12.3
res.rldrain n2 n5 = 10
res.rlsource n3 n7 = 1.8
11
16
CA
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
EGS
-
19
IT
14
+
+
VBAT
5
8
EDS
-
+
8
22
RVTHRES
res.rbreak n17 n18 = 1, tc1=7e-4,tc2=-1.3e-7
res.rdrain n50 n16 = 1e-3, tc1=1e-4,tc2=1e-5
res.rgate n9 n20 = 1.4
res.rslc1 n5 n51 = 1e-6, tc1=1e-2,tc2=1e-7
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 3.2e-3, tc1=1e-2,tc2=1e-6
res.rvthres n22 n8 = 1, tc1=-3.9e-3,tc2=-1.4e-5
res.rvtemp n18 n19 = 1, tc1=-4e-3,tc2=2e-7
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/250))** 2.5))
}
}
©2005 Fairchild Semiconductor Corporation
FDS5672 Rev. A
10
www.fairchildsemi.com
FDS5672 N-Channel PowerTrench® MOSFET
SABER Electrical Model
th
REV June 2005
JUNCTION
FDS5672_JA Junction Ambient
Copper Area = 1sq.in
CTHERM1 TH 8 2e-3
CTHERM2 8 7 5e-3
CTHERM3 7 6 1e-2
CTHERM4 6 5 4e-2
CTHERM5 5 4 9e-2
CTHERM6 4 3 2e-1
CTHERM7 3 2 1
CTHERM8 2 TL 3
RTHERM1
CTHERM1
8
RTHERM2
CTHERM2
7
RTHERM1 TH 8 1e-1
RTHERM2 8 7 5e-1
RTHERM3 7 6 1
RTHERM4 6 5 5
RTHERM5 5 4 8
RTHERM6 4 3 12
RTHERM7 3 2 18
RTHERM8 2 TL 25
RTHERM3
CTHERM3
6
RTHERM4
CTHERM4
SABER Thermal Model
5
SABER thermal model FDS5672
Copper Area = 1sq.in
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 8 =2e-3
ctherm.ctherm2 8 7 =5e-3
ctherm.ctherm3 7 6 =1e-2
ctherm.ctherm4 6 5 =4e-2
ctherm.ctherm5 5 4 =9e-2
ctherm.ctherm6 4 3 =2e-1
ctherm.ctherm7 3 2 =1
ctherm.ctherm8 2 tl =3
RTHERM5
CTHERM5
4
RTHERM6
CTHERM6
3
RTHERM7
rrtherm.rtherm1 th 8 =1e-1
rtherm.rtherm2 8 7 =5e-1
rtherm.rtherm3 7 6 =1
rtherm.rtherm4 6 5 =5
rtherm.rtherm5 5 4 =8
rtherm.rtherm6 4 3 =12
rtherm.rtherm7 3 2 =18
rtherm.rtherm8 2 tl =25
}
CTHERM7
2
RTHERM8
CTHERM8
tl
AMBIENT
T ABLE 1. THERMAL MODELS
0.04 in2
0.28 in2
0.52 in2
0.76 in2
1.0 in2
CTHERM6
1.2e-1
1.5e-1
2.0e-1
2.0e-1
2.0e-1
CTHERM7
0.5
1.0
1.0
1.0
1.0
CTHERM8
1.3
2.8
3.0
3.0
3.0
RTHERM6
26
20
15
13
12
RTHERM7
39
24
21
19
18
RTHERM8
55
38.7
31.3
29.7
25
COMPONANT
©2005 Fairchild Semiconductor Corporation
FDS5672 Rev. A
11
www.fairchildsemi.com
FDS5672 N-Channel PowerTrench® MOSFET
SPICE Thermal Model
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not
intended to be an exhaustive list of all such trademarks.
ACEx™
ActiveArray™
Bottomless™
CoolFET™
CROSSVOLT™
DOME™
EcoSPARK™
E2CMOS™
EnSigna™
FACT™
FACT Quiet Series™
FAST®
FASTr™
FPS™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
I2C™
i-Lo™
Across the board. Around the world.™
The Power Franchise®
Programmable Active Droop™
ImpliedDisconnect™
IntelliMAX™
ISOPLANAR™
LittleFET™
MICROCOUPLER™
MicroFET™
MicroPak™
MICROWIRE™
MSX™
MSXPro™
OCX™
OCXPro™
OPTOLOGIC®
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerEdge™
PowerSaver™
PowerTrench®
QFET®
QS™
QT Optoelectronics™
Quiet Series™
RapidConfigure™
RapidConnect™
µSerDes™
SILENT SWITCHER®
SMART START™
SPM™
Stealth™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic®
TINYOPTO™
TruTranslation™
UHC™
UltraFET®
UniFET™
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR
CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, or (c) whose failure to perform
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to
result in significant injury to the user.
2. A critical component is any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or In
Design
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
©2005 Fairchild Semiconductor Corporation
FDS5672 Rev. A
12
www.fairchildsemi.com
FDM3622 N-Channel PowerTrench® MOSFET
TRADEMARKS