FDS5672 N-Channel PowerTrench® MOSFET 60V, 12A, 10mΩ Features General Description rDS(ON) = 10mΩ, VGS = 10V, ID = 12A This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low rDS(ON) and fast switching speed. rDS(ON) = 14mΩ, VGS = 6V, ID = 10A High performance trench technology for extremely low rDS(ON) Low gate charge High power and current handling capability Applications DC/DC converters Branding Dash 5 1 2 3 4 5 4 6 3 7 2 8 1 SO-8 ©2005 Fairchild Semiconductor Corporation FDS5672 Rev. A 1 www.fairchildsemi.com FDS5672 N-Channel PowerTrench® MOSFET July 2005 Symbol VDSS Drain to Source Voltage Parameter Ratings 60 Units V VGS Gate to Source Voltage ±20 V 12 A Drain Current Continuous (TC = 25 oC, VGS = 10V, RθJA = 50oC/W) ID o o Continuous (TC = 25 C, VGS = 6V, RθJA = 50 C/W) 10 Pulsed EAS PD TJ, TSTG Figure 4 A Single Pulse Avalanche Energy (Note 1) 245 mJ Power dissipation 2.5 W Derate above 25oC 20 mW/oC Operating and Storage Temperature o -55 to 150 C Thermal Characteristics RθJC Thermal Resistance Junction to Case (Note 2) 25 oC/W RθJA Thermal Resistance Junction to Ambient at 10 seconds (Note 3) 50 oC/W RθJA Thermal Resistance Junction to Ambient at 1000 seconds (Note 3) 85 o C/W Package Marking and Ordering Information Device Marking FDS5672 Device FDS5672 Package SO-8 Reel Size 330mm Tape Width 12mm Quantity 2500 units Electrical Characteristics TC = 25°C unless otherwise noted Symbol Parameter Test Conditions Min Typ Max Units 60 - - - V - 1 - - 250 VGS = ±20V - - ±100 nA VGS = VDS, ID = 250µA 2 - 4 V ID = 12A, VGS = 10V - 0.0088 0.010 ID = 10A, VGS = 6V, - 0.012 0.014 ID = 12A, VGS = 10V, TC = 150oC - 0.016 0.023 - 2200 - pF - 410 - pF - 130 - pF Off Characteristics BVDSS Drain to Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current IGSS Gate to Source Leakage Current ID = 250µA, VGS = 0V VDS = 50V VGS = 0V TC = 150oC µA On Characteristics VGS(TH) rDS(ON) Gate to Source Threshold Voltage Drain to Source On Resistance Ω Dynamic Characteristics CISS Input Capacitance COSS Output Capacitance CRSS Reverse Transfer Capacitance RG Gate Resistance VGS = 0.5V, f = 1MHz - 1.4 - Ω Qg(TOT) Total Gate Charge at 10V VGS = 0V to 10V - 34 45 nC Qg(TH) Threshold Gate Charge VGS = 0V to 2V - 4.2 5.5 nC Qgs Gate to Source Gate Charge - 9.4 - nC Qgs2 Gate Charge Threshold to Plateau - 5.2 - nC Qgd Gate to Drain “Miller” Charge - 9.3 - nC ©2005 Fairchild Semiconductor Corporation FDS5672 Rev. A VDS = 25V, VGS = 0V, f = 1MHz 2 VDD = 30V ID = 12A Ig = 1.0mA www.fairchildsemi.com FDS5672 N-Channel PowerTrench® MOSFET MOSFET Maximum Ratings TC = 25°C unless otherwise noted tON Turn-On Time - - 50 ns td(ON) Turn-On Delay Time - 13 - ns tr Rise Time - 20 - ns td(OFF) Turn-Off Delay Time - 35 - ns tf Fall Time - 14 - ns tOFF Turn-Off Time - - 64 ns ISD = 12A - - 1.25 V ISD = 6A - - 1.0 V VDD = 30V, ID = 12A VGS = 10V, RGS = 9.1Ω Drain-Source Diode Characteristics VSD Source to Drain Diode Voltage trr Reverse Recovery Time ISD=12A, dISD/dt = 100A/µs - - 39 ns QRR Reverse Recovered Charge ISD=12A, dISD/dt = 100A/µs - - 40 nC Notes: 1: Starting TJ = 25°C, L = 1mH, IAS = 22A, VDD = 60V, VGS = 10V. 2: RθJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. RθJC is guaranteed by design while RθJA is determined by the user’s board design. 3: RθJA is measured with 1.0 in2 copper on FR-4 board. ©2005 Fairchild Semiconductor Corporation FDS5672 Rev. A 3 www.fairchildsemi.com FDS5672 N-Channel PowerTrench® MOSFET Resistive Switching Characteristics (VGS = 10V) 1.2 15 12 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.0 0.8 0.6 0.4 VGS = 10V 9 6 3 0.2 0 0 0 25 50 75 100 150 125 25 50 75 100 125 150 TA, AMBIENT TEMPERATURE (oC) TA , AMBIENT TEMPERATURE (oC) Figure 1. Normalized Power Dissipation vs Ambient Temperature Figure 2. Maximum Continuous Drain Current vs Ambient Temperature 2 ZθJA, NORMALIZED THERMAL IMPEDANCE 1 0.1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM SINGLE PULSE 0.01 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA 0.001 10-5 10-4 10-3 10-2 10-1 100 101 102 103 t, RECTANGULAR PULSE DURATION (s) Figure 3. Normalized Maximum Transient Thermal Impedance 1100 IDM, PEAK CURRENT (A) TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION TA = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: VGS = 10V I = I25 150 - TA 125 100 10 10-5 10-4 10-3 10-2 10-1 100 101 102 103 t, PULSE WIDTH (s) Figure 4. Peak Current Capability ©2005 Fairchild Semiconductor Corporation FDS5672 Rev. A 4 www.fairchildsemi.com FDS5672 N-Channel PowerTrench® MOSFET Typical Characteristics TC = 25°C unless otherwise noted 400 50 100µs IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 100 1ms 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 10ms SINGLE PULSE TJ = MAX RATED TA = 25oC If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 10 STARTING TJ = 25oC STARTING TJ = 150oC 1 0.1 0.1 1 10 70 0.1 1 VDS, DRAIN TO SOURCE VOLTAGE (V) Figure 5. Forward Bias Safe Operating Area Figure 6. Unclamped Inductive Switching Capability 25 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V VGS = 6V VGS = 5V 20 ID, DRAIN CURRENT (A) 20 ID , DRAIN CURRENT (A) 100 NOTE: Refer to Fairchild Application Notes AN7514 and AN7515 25 15 TJ = 150oC 10 TJ = -55oC TJ = 25oC 5 15 VGS = 10V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TA = 25oC 0 3.0 3.5 4.0 4.5 5.0 VGS = 4.5V 10 5 0 5.5 0 0.2 VGS , GATE TO SOURCE VOLTAGE (V) 0.4 0.6 0.8 1.0 VDS , DRAIN TO SOURCE VOLTAGE (V) Figure 7. Transfer Characteristics Figure 8. Saturation Characteristics 15.0 2.0 NORMALIZED DRAIN TO SOURCE ON RESISTANCE DRAIN TO SOURCE ON RESISTANCE (m Ω) 10 tAV, TIME IN AVALANCHE (ms) VGS = 6V 12.5 10.0 VGS = 10V 7.5 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 1.5 1.0 VGS = 10V, ID = 12A 0.5 5.0 0 3 6 9 -80 12 Figure 9. Drain to Source On Resistance vs Drain Current ©2005 Fairchild Semiconductor Corporation FDS5672 Rev. A -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) ID, DRAIN CURRENT (A) Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature 5 www.fairchildsemi.com FDS5672 N-Channel PowerTrench® MOSFET Typical Characteristics TC = 25°C unless otherwise noted 1.10 1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250µA NORMALIZED GATE THRESHOLD VOLTAGE 1.1 1.0 0.9 0.8 0.7 ID = 250µA 1.05 1.00 0.95 0.90 0.6 -80 -40 0 40 80 120 -80 160 -40 TJ, JUNCTION TEMPERATURE (oC) Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature 40 80 120 160 Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature 10 6000 VGS , GATE TO SOURCE VOLTAGE (V) CISS = CGS + CGD C, CAPACITANCE (pF) 0 TJ , JUNCTION TEMPERATURE (oC) COSS ≅ CDS + CGD 1000 CRSS = CGD 100 VGS = 0V, f = 1MHz 40 VDD = 50V 8 6 4 2 WAVEFORMS IN DESCENDING ORDER: ID = 12A ID = 1A 0 0.1 1 10 60 0 VDS , DRAIN TO SOURCE VOLTAGE (V) 10 15 20 25 30 35 Qg, GATE CHARGE (nC) Figure 13. Capacitance vs Drain to Source Voltage ©2005 Fairchild Semiconductor Corporation FDS5672 Rev. A 5 Figure 14. Gate Charge Waveforms for Constant Gate Currents 6 www.fairchildsemi.com FDS5672 N-Channel PowerTrench® MOSFET Typical Characteristics TC = 25°C unless otherwise noted BVDSS VDS tP VDS L IAS VDD VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDD - VGS DUT tP IAS 0V 0 0.01Ω tAV Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms VDS VDD Qg(TOT) VDS L VGS = 10V VGS + VDD VGS - VGS = 2V DUT Qgs2 0 Ig(REF) Qg(TH) Qgs Qgd Ig(REF) 0 Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms VDS tON tOFF td(ON) td(OFF) RL tr VDS tf 90% 90% + VGS VDD 10% 0 - 10% DUT 90% RGS VGS 50% 50% PULSE WIDTH VGS 0 Figure 19. Switching Time Test Circuit ©2005 Fairchild Semiconductor Corporation FDS5672 Rev. A 10% Figure 20. Switching Time Waveforms 7 www.fairchildsemi.com FDS5672 N-Channel PowerTrench® MOSFET Test Circuits and Waveforms maximum transient thermal impedance curve. The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. (T –T ) JM A P DM = ------------------------------Rθ JA Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2. The area, in square inches is the top copper area including the gate and source pads. 26 0.23 + Area (EQ. 2) R θ JA = 64 + ------------------------------- (EQ. 1) The transient thermal impedance (ZθJA) is also effected by varied top copper board area. Figure 22 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas. In using surface mount devices such as the SO8 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1. 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 200 5. Air flow and board orientation. RθJA = 64 + 26/(0.23+Area) RθJA (oC/W) 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 21 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized 150 100 50 0.001 0.01 0.1 1 AREA, TOP COPPER AREA (in2) 10 Figure 21. Thermal Resistance vs Mounting Pad Area ZθJA, THERMAL IMPEDANCE (oC/W) 150 120 90 COPPER BOARD AREA - DESCENDING ORDER 0.04 in2 0.28 in2 0.52 in2 0.76 in2 1.00 in2 60 30 0 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) 102 103 Figure 22. Thermal Impedance vs Mounting Pad Area ©2005 Fairchild Semiconductor Corporation FDS5672 Rev. A 8 www.fairchildsemi.com FDS5672 N-Channel PowerTrench® MOSFET Thermal Resistance vs. Mounting Pad Area rev June 2005 LDRAIN DPLCAP 10 Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD RLDRAIN RSLC1 51 RSLC2 5 51 Ebreak 11 7 17 18 67 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1 EVTHRES + 19 8 + LGATE GATE 1 Lgate 1 9 1.23e-9 Ldrain 2 5 1.0e-9 Lsource 3 7 0.18e-9 11 + 17 EBREAK 18 - 50 RDRAIN 6 8 ESG DBREAK ESLC - It 8 17 1 DRAIN 2 5 + .SUBCKT FDS5672 2 1 3 ; Ca 12 8 7e-10 Cb 15 14 7e-10 Cin 6 8 2.2e-10 EVTEMP RGATE + 18 22 9 20 21 16 DBODY MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 7 SOURCE 3 RSOURCE RLSOURCE RLgate 1 9 12.3 RLdrain 2 5 10 RLsource 3 7 1.8 Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD S1A 12 S2A S1B CA 15 14 13 13 8 RBREAK 17 18 RVTEMP S2B 13 CB 6 8 EGS Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 1e-3 Rgate 9 20 1.4 RSLC1 5 51 RSLCMOD 1.0e-6 RSLC2 5 50 1.0e3 Rsource 8 7 RsourceMOD 3.2e-3 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD 19 14 + + VBAT 5 8 EDS - IT - + 8 22 RVTHRES Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*250),2.5))} .MODEL DbodyMOD D (IS=4.5E-12 RS=4.7e-3 TRS1=1.5e-3 TRS2=2e-5 + CJO=1.6e-9 M=0.55 TT=1.8e-8 XTI=3.0) .MODEL DbreakMOD D (RS=2.5 TRS1=1.0e-3 TRS2=1e-6) .MODEL DplcapMOD D (CJO=6.0e-10 IS=1.0e-30 N=10 M=0.45) .MODEL MmedMOD NMOS (VTO=3.35 KP=4 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.4) .MODEL MstroMOD NMOS (VTO=3.93 KP=50 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL MweakMOD NMOS (VTO=2.82 KP=0.04 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=14 RS=0.1) .MODEL RbreakMOD RES (TC1=7e-4 TC2=-1.3e-7) .MODEL RdrainMOD RES (TC1=1.0e-4 TC2=1e-5) .MODEL RSLCMOD RES (TC1=1.0e-2 TC2=1e-7) .MODEL RsourceMOD RES (TC1=1.0e-2 TC2=1.0e-6) .MODEL RvthresMOD RES (TC1=-3.9e-3 TC2=-1.4e-5) .MODEL RvtempMOD RES (TC1=-4e-3 TC2=2e-7) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4.0 VOFF=-2.0) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2.0 VOFF=-4.0) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=0) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0 VOFF=-0.5) .ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2005 Fairchild Semiconductor Corporation FDS5672 Rev. A 9 www.fairchildsemi.com FDS5672 N-Channel PowerTrench® MOSFET PSPICE Electrical Model REV June 2005 ttemplate FDS5672 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl=4.5e-12,rs=4.7e-3,trs1=1.5e-3,trs2=2e-5,cjo=1.6e-9,m=0.55,tt=1.8e-8,xti=3.0) dp..model dbreakmod = (rs=2.5,trs1=1e-4,trs2=1e-6) dp..model dplcapmod = (cjo=6.0e-10,isl=10.0e-30,nl=10,m=0.45) m..model mmedmod = (type=_n,vto=3.35,kp=4,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=3.93,kp=50,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=2.82,kp=0.04,is=1e-30, tox=1,rs=0.1) sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4.0,voff=-2.0) sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-2.0,voff=-4.0) DPLCAP 5 sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-0.5,voff=0) 10 sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0,voff=-0.5) c.ca n12 n8 = 7e-10 RSLC1 51 c.cb n15 n14 = 7e-10 RSLC2 c.cin n6 n8 = 2.2e-9 LDRAIN DRAIN 2 RLDRAIN ISCL dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod spe.ebreak n11 n7 n17 n18 = 67 spe.eds n14 n8 n5 n8 = 1 GATE spe.egs n13 n8 n6 n8 = 1 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 - RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE DBREAK 50 EVTEMP RGATE + 18 22 9 20 21 DBODY MWEAK 6 EBREAK + 17 18 - MMED MSTRO RLGATE CIN 8 i.it n8 n17 = 1 LSOURCE 7 SOURCE 3 RSOURCE RLSOURCE S1A l.lgate n1 n9 = 1.23e-9 l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 0.18e-9 12 S2A 14 13 13 8 S1B res.rlgate n1 n9 = 12.3 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 1.8 11 16 CA m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS - 19 IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES res.rbreak n17 n18 = 1, tc1=7e-4,tc2=-1.3e-7 res.rdrain n50 n16 = 1e-3, tc1=1e-4,tc2=1e-5 res.rgate n9 n20 = 1.4 res.rslc1 n5 n51 = 1e-6, tc1=1e-2,tc2=1e-7 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 3.2e-3, tc1=1e-2,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-3.9e-3,tc2=-1.4e-5 res.rvtemp n18 n19 = 1, tc1=-4e-3,tc2=2e-7 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/250))** 2.5)) } } ©2005 Fairchild Semiconductor Corporation FDS5672 Rev. A 10 www.fairchildsemi.com FDS5672 N-Channel PowerTrench® MOSFET SABER Electrical Model th REV June 2005 JUNCTION FDS5672_JA Junction Ambient Copper Area = 1sq.in CTHERM1 TH 8 2e-3 CTHERM2 8 7 5e-3 CTHERM3 7 6 1e-2 CTHERM4 6 5 4e-2 CTHERM5 5 4 9e-2 CTHERM6 4 3 2e-1 CTHERM7 3 2 1 CTHERM8 2 TL 3 RTHERM1 CTHERM1 8 RTHERM2 CTHERM2 7 RTHERM1 TH 8 1e-1 RTHERM2 8 7 5e-1 RTHERM3 7 6 1 RTHERM4 6 5 5 RTHERM5 5 4 8 RTHERM6 4 3 12 RTHERM7 3 2 18 RTHERM8 2 TL 25 RTHERM3 CTHERM3 6 RTHERM4 CTHERM4 SABER Thermal Model 5 SABER thermal model FDS5672 Copper Area = 1sq.in template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 8 =2e-3 ctherm.ctherm2 8 7 =5e-3 ctherm.ctherm3 7 6 =1e-2 ctherm.ctherm4 6 5 =4e-2 ctherm.ctherm5 5 4 =9e-2 ctherm.ctherm6 4 3 =2e-1 ctherm.ctherm7 3 2 =1 ctherm.ctherm8 2 tl =3 RTHERM5 CTHERM5 4 RTHERM6 CTHERM6 3 RTHERM7 rrtherm.rtherm1 th 8 =1e-1 rtherm.rtherm2 8 7 =5e-1 rtherm.rtherm3 7 6 =1 rtherm.rtherm4 6 5 =5 rtherm.rtherm5 5 4 =8 rtherm.rtherm6 4 3 =12 rtherm.rtherm7 3 2 =18 rtherm.rtherm8 2 tl =25 } CTHERM7 2 RTHERM8 CTHERM8 tl AMBIENT T ABLE 1. THERMAL MODELS 0.04 in2 0.28 in2 0.52 in2 0.76 in2 1.0 in2 CTHERM6 1.2e-1 1.5e-1 2.0e-1 2.0e-1 2.0e-1 CTHERM7 0.5 1.0 1.0 1.0 1.0 CTHERM8 1.3 2.8 3.0 3.0 3.0 RTHERM6 26 20 15 13 12 RTHERM7 39 24 21 19 18 RTHERM8 55 38.7 31.3 29.7 25 COMPONANT ©2005 Fairchild Semiconductor Corporation FDS5672 Rev. A 11 www.fairchildsemi.com FDS5672 N-Channel PowerTrench® MOSFET SPICE Thermal Model The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ ActiveArray™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ EcoSPARK™ E2CMOS™ EnSigna™ FACT™ FACT Quiet Series™ FAST® FASTr™ FPS™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ I2C™ i-Lo™ Across the board. Around the world.™ The Power Franchise® Programmable Active Droop™ ImpliedDisconnect™ IntelliMAX™ ISOPLANAR™ LittleFET™ MICROCOUPLER™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC® OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerEdge™ PowerSaver™ PowerTrench® QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ µSerDes™ SILENT SWITCHER® SMART START™ SPM™ Stealth™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic® TINYOPTO™ TruTranslation™ UHC™ UltraFET® UniFET™ VCX™ DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. ©2005 Fairchild Semiconductor Corporation FDS5672 Rev. A 12 www.fairchildsemi.com FDM3622 N-Channel PowerTrench® MOSFET TRADEMARKS