FREESCALE MC13109A

Order this document by MC13109A/D
MC13109A
Universal Cordless Telephone
Subsystem IC
The MC13109A integrates several of the functions required for a cordless
telephone into a single integrated circuit. This significantly reduces
component count, board space requirements, and external adjustments. It is
designed for use in both the handset and the base.
• Dual Conversion FM Receiver
– Complete Dual Conversion Receiver – Antenna Input to Audio Output
80 MHz Maximum Carrier Frequency
– RSSI Output
– Carrier Detect Output with Programmable Threshold
– Comparator for Data Recovery
– Operates with Either a Quad Coil or Ceramic Discriminator
•
•
•
•
UNIVERSAL CT–0
SUBSYSTEM
INTEGRATED CIRCUIT
52
Compander
– Expandor Includes Mute, Digital Volume Control and Speaker Driver
– Compressor Includes Mute, ALC and Limiter
1
FB SUFFIX
PLASTIC PACKAGE
CASE 848B
(QFP–52)
Dual Universal Programmable PLL
– Supports New 25 Channel U.S. Standard with No External Switches
– Universal Design for Domestic and Foreign CT–0 Standards
– Digitally Controlled Via a Serial Interface Port
– Receive Side Includes 1st LO VCO, Phase Detector, and 14–Bit
Programmable Counter and 2nd LO with 12–Bit Counter
– Transmit Section Contains Phase Detector and 14–Bit Counter
– MPU Clock Output Eliminates Need for MPU Crystal
48
1
FTA SUFFIX
PLASTIC PACKAGE
CASE 932
(LQFP–48)
Supply Voltage Monitor
– Externally Adjustable Trip Point
2.0 to 5.5 V Operation with One–Third the Power Consumption of
Competing Devices
ORDERING INFORMATION
Device
Tested Operating
Temperature Range
MC13109AFB
MC13109AFTA
TA = –20 to 85°C
Package
QFP–52
LQFP–48
Simplified Block Diagram
Rx In
1st
Mixer
2nd
Mixer
1st LO
PLL
2nd LO
PLL
Limiting IF
Amplifier
RSSI
Detector
Mute
Expander
Rx
Out
Carrier
Detect
Tx In
Data
Out
Mute
Compressor
µP Serial
Interface
Tx Phase
Detector
Low Battery
Detect
SPI
Tx Out
Tx VCO
Low
Battery
Indicator
This device contains 6,609 active transistors.
 Motorola, Inc. 1999
MOTOROLA RF/IF DEVICE DATA
Rev 1
1
MC13109A
Figure 1. MC13109AFB Test Circuit
Rx_Audio
Ext_C_In
R30
49.9k
R29
49.9k
VCC/2
R31
100k
C41
C42 0.47
5.0nF µF
C43 0.1µF
C5
0.1µF
R2
32.4k
C6 0.022µF
C7
15pF
7
8
EN
Clk
11
Clk
Out
12
N/A
13
C8 18pF
L3 0.22µH
C9
33pF
C10
68pF
R5 22.1k
14
Q1
MPS5179
Data_5.0 V
VCC
C13
0.01
µF
R6
1.0k
Compressor
1st LO
VCO
36
Half Supply
Reference
2nd LO
1st LO
15
C15
10pF
RSSI
Expander
VB
E
+ – Spkr Cap
Mute
Spkr
Amp
Rx
Mute
Data
Amp
Pre–
Amp
+
Vol
Ctrl
28
12
14
LS09
EN_5.0V
7
Open
DA_In
Data_5.0V 10
9
14
EN_5.0V
DA
U1
Out
DB
8
R16
49.9k
R9
1.0k
VCC Gnd
7
LS09
Clk_5.0V
VCCE
5
14
C32 0.1µF
VCC RF
C29
10µF
L2
Q Coil
C28
0.1µF
R22
12k
TOKO
A7MES–12597Z
R20
49.9k
R21 8.2k
Det_Out
R19
49.9k
C26
0.01µF
C25
1.0µF
Audio_In_In
C21
0.033µF
C22
0.1µF
R17
5.62k
C20
0.1µF
C18
1.0µF
C23
0.001µF
R18
20k
E_Out
R11 1.0k
DA
R10 1.0k
Clk_5.0V
R23
10.2
VCC
C30
0.1µF
455k
In
Open
U1
Out
6
DB
VCC Gnd
7
LS09
VCCA
C19
10µF
C33 0.1µF
C31 0.1µF
DA_Fil
Gnd
VCC
4
Lim In
Ext_IF
R23
1.5k
C27 0.1µF
Pre_Amp
DB
R24
10
N/A
Open
13
CF2
27
VB
17
18
19
20
21
22
23
24
25
26
BD
DA
SA SA
E VCC DA Pre–
Rx Det RSSI
Out Out Out
In Out Audio
In Amp Audio Out
Out
In
C16
R13
510
R12 3.9k
pF
100k
R15
C24
49.9k
510pF
VCCD
Out 11
C34
Gnd RF
16
U1
Out
3
1.0µF
31 Lim C1
Lim C2
30
–
C12 33pF
DA
VB
Mix2 Out
29
Gnd
Mix1 Out
34
32
Carrier
Detect
In
2
Mix2 In
33
330
1
Mix1
In1
35
2nd Mix
Ref
Low
Battery
Detect
CD
Status
Out Out/
Hardware
Interrupt
R7
22.1k
C11 47pF
÷1 ÷4 ÷25
37
1st LO
PLL Vref
9
10
ALC
Out
Mix1 In2
38
1st
Mix
12b Prog
Ref Ctr
Limiter
Data
C14
1.0µF
R8
100k
R4
100k
1N5140
Tx
VCO
C48
1.0µF
Ext
Tx_VCO
R3
32.4k
Ecap
VCCA
3
39
In
2
C36
0.01µF
IF Amp/
Limiter
R1
1.5k
Spl
Amp
+ –
Tx
Mute
1
50
R27
49.9k
Detector
C3 0.047µF
Mix1_In
VCC
C40
1.0µF
Bandgap
Reference
C4
0.01µF
+ –
2nd
LO
14b Prog
Rx Ctr
C44 10µF
C35 0.01µF
Open LO1
VB
2.2V
Voltage
Regulator
LO2
Out
2
PLL
Vref
3
Rx
PD
4
Gnd
PLL
5
Tx
PD
6
R x Phase
Detect
C2
4.3pF
VCCA
VB
µ P Serial
Interface
C45
0.1µF
R33
3.0k
1
T x Phase
Detect
R34
1.5k
10.24
MHz
14b Prog
Tx Ctr
LO2
In
XL1
R35
32.4k
2nd LO
10.240
C1
9–35pF
C46
Open
C38
5.0nF
Spl
Tx Amp Lim
C
Amp
Tx Gnd Vcap LO1 LO1
In Out Cap C In Out
In Audio Ctrl Out
In
N/A Ref Out
52
51
50 49
48
47
46
45
44
43
42
41
40
Prog
Clk Ctr
0.0047
µF
C30
1.0µF
CF2 455 MHz
Ext_Ref
L1
C47
MIC_ 1.0µF
Amp
R28
Out
49.9k
CF1 10.7 MHz
R32
100k
R36
22.1k
Tx_In
Open
VCCE
Ext_SA_In
1
2
DA
DB
U1
Out
3
Gnd
V
7
14 CC LS09
R14
130
C17
47µF
Exp_IF
SA_Out
5.0V
2
MOTOROLA RF/IF DEVICE DATA
MC13109A
Figure 2. MC13109AFTA Test Circuit
Rx_Audio
Tx_In
Ext_C_In
Open
VCCE
C47
1.0µF
R2
32.4k
R1
1.5k
3
5
Spl
Amp
÷1
C7
15pF
C14
1.0
µF
C8 18pF
R6
1.0k
C12
33pF
µ P Serial
Interface
9
10
R8
100k
Clk
Out
11
13
C10
68pF
CD Out/
Hardware
Interrupt
C13
0.01
µF
Q1
MPS5179
14
13 DA
12 DB
BD
Out
DA
Out
R12
100k
Data_
5.0 V
EN_5.0V
Data_5.0V
10
DA
RSSI
Open
R9
1.0k
R11
1.0k
R10
1.0k
Gnd RF
SA
Out
17
SA In
Pre–
Amp
+
Vol
Ctrl
18
19
E VCC
Out Audio
C16
510pF
DA
In
21
Pre–
Amp
Out
25
22
23
24
Rx
Det RSSI
Audio Out
In
C24
510pF
R15
49.9k
R19
49.9k
C17
47µF
26
–
VB
20
Lim C1
C32 0.1µF
Lim C2
C31 0.1µF
27
Data
Amp
3
Out
C33
0.1µF
Ext_IF
R23
1.5k
R24
10
455k
In
R23
10.2
VCC RF
C30
0.1µF
Q Coil
C27
0.1µF
C29
10µF
VCC
Det_Out
R21
8.2k
C26
0.01µF
R20
49.9k
R22
12k
L2
TOKO
A7MES–12597Z
C25
1.0µF
Pre_Amp
C28
0.1µF
Audio_In_In
DA_Fil
Clk_5.0 V
9 DB
14
Gnd 7
VCC
LS09
1 In
2 Gnd
28
Rx
Mute
SA_Out
Out 8
Mix2 Out
Lim In
VCCE
Open
U1
3 Out
Mix2 In
29
R14
130
Open
14 V
Gnd 7
CC
LS09
16
VCCD
U1
Out 11
31
In
2
CF2
E
+ – Spkr Cap
Mute
Spkr
Amp
15
VCC
5.0V
2nd Mix
Carrier
Detect
Expander
R13
3.9k
C15
10pF
32
2nd LO
VB
12
R7
22.1k
Half
Supply
Reference
Ref
Low
Battery
Detect
Clk
VCC
L3 0.22µH
C9
33pF
Data
EN
1
VCC
330
1st LO
2.2V
Voltage
Regulator
Ext
33
Mix1 Out
C34
1.0µF
VB
30
14b Prog
Tx Ctr
R4
100k
1st LO
Compressor
÷4 ÷25
Mix1 In1
50
C36 0.01µF
Mix1 In2
C35 0.01µF
34
PLL Vref
Prog
Clk Ctr
1N5140
C11 47pF
7
8
C6 0.022µF
R5
22.1k
E Cap
Tx
C48
1.0µF VCO
35
1st
Mix
Limiter
T x Phase
Detect
VCCA
Tx_VCO
Tx
Mute
ALC
6
R3
32.4k
+ –
+ –
12b Prog
Ref Ctr
4
Tx
PD
VB
2nd
LO
36
VB
VCCA
R16
49.9k
C18
1.0µF
C19
10µF
DA_In
C22
0.1µF
R17
5.62k
C21
0.033µF
R18
20k
C23
0.001µF
C20
0.1µF
EN_5.0V
4 DA U1
Out 6
5 DB
14
Gnd
VCC
LS09
7
Clk_5.0V
1
U1
DA
2
E_Out
Out 3
DB
14 V
Gnd 7
CC
LS09
MOTOROLA RF/IF DEVICE DATA
CF1 10.7 MHz
2
Gnd
PLL
C5
0.1µF
Tx Gnd Vcap LO1 LO1
In Audio
In
Ctrl Out
41
40
39
38
37
Amp
Out
C In
43
42
1
Rx
PD
C4 0.01µF
44
IF Amp/
Limiter
C44 10µF
PLL
Vref
C
Cap
45
Mix1_In
Detector
LO2
Out
Lim
Out
46
Bandgap
Reference
C2
4.3pF
10.24
MHz
Spl
Amp
In
C41
0.47
µF
LO1
R27
49.9k
C40
1.0µF
14b Prog
R x Ctr
R33
3.0k
C3 0.047µF
LO2
In
XL1
2nd LO
10.240
C1
9–35pF
Tx
Ref Out
48
47
R x Phase
Detect
C45
0.1µF
Open
R30
49.9k
Open
L1
CF2 455 MHz
C43
0.1µF
R28
49.9k
C38
5.0nF
VCCA
C42
5.0nF
R35
32.4k
R34
1.5k
C30
1.0µF
R29
49.9k
R31
100k
C46
0.0047
µF
R36
22.1k
MIC_
Amp
Out
VCC/2 Ext_Ref
1st LO
VCO
R32
100k
Ext_SA_In
Exp_IF
3
MC13109A
MAXIMUM RATINGS
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
Symbol
Value
Unit
Power Supply Voltage
Rating
VCC
– 0.5 to + 5.5
Vdc
Junction Temperature
TJ
– 65 to +150
°C
NOTES: 1. Devices should not be operated at or outside these limits. The “Recommended Operating
Conditions” table provides for actual device operation.
2. ESD data available upon request.
3. Meets Human Body Model (HBM) ≤2000V and Machine Model (MM) ≤200V.
RECOMMENDED OPERATING CONDITIONS
Min
Typ
Max
Unit
VCC
Characteristic
2.0
–
5.5
Vdc
Operating Ambient Temperature
–20
–
85
°C
NOTE: All limits are not necessarily functional concurrently.
ELECTRICAL CHARACTERISTICS (VCC = 2.6 V, TA = 25°C, RF In = 46.61 MHz,
fDEV = ± 3.0 kHz, fmod = 1.0 kHz; Test Circuit Figure 1.)
Characteristic
POWER SUPPLY
Static Current
Active Mode (VCC = 2.6 V)
Active Mode (VCC = 3.6 V)
Receive Mode (VCC = 2.6 V)
Receive Mode (VCC = 3.6 V)
Standby Mode (VCC = 2.6 V)
Standby Mode (VCC = 3.6 V)
Inactive Mode (VCC = 2.6 V)
Inactive Mode (VCC = 3.6 V)
4
Min
Typ
Max
Unit
–
–
–
–
–
–
–
–
6.1
6.5
3.9
4.3
320
550
40
54
12
–
7.0
–
600
–
80
–
mA
mA
mA
mA
µA
µA
µA
µA
MOTOROLA RF/IF DEVICE DATA
MC13109A
ELECTRICAL CHARACTERISTICS (continued)
FM Receiver
The FM receivers can be used with either a quad coil or a
ceramic resonator. The FM receiver and 1st LO have been
designed to work for all country channels, including 25
channel U.S., without the need for any external switching
circuitry (see Figure 25.)
(Test Conditions: VCC = 2.6 V, TA = 25°C, fO = 46.61 MHz, fDEV = ± 3.0 kHz, fmod = 1.0 kHz.)
Characteristic
Condition
Input
Pin
Measure
Pin
Symbol
Min
Typ
Max
Unit
Sensitivity (Input for
12 dB SINAD)
Matched Impedance
Differential Input
Mix1
In1/2
Det Out
VSIN
–
0.7
–
µVrms
1st Mixer Voltage
Conversion Gain
Vin = 1.0 mVrms, with
CF1 as Load
Mix1
In1/2
Mix1 Out
MXgain1
–
10
–
dB
2nd Mixer Voltage
Conversion Gain
Vin = 3.0 mVrms, with
CF2 as Load
Mix2 In
Mix2 Out
MXgain2
–
20
–
dB
1st Mixer Input
Impedance
–
–
Mix1 In1
Mix1 In2
RP1
CP1
–
0.88
2.5
–
kΩ
pF
2nd Mixer Input
Impedance
–
–
Mix2 In
RP2
CP2
–
3.0
2.7
–
kΩ
pF
1st Mixer Output
Impedance
–
–
Mix1 Out
RP1 Out
CP1 Out
–
390
1.8
–
Ω
pF
2nd Mixer Output
Impedance
–
–
Mix2 Out
RP2 Out
CP2 Out
–
1.5
12
–
kΩ
pF
1st and 2nd Mixer
Voltage Gain Total
Vin = 1.0 mVrms, with
CF1 and CF2 as Load
Mix1
In1/2
Mix2 Out
MXgainT
24
27
–
dB
IF – 3.0 dB Limiting
Sensitivity
fin = 455 kHz
Lim In
Det Out
IF Sens
–
55
100
µVrms
Total Harmonic Distortion
(CCITT Filter)
With RC = 8.2 kΩ/
0.01 µF Filter at Det
Out
Mix1
In1/2
Det Out
THD
–
1.0
3.0
%
Recovered Audio
With RC = 8.2 kΩ/
0.01 µF Filter at Det
Out
Mix1
In1/2
Det Out
AFO
80
100
154
mVrms
–
Lim In
Det Out
BW
–
20
–
kHz
Signal to Noise Ratio
Vin = 10 mVrms,
RC = 8.2 kΩ/0.01 µF
Mix1
In1/2
Det Out
SN
–
50
–
dB
AM Rejection Ratio
30% AM, Vin =
10 mVrms,
RC = 8.2 kΩ/0.001 µF
Mix1
In1/2
Det Out
AMR
30
40
–
dB
First Mixer 3rd Order
Intercept (Input
Referred)
Matched Impedance
Input
Mix1
In1/2
Mix1 Out
TOImix1
–
–10
–
dBm
Second Mixer 3rd Order
Intercept (Input
Referred)
Matched Impedance
Input
Mix2 In
Mix2 Out
TOImix2
–
– 27
–
dBm
–
Det Out
ZO
–
870
–
Ω
Demodulator Bandwidth
Detector Output
Impedance
–
MOTOROLA RF/IF DEVICE DATA
5
MC13109A
ELECTRICAL CHARACTERISTICS (continued)
RSSI/Carrier Detect
Connect 0.01 µF to Gnd from “RSSI” output pin to form the
carrier detect filter. “CD Out” is an open collector output
which requires an external 100 kΩ pull–up resistor to VCC.
The carrier detect threshold is programmable through the
MPU interface.
(RL = 100 kΩ, VCC = 2.6 V, TA = 25°C.)
Condition
Input
Pin
Measure
Pin
Symbol
Min
Typ
Max
Unit
–
Mix1 In
RSSI
RSSI
–
65
–
dB
CD Threshold Adjust =
(10100)
Mix1 In
CD Out
VT
–
11
–
mVrms
–
Mix1 In
CD Out
Hys
–
1.5
–
dB
Output High Voltage
Vin = 0 µVrms, RL = 100
kΩ, CD = (10100)
Mix1 In
CD Out
VOH
–
2.6
–
V
Output Low Voltage
Vin = 100 µVrms, RL =
100 kΩ, CD = (10100)
Mix1 In
CD Out
VOL
–
0.01
0.4
V
Carrier Sense Threshold
Adjustment Range
Programmable through
MPU Interface
–
–
VTrange
– 20
–
11
dB
Carrier Sense Threshold
– Number of Steps
Programmable through
MPU Interface
–
–
VTn
–
32
–
–
Characteristic
RSSI Output Current
Dynamic Range
Carrier Sense Threshold
Hysteresis
Data Amp Comparator
Inverting hysteresis comparator. Open collector output
with internal 100 kΩ pull–up resistor. A band pass filter is
connected between the “Det Out” pin and the “DA In” pin with
component values as shown in the attached block diagram.
The “DA In” input signal is ac coupled.
(VCC = 2.6 V, TA = 25°C)
Condition
Input
Pin
Measure
Pin
Symbol
Min
Typ
Max
Unit
Hysteresis
–
DA In
DA Out
Hys
30
40
50
mV
Threshold Voltage
–
DA In
DA Out
VT
VCC – 0.9
VCC – 0.7
VCC – 0.5
V
Input Impedance
–
–
DA In
ZI
–
12
–
kΩ
Output Impedance
–
–
DA Out
ZO
–
104
–
kΩ
Characteristic
Output High Voltage
Vin = VCC – 1.0 V,
IOH = 0 mA
DA In
DA Out
VOH
VCC – 0.1
2.6
–
V
Output Low Voltage
Vin = VCC – 0.4 V,
IOL = 0 mA
DA In
DA Out
VOL
–
0.04
0.4
V
6
MOTOROLA RF/IF DEVICE DATA
MC13109A
ELECTRICAL CHARACTERISTICS (continued)
Pre–Amplifier/Expander/Rx Mute/Volume Control
The Pre–Amplifier is an inverting rail–to–rail output swing
operational amplifier with the non–inverting input terminal
connected to the internal VB half supply reference. External
resistors and capacitors can be connected to set the gain and
frequency response. The expander analog ground is set to
the half supply reference so the input and output swing
capability will increase as the supply voltage increases. The
volume control can be adjusted through the MPU interface.
The “Rx Audio In” input signal is ac coupled.
(Test Conditions: VCC = 2.6 V, TA = 25°C, fin = 1.0 kHz, Set External Pre–Amplifier R’s for Gain of 1, Volume Control = (0111).)
Characteristic
Condition
Input
Pin
Measure
Pin
Symbol
Min
Typ
Max
Unit
Pre–Amp Open Loop
Gain
–
Rx
Audio In
Pre–Amp
AVOL
–
60
–
dB
Pre–Amp Gain
Bandwidth
–
Rx
Audio In
Pre–Amp
GBW
–
100
–
kHz
Pre–Amp Maximum
Output Swing
RL = 10 kΩ
Rx
Audio In
Pre–Amp
VOmax
–
VCC – 0.3
–
Vpp
Expander 0 dB Gain
Level
Vin = –10 dBV
Rx
Audio In
E Out
G
–3.0
–0.3
3.0
dB
Expander Gain
Tracking
Vin = –20 dBV, Output
Relative to G
Vin = –30 dBV, Output
Relative to G
Rx
Audio In
E Out
Gt
–21
–19.84
–19
dB
–42
–40.12
–37
Total Harmonic
Distortion
Vin = –10 dBV
Rx
Audio In
E Out
THD
–
0.2
–
%
Maximum Output
Voltage
Increase input voltage
until output voltage
THD = 5%, then
measure output
voltage. RL = 10 kΩ
Rx
Audio In
E Out
VOmax
–
–5.0
–
dBV
Attack Time
Ecap = 1.0 µF,
Rfilt = 20 kΩ
(See Appendix B)
Rx
Audio In
E Out
ta
–
3.0
–
ms
Release Time
Ecap = 1.0 µF,
Rfilt = 20 kΩ
(See Appendix B)
Rx
Audio In
E Out
tr
–
13.5
–
ms
Compressor to
Expander Crosstalk
V (Rx Audio In)
= 0 Vrms,
Vin = –10 dBV
C In
E Out
CT
–
–76
–
dB
Rx Mute
Vin = –10 dBV
No popping detectable
during Rx Mute
transitions
Rx
Audio In
E Out
Me
–
–65
–
dB
Volume Control Range
Programmable through
MPU Interface
–
–
VCrange
–14
–
16
dB
Volume Control Steps
Programmable through
MPU Interface
–
–
VCn
–
16
–
–
MOTOROLA RF/IF DEVICE DATA
7
MC13109A
ELECTRICAL CHARACTERISTICS (continued)
Speaker Amplifier/SP Mute
The Speaker Amplifier is an inverting rail–to–rail
operational amplifier. The non–inverting input terminal is
connected to the internal VB half supply reference. External
resistors and capacitors are used to set the gain and
frequency response. The “SA In” input is ac coupled.
(Test Conditions: VCC = 2.6 V, TA = 25°C, fin = 1.0 kHz, External Resistors Set for Gain of 1.)
Characteristic
Maximum Output Swing
SP Mute
Input
Pin
Measure
Pin
Symbol
Min
Typ
Max
Unit
VCC = 2.3 V,
RL = 130 Ω
VCC = 2.3 V,
RL = 600 Ω
VCC = 3.4
3 4 V,
V
RL = 600 Ω
SA In
SA Out
VOmax
–
0.8
–
Vpp
–
2.0
–
–
3.0
30
–
Vin = –20 dBV
RL = 130 Ω
No popping detectable
during SP Mute
transitions
SA In
–
–67
–
Condition
Mic Amplifier
The Mic Amplifier is an inverting rail–to–rail output
operational amplifier with the non–inverting input terminal
connected to the internal VB half supply reference. External
SA Out
Msp
dB
resistors and capacitors are connected to set the gain and
frequency response. The “Tx In” input is ac coupled.
(Test Conditions: VCC = 2.6 V, TA = 25°C, fin = 1.0 kHz, External Resistors Set for Gain of 1.)
Condition
Input
Pin
Measure
Pin
Symbol
Min
Typ
Max
Unit
Open Loop Gain
–
Tx In
Amp Out
AVOL
–
60
–
dB
Gain Bandwidth
–
Tx In
Amp Out
GBW
–
100
–
kHz
Tx In
Amp Out
VOmax
–
VCC – 0.3
–
Vpp
Characteristic
Maximum Output Swing
8
RL = 10 kΩ
MOTOROLA RF/IF DEVICE DATA
MC13109A
ELECTRICAL CHARACTERISTICS (continued)
Compressor/ALC/Tx Mute/Limiter
The compressor analog gound is set to the half supply
reference so the input and output swing capability will
increase as the supply voltage increases. The “C In” input is
ac coupled. The ALC (Automatic Level Control) provides a
soft limit to the output signal swing as the input voltage
increases slowly (i.e., a sine wave is maintained). The Limiter
circuit limits rapidly changing signal levels by clipping the
signal peaks. The ALC and/or Limiter can be disabled
through the MPU serial interface.
(Test Conditions: VCC = 2.6 V, fin = 1.0 kHz, TA = 25°C.)
Characteristic
Condition
Input
Pin
Measure
Pin
Symbol
Min
Typ
Max
Unit
Compressor 0 dB Gain
Level
Vin = –10 dBV, ALC
disabled, Limiter
disabled
C In
Lim Out
G
–3.0
–0.06
3.0
dB
Compressor Gain
Tracking
Vin = –30 dBV, Output
Relative to G
C In
Lim Out
Gt
–11
–10.12
–9.0
dB
–23
–20.16
–17
Vin = –50 dBV, Output
Relative to G
Maximum Compressor
Gain
Vin –70 dBV
C In
Lim Out
AVmax
–
29
–
dB
Total Harmonic
Distortion
Vin –10 dBV, ALC
disabled, Limiter
disabled
C In
Lim Out
THD
–
0.5
–
%
C In
Lim Out
Zin
–
16
–
kΩ
Input Impedance
–
Attack Time
Ccap = 1.0 µF,
Rfilt = 20 kΩ
(see Appendix B)
C In
Lim Out
ta
–
3.0
–
ms
Release Time
Ccap = 1.0 µF,
Rfilt = 20 kΩ
(see Appendix B)
C In
Lim Out
tr
–
13.5
–
ms
Expander to
Compressor Crosstalk
V (C In) = 0 Vrms,
Vin = –10 dBV
Rx
Audio In
Lim Out
CT
–
–43.6
–
dB
Tx Data Mute
Vin = –10 dBV, ALC
disabled
No popping detectable
during Rx Mute
transitions
C In
Lim Out
Me
–
–76
–
dB
–
C In
Lim Out
DR
–
–18 to 2.5
–
dBV
C In
Lim Out
ALCout
–
–16
–
dBV
Vlim
–
–
–11.4
0.8
–
–
Vpp
ALC Dynamic Range
ALC Output Level
Limiter Output Level
Vin = –18 dBV
Vin = –2.5 dBV
ALC disabled
MOTOROLA RF/IF DEVICE DATA
C In
Tx Out
9
MC13109A
ELECTRICAL CHARACTERISTICS (continued)
Splatter Amplifier
The Splatter Amplifier is an inverting rail–to–rail output
operational amplifier with the non–inverting input terminal
connected to the internal VB half supply reference. External
resistors and capacitors can be connected to set the gain and
frequency response. The “Spl Amp In” input is ac coupled.
(Test Conditions: VCC = 2.6 V, TA = 25°C, fin = 1.0 kHz, External resistors Set for Gain of 1.)
Characteristic
Condition
Input
Pin
Measure
Pin
Symbol
Min
Typ
Max
Unit
Open Loop Gain
–
Spl Amp
In
Tx Out
AVOL
–
60
–
dB
Gain Bandwidth
–
Spl Amp
In
Tx Out
GBW
–
100
–
kHz
Spl Amp
In
Tx Out
VOmax
–
VCC – 0.3
–
Vpp
Maximum Output Swing
RL = 10 kΩ
Tx Audio Path Recommendation
The recommended configuration for the Tx Audio path
includes setting the Microphone Amplifier gain to 16 dB using
the external gain setting resistors and setting the Splatter
Amplifier gain to 9.0 dB using the external gain setting
resistors.
PLL Voltage Regulator
The PLL supply voltage is regulated to a nominal of 2.2 V.
The “VCC Audio” pin is the supply voltage for the internal
voltage regulator. The “PLL Vref ” pin is the 2.2 V regulated
output voltage. Two capacitors with 10 µF and 0.01 µF values
must be connected to the “PLL Vref ” pin to filter and stabilize
this regulated voltage. The voltage regulator provides power
for the 2nd LO, Rx and Tx PLL’s, and MPU Interface. The
voltage regulator can also be used to provide a regulated
supply voltage for external IC’s. Rx and Tx PLL loop
performance are independent of the power supply voltage
when the voltage regulator is used. The voltage regulator
requires about 200 mV of “headroom”. When the power
supply decreases to within about 200 mV of the output
voltage, the regulator will go out of regulation but the output
voltage will not turn off. Instead, the output voltage will
maintain about a 200 mV delta to the power supply voltage as
the power supply voltage continues to decrease. The “PLL
Vref” pin can be connected to “VCC Audio” by the external
wiring if voltage higher than 2.2 V is required. But it should
not be connected to other supply except “VCC Audio”. The
voltage regulator is “on” in the Active and Rx modes. In the
Standby and Inactive modes, the voltage regulator is turned
off to reduce current drain and the “PLL Vref” pin is internally
connected to “VCC Audio” (i.e., the supply voltage is
maintained but is now unregulated).
(Test Conditions: VCC = 2.6 V, TA = 25°C.)
Characteristic
Condition
Input
Pin
Measure
Pin
Symbol
Min
Typ
Max
Unit
–
VCC PLL
Vout
–
2.2
–
V
Output Voltge Level
VCC = 2.6 V,
OL= 0 mA
Line Regulation
IL = 0 mA, VCC = 2.6 to
5.5 V
VCC
VCC PLL
Regline
–
3.66
40
mV
Load Regulation
VCC = 2.6 V, IL = 0 to
1.0 mA
VCC
VCC PLL
Regload
–40
–2.28
–
mV
10
MOTOROLA RF/IF DEVICE DATA
MC13109A
ELECTRICAL CHARACTERISTICS (continued)
Low Battery Detect
An external resistor divider is connected to the “Ref” input
pin to set the threshold for the low battery detect. The voltage
at the “Ref” input pin is compared to an internal 1.23 V
Bandgap reference voltage. The “BD Out” pin is open
collector and requires and external pull–up resistor to VCC.
(Test Conditions: VCC = 2.6 V, TA = 25°C.)
Characteristic
Average Threshold
Voltage
Hysteresis
Input
Pin
Measure
Pin
Take average of rising
and falling threshold
Ref
–
Condition
Symbol
Min
Typ
Max
Unit
Ref/
BD Out
Threshold
–
1.23
–
V
Ref
Ref/
BD Out
Hys
–
2.0
–
mV
–
Ref
Iin
–
12.33
50
nA
Input Current
Vin = 1.6 V
Output High Voltage
Vref = 1.6, RL = 3.9 kΩ
Ref
BD Out
VOH
VCC – 0.1
2.59
–
V
Output Low Voltage
Vref = 0.9, RL = 3.9 kΩ
Ref
BD Out
VOL
–
0.6
0.4
V
Figure 3. Data Amp Operation
Data Amp
Data
Signal
Hysteresis
Data Amp
Output
MOTOROLA RF/IF DEVICE DATA
11
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
MC13109A
PIN FUNCTION DESCRIPTION
48–TQFP
Pin
52–QFP
Pin
Symbol
Type
Description
1
2
1
2
LO2 In
LO2 Out
–
These pins form the PLL reference oscillator when connected to an external
parallel–resonant crystal (10.24 MHz typical). The reference oscillator is also the
second Local Oscillator (LO2) for the RF receiver.
3
3
PLL Vref
Supply
Voltage Regulator output pin. The internal voltage regulator provides a stable
power supply voltage for the Rx and Tx PLL’s and can also be used as a
regulated supply voltage for the other IC’s.
4
4
Rx PD
Output
Three state voltage output of the Rx Phase Detector. This pin is either “high”,
“low”, or “high impedance” depending on the phase difference of the phase
detector input signals. During lock, very narrow pulses with a frequency equal to
the reference frequency are present. This pin drives the external Rx PLL loop
filter. It is important to minimize the line length and capacitance of this pin.
5
5
Gnd PLL
Gnd
6
6
Tx PD
Output
7
7
E Cap
–
8
8
Tx VCO
Input
Transmit divide counter input which is driven by an ac coupled external transmit
loop VCO. The minimum signal level is 200 mVpp @ 80.0 MHz. This pin also
functions as the test mode input for the counter tests.
9
10
11
9
10
11
Data
EN
Clk
Input
Microprocessor serial interface input pins for programming various counters and
control functions.
12
12
Clk Out
Output
Microprocessor Clock Output which is derived from the 2nd LO crystal oscillator
and a programmable divider. It can be used to drive a microprocessor and
thereby reduce the number of crystals required in the system design. The driver
has an internal resistor in series with the output which can be combined with an
external capacitor to form a low pass filter to reduce radiated noise on the PCB.
This output also functions as the output for the counter test modes.
N/A
14
Status Out
Output
This pin indicates when the internal latches may have lost memory due to a
power glitch.
13
15
CD Out/
Hardware
Interrupt
Output/
Input
Dual function pin; 1) Carrier detect output (open collector with external 100 kΩ
pull–up resistor. 2) Hardware interrupt input which can be used to “wake–up”
from Inactive Mode.
14
16
BD Out
Output
Low battery detect output (open collector with external pull–up resistor).
15
17
DA Out
Output
Data amplifier output (open collector with internal 100 kΩ pull–up resistor).
16
18
SA Out
Output
Speaker amplifier output.
17
19
SA In
Input
18
20
E Out
Output
Expander output.
19
21
VCC Audio
Supply
VCC supply for audio section.
20
22
DA In
Input
21
23
Pre–Amp Out
Output
22
24
Rx Audio In
Input
23
25
Det Out
Output
24
26
RSSI
–
Receive signal strength indicator filter capacitor.
N/A
27
N/A
–
Not used.
25
28
Q Coil
–
A quad coil or ceramic discriminator are connected to this pin.
26
29
VCC RF
Supply
27
28
30
31
Lim C2
Lim C1
–
12
Ground pin for PLL section of IC.
Three state voltage output of the Tx Phase Detector. This pin is either “high”,
“low”, or “high impedance” depending on the phase difference of the phase
detector input signals. During lock, very narrow pulses with a frequency equal to
the reference frequency are present. This pin drives the external Tx PLL loop
filter. It is important to minimize the line length and capacitance on this pin.
Expander rectifier filter capacitor pin. Connect capacitor to VCC.
Speaker amplifier input (ac coupled).
Data amplifier input (ac coupled).
Pre–amplifier output for connection of pre–amplifier feedback resistor.
Rx audio input to pre–amplifier (ac coupled).
Audio output from FM detector.
VCC supply for RF receiver section.
IF amplifier/limiter capacitor pins.
MOTOROLA RF/IF DEVICE DATA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
MC13109A
PIN FUNCTION DESCRIPTION (continued)
48–TQFP
Pin
52–QFP
Pin
Symbol
Type
29
32
Lim In
Input
Signal input for IF amplifier/limiter.
30
33
Gnd RF
Gnd
Ground pin for RF section of the IC.
31
34
Mix2 Out
Output
32
35
Mix2 In
Input
33
36
VB
–
34
37
Mix1 Out
Output
35
38
Mix1 In2
Input
Negative polarity first mixer input.
36
39
Mix1 In1
Input
Positive polarity first mixer input.
37
38
40
41
LO1 In
LO1 Out
–
Tank elements for 1st LO multivibrator oscillator are connected to these pins.
39
42
Vcap Ctrl
–
1st LO varactor control pin.
40
43
Gnd Audio
Gnd
Ground for audio section of the IC.
41
44
Tx In
Input
Tx path input to Microphone Amplifier (ac coupled).
42
45
Amp Out
Output
43
46
C In
Input
44
47
C Cap
–
45
48
Lim Out
Output
46
49
Spl Amp In
Input
47
50
Tx Out
Output
48
51
Ref
Input
N/A
52
N/A
–
Description
Second mixer output.
Second mixer input.
Internal half supply analog ground reference.
First mixer output.
Microphone amplifier output.
Compressor input (ac coupled).
Compressor rectifier filter capacitor pin. Connect capacitor to VCC.
Tx path limiter output.
Splatter amplifier input (ac coupled).
Tx path audio output.
Reference voltage input for low battery detect.
Not used.
Power Supply Voltage
This circuit is used in a cordless telephone handset and
base unit. The handset is battery powered and can operate
on two or three NiCad cells or on 5.0 V power.
PLL Frequency Synthesizer General Description
Figure 4 shows a simplified block diagram of the
programmable universal dual phase locked loop (PLL). This
dual PLL is fully programmable through the MCU serial
interface and supports most country channel frequencies
including USA (25 ch), France, Spain, Australia, Korea, New
Zealand, U.K., Netherlands and China (see channel
frequency tables in Appendix A).
The 2nd local oscillator and reference divider provide the
reference frequency for the Rx and Tx PLL loops. The
MOTOROLA RF/IF DEVICE DATA
programmed divider value for the reference divider is
selected based on the crystal frequency and the desired Rx
and Tx reference frequency values. Additional divide by 25
and divide by 4 blocks are provided to allow for generation of
the 1.0 kHz and 6.25 kHz reference frequencies required for
the U.K. The 14–Bit Tx counter is programmed for the
desired transmit channel frequency. The 14–Bit Rx counter is
programmed for the desired first local oscillator frequency. All
counters power up in the proper default state for USA
channel #6 and for a 10.24 MHz reference frequency crystal.
Internal fixed capacitors can be connected to the tank circuit
of the 1st LO through microprocessor control to extend the
sensitivity of the 1st LO for U.S. 25 channel operation.
13
MC13109A
Figure 4. Dual PLL Simplified Block Diagram
LO2 In
1, 1
LO2 Out
12–b
÷ 25
Programmable
÷4
Reference
÷1
Counter
LO2
2, 2
14–b Programmable
Tx Counter
Tx VCO
U.K. Base
Tx Ref
Tx PD
Tx
VCO
8, 8
Tx Phase
Detector
LPF
6, 6
U.K. Handset
U.K. Base
Rx Ref
Rx PD
Rx Phase
Detector
U.K. Handset
4, 4
Vcap Ctrl
LPF
39, 42
LO1 In
14–b Programmable
Rx Counter
37, 40
LO1 Out
1st LO
38, 41
ELECTRICAL CHARACTERISTICS (VCC = 2.6 V, TA = 25°C)
Characteristic
Condition
Measure
Pin
Symbol
Min
Typ
Max
Unit
PLL PIN DC
Input Voltage Low
–
Data
Clk
EN
Hardware Int.
VIL
–
–
0.3
V
Input Voltage High
–
Data
Clk
EN
VIH
“PLL Vref” –
0.3
–
“VCC Audio”
V
Input Current Low
Vin = 0.3 V
Data
Clk
EN
IIL
–5.0
–3.0
–
µA
Input Current High
Vin = (VCC Audio) –
0.3
Data
Clk
EN
IIH
–
0.6
5.0
µA
Hysteresis Voltage
–
Data
Clk
EN
Vhys
–
1.0
–
V
Output Current High
–
Rx PD
Tx PD
IOH
–
–
– 0.7
mA
Output Current Low
–
Rx PD
Tx PD
IOL
0.7
–
–
mA
Output Voltage Low
IIL = 0.7 mA
Rx PD
Tx PD
VOL
–
–
(PLL Vref)*
0.2
V
Output Voltage High
IIH = – 0. 7mA
Rx PD
Tx PD
VOH
(PLL Vref)*
0.8
–
–
V
Tri–State Leakage
Current
V = 1.2 V
Rx PD
Tx PD
IOZ
– 50
–
50
nA
Input Capacitance
–
Data
Clk
EN
Cin
–
–
8.0
pF
Output Capacitance
–
Rx PD
Tx PD
Cout
–
–
8.0
pF
14
MOTOROLA RF/IF DEVICE DATA
MC13109A
ELECTRICAL CHARACTERISTICS (continued) (VCC = 2.6 V, TA = 25°C)
Condition
Measure
Pin
Symbol
Min
Typ
Max
Unit
EN to Clk Setup Time
–
EN, Clk
tsuEC
200
–
–
ns
Data to Clk Setup Time
–
Data, Clk
tsuDC
100
–
–
ns
Hold Time
–
Data, Clk
th
90
–
–
ns
Recovery Time
–
EN, Clk
trec
90
–
–
ns
Input Pulse Width
–
EN, Clk
tw
100
–
–
ns
Input Rise and Fall Time
–
Data
Clk
EN
tr, tf
–
–
9.0
µs
90% of PLL Vref to
Data, Clk, EN
–
tpuMPU
–
100
–
µs
–
LO2 In
LO2 Out
fLO
–
–
12
MHz
Tx VCO
ftxmax
–
–
80
MHz
Characteristic
PLL PIN INTERFACE
MPU Interface
Power–Up Delay
PLL LOOP
2nd LO Frequency
“Tx VCO” Input Frequency
Vin = 200 mVpp
PLL I/O Pin Specifications
The 2nd LO, Rx and Tx PLL’s and MPU serial interface are
normally powered by the internal voltage regulator at the “PLL
Vref” pin. The “PLL Vref” pin is the output of a voltage regulator
which is powered from the “VCC Audio” power supply pin.
Therefore, the maximum input and output levels for most PLL
I/O pins (LO2 In, LO2 Out, Rx PD, Tx PD, Tx VCO) is the
regulated voltage at the “PLL Vref” pin. The ESD protection
diodes on these pins are also connected to “PLL Vref”.
Internal level shift buffers are provided for the pins (Data, Clk,
EN, Clk Out) which connect directly to the microprocessor.
The maximum input and output levels for these pins is VCC.
Figure 5 shows a simplified schematic of the PLL I/O pins.
Figure 6. Data and Clock Timing Requirement
tr
tf
90%
10%
Data,
Clk, EN
50%
Data
tsuDC
th
50%
Figure 5. PLL I/O Pin Simplified Schematics
PLL Vref
(2.2 V)
I/O
VCC Audio
(2.0 to 5.5 V)
PLL Vref
(2.2 V)
VCC Audio
(2.0 to 5.5 V)
1.0 kΩ
In
Clk
Out
2.0 µA
LO2 In, LO2 Out,
Rx PD, Tx PD and
Tx VCO Pins
Data, Clk, and EN Pins
Clk Out Pin
After data is loaded into the shift register, the data is
latched into the appropriate latch register using the “EN” pin.
This is done in two steps. First, an 8–Bit address is loaded
into the shift register and latched into the 8–Bit address latch
register. Then, up to 16–Bits of data is loaded into the shift
register and latched into the data latch register specified by
the address that was previously loaded. Figure 7 shows the
timing required on the EN pin. Latching occurs on the
negative EN transition.
Microprocessor Serial Interface
The “Data”, “Clk”, and “EN” pins provide an MPU serial
interface for programming the reference counters, the
transmit and receive channel divider counter and various
control functions. The “Data” and “Clk” pins are used to load
data into the shift register. Figure 6 shows “Data” and “Clk”
pin timing. Data is clocked on positive clock transitions.
MOTOROLA RF/IF DEVICE DATA
15
MC13109A
modes; Inactive, Standby, Rx, and Active Modes. Data can
be loaded into the shift registers and latched into the latch
registers in any of the operating modes.
Figure 7. Enable Timing Requirement
50%
50%
Last
Clock
Clk
tsuEC
First
Clock
Figure 9. Microprocessor Serial Interface
Power–Up Delay
trec
50%
2.0 V
50%
Previous Data Latch
EN
tpuMPU
VCC
The state of the EN pin when clocking data into the shift
register determines whether the data is latched into the
address register or a data register. Figure 8 shows the
address and data programming diagrams. In the data
programming mode, there must not be any clock transitions
when “EN” is high. The clock can be in a high state (default
high) or a low state (default low) but must not have any
transitions during the “EN” high state. The convention in
these figures is that latch bits to the left are loaded into the
shift register first.
Figure 8. Microprocessor Interface Programming
Mode Diagrams
Data
MSB
8–Bit Address
LSB
Data
16–Bit Data
LSB
Latch
EN
Data Register Programming Mode
The MPU serial interface is fully operational within 100 µs
after the power supply has reached its minimum level during
power–up (See Figure 9). The MPU Interface shift registers
and data latches are operational in all four power saving
16
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Status Latch Register Bits
Address Register Programming Mode
MSB
Status Out
This is a digital output which indicates whether the latch
registers have been reset to their power–up default values.
Latch power–up default values are given in Figure 28. If there
is a power glitch or ESD event which causes the latch
registers to be reset to their default values, the “Status Out”
pin will indicate this to the MPU so it can reload the correct
information into the latch registers.
Figure 10. Status Out Operation
Latch
EN
Data,
Clk, EN
Status Out
Logic Level
Latch bits not at power–up default value
0
Latch bits at power–up default value
1
Data Registers
Figure 11 shows the data latch registers and addresses
which are used to select each of these registers. Latch bits to
the left (MSB) are loaded into the shift register first. The LSB
bit must always be the last bit loaded into the shift register.
“Don’t Care” bits can be loaded into the shift register first if
8–Bit bytes of data are loaded.
MOTOROLA RF/IF DEVICE DATA
MC13109A
Figure 11. Microprocessor Interface Data Latch Registers
Latch Address
MSB
14–Bit Tx Counter
LSB
1. (00000001)
LSB
2. (00000010)
Tx Counter Latch
MSB
14–Bit Rx Counter
Rx Counter Latch
U.K. Handset
Select
U.K. Base
Select
MSB
LSB
12–Bit Reference Counter
3. (00000011)
Reference Counter Latch
ALC
Disable
Not
Used
Limiter
Disable
Clk
Disable
MPU
Clk1
MPU
Clk0
MSB
14–Bit
Volume
Control
LSB
Stdby
Mode
Rx
Mode
Tx
Mute
Rx
Mute
SP
Mute
4. (00000100)
Mode Control Latch
MSB
5–Bit CD Threshold Control
LSB
5. (00000101)
Threshold Control Latch
6. (00000110)
4–Bit Test Mode
3–Bit 1st LO
Capacitor Selection
7. (00000111)
7–Bit Auxillary Latch
Reference Frequency Selection
The “LO2 In” and “LO2 Out” pins form a reference oscillator
when connected to an external parallel–resonant crystal. The
reference oscillator is also the second local oscillator for the
RF Receiver. Figure 12 shows the relationship between
different crystal frequencies and reference frequencies for
cordless phone applications in various countries.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
Figure 12. Reference Frequency and
Reference Divider Values
Crystal
Frequency
Reference
Divider
Value
U.K. Base/
Handset
Divider
Reference
Frequency
10.24 MHz
2048
1
5.0 kHz
10.24 MHz
1024
4
2.5 kHz
11.15 MHz
2230
1
5.0 kHz
12.00 MHz
2400
1
5.0 kHz
11.15 MHz
1784
1
6.25 kHz
11.15 MHz
446
4
6.25 kHz
11.15 MHz
446
25
1.0 kHz
MOTOROLA RF/IF DEVICE DATA
Reference Counter
Figure 13 shows how the reference frequencies for the Rx
and Tx loops are generated. All countries except U.K. require
that the Tx and Rx reference frequencies be identical. In this
case, set “U.K. Base Select” and “U.K. Handset Select” bits
to “0”. Then the fixed divider is set to “1” and the Tx and Rx
reference frequencies will be equal to the crystal oscillator
frequency divided by the programmable reference counter
value. The U.K. is a special case which requires a different
reference frequency value of Tx and Rx.
For U.K. base operation, set “U.K. Base Select” to “1”. For
U.K. handset operation, set “U.K. Handset Select” to “1”. The
Netherlands is also a special case since a 2.5 kHz reference
frequency is used for both the Tx and Rx reference and the
total divider value required is 4096 which is larger than the
maximum divide value available from the 12–Bit reference
divider (4095). In this case, set “U.K. Base Select” to “1” and
set “U.K. Handset Select” to “1”. This will give a fixed divide
by 4 for both the Tx and Rx reference. Then set the reference
divider to 1024 to get a total divider of 4096.
Mode Control Register
Power saving modes, mutes, disables, volume control,
and microprocessor clock output frequency are all set by the
Control Register. Operation of the Control Register is
explained in Figures 14 through 21.
17
MC13109A
Figure 13. Reference Register Programming Mode
U.K. Base
Tx Reference Frequency
LO2 In
÷ 25
12–b
Programmable
÷4
Reference
Counter
÷1
LO2
LO2 Out
U.K. Base
Rx Reference Frequency
U.K. Handset
U.K. Handset
Select
U.K. Base
Select
Tx Divider
Value
Rx Divider
Value
Application
0
0
1
1
0
1
0
1
1
25
4
4
1
4
25
4
All but U.K. and Netherlands
U.K. Baseset
U.K. Handset
Netherlands Base and Handset
U.K. Base
Select
U.K. Handset
Select
U.K. Handset
MSB
12–Bit Reference Counter
LSB
14–Bit Reference Counter Latch
Figure 14. Control Register Bits
ALC
Disable
Not
Used
Limiter
Disable
Clk
Disable
MPU
Clk1
MPU
Clk0
MSB
4–Bit Volume
Control
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
Figure 15. Mute and Disable Control Bit Descriptions
ALC Disable
1
0
Automatic Level Control Disabled
Normal Operation
Limiter Disable
1
0
Limiter Disabled
Normal Operation
Clock Disable
1
0
MPU Clock Output Disabled
Normal Operation
Tx Mute
1
0
Transmit Channel Muted
Normal Operation
Rx Mute
1
0
Receive Channel Muted
Normal Operation
1
0
Speaker Amp Muted
Normal Operation
SP Mute
Power Saving Operating Modes
When the MC13109A is used in a handset, it is important
to conserve power in order to prolong battery life. There are
five modes of operation; Active, Rx, Standby, Interrupt and
Inactive. In Active Mode, all circuit blocks are powered. In Rx
mode, all circuitry is powered down except for those circuit
18
Stdby
Mode
LSB
Rx
Mode
Tx
Mute
Rx
Mute
SP
Mute
sections needed to receive a transmission from the base. In
the Standby and Interrupt Modes, all circuitry is powered
down except for the circuitry needed to provide the clock
output for the microprocessor. In Inactive Mode, all circuitry is
powered down except the MPU interface. Latch memory is
maintained in all modes. Figure 16 shows the control register
bit values for selection of each power saving mode and
Figure 17 show the circuit blocks which are powered in each
of these operating mode.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Figure 16. Power Saving Mode Selection
Stdby
Mode
Bit
Rx
Mode
Bit
“CD Out/Hardware
Interrupt” Pin
Power Saving
Mode
0
0
X
Active
0
1
X
Rx
1
0
X
Standby
1
1
1 or High Impedance
Inactive
1
1
0
Inactive
MOTOROLA RF/IF DEVICE DATA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
MC13109A
Figure 17. Circuit Blocks Powered During Power Saving Modes
Active
Rx
Standby
Inactive
“PLL Vref” Regulated Voltage
Circuit Blocks
X
X
X1
X1
MPU Interface
X
X
X
X
2nd LO Oscillator
X
X
X
MPU Clock Output
X
X
X
RF Receiver
X
X
1st LO VCO
X
X
Rx PLL
X
X
Carrier Detect
X
X
Data Amp
X
X
Low Battery Detect
X
X
Tx PLL
X
Rx Audio Path
X
Tx Audio Path
X
NOTE: 1. In Standby and Inactive Modes, “PLL Vref” remains powered but is not regulated. It will fluctuate with VCC.
Inactive Mode Operation and Hardware Interrupt
In some handset applications it may be desirable to power
down all circuitry including the microprocessor (MPU). First
put the MC13109A into the Inactive mode, which turns off the
MPU Clock Output (see Figure 18), and then disable the
microprocessor. In order to give the MPU adequate time to
power down, the MPU Clock output remains active for a
minimum of one reference counter cycle (about 200 µs) after
the command is given to switch into the “Inactive” mode. An
external timing circuit should be used to initiate the turn–on
sequence. The “CD Out” pin has a dual function. In the Active
and Rx modes it performs the carrier detect function. In the
Standby and Inactive modes the carrier detect circuit is
disabled and the “CD Out” pin is in a “High” state due to the
external pull–up resistor. In the Inactive mode the “CD Out”
pin is the input for the hardware interrupt function. When the
“CD Out” pin is pulled “low” by the external timing circuit, the
MC13109A switches from the Inactive to the Interrupt mode
thereby turning on the MPU Clock Output. The MPU can then
resume control of the combo IC. The “CD Out” pin must
remain low until the MPU changes the operating mode from
Interrupt to Standby, Active or Rx modes.
Figure 18. Hardware Interrupt Operation
Mode
Active/Rx
Interrupt
MPU Initiates
Inactive Mode
EN
CD Out/Hardware Interrupt
Inactive
Standby/Rx/Active
MPU Initiates
Mode Change
External Timer
Pulls Pin Low
CD Out Low
CD Turns Off
Timer Output
Disabled
MPU Clock Out
Delay after MPU selects Inactive Mode to when CD turns off
“MPU Clock Out” remains active for a minimum of one count of reference
counter after “CD Out/Hardware Interrupt” pin goes high
MOTOROLA RF/IF DEVICE DATA
19
MC13109A
“Clk Out” Divider Programming
The “Clk Out” pin is derived from the 2nd local oscillator and
can be used to drive a microprocessor, thereby reducing the
number of crystals required. Figure 19 shows the relationship
between the crystal frequency and the clock output for
different divider values. Figure 20 shows the “Clk Out” register
bit values.
MPU “Clk Out” Power–Up Default Divider Value
The power–up default divider value is “divide by 10”. This
provides an MPU clock of about 1.0 MHz after initial
power–up. The reason for choosing this relatively low clock
frequency after intial power–up is that some microprocessors
that operate down to a 2.0 V power supply have a maximum
clock frequency of 1.0 MHz. After initial power–up, the MPU
can change the clock divider value to set the clock to the
desired operating frequency. Special care has been taken in
the design of the clock divider to ensure that the transition
between one clock divider value and another is “smooth”
(i.e., there will be no narrow clock pulses to disturb the MPU).
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
Figure 19. Clock Output Values
Clock Output Divider
Crystal
Frequency
2
3
5
10
10.24 MHz
5.120 MHz
3.413 MHz
2.048 MHz
1.024 MHz
11.15 MHz
5.575 MHz
3.717 MHz
2.230 MHz
1.115 MHz
12.00 MHz
6.000 MHz
4.000 MHz
2.400 MHz
1.200 MHz
Figure 20. Clock Output Divider
Clk Out
Bit #1
Clk Out
Bit #2
Clk Out
Divider Value
0
0
2
0
1
3
1
0
5
1
1
10
MPU “Clk Out” Radiated Noise on Circuit Board
The clock line running between the MC13109A and the
microprocessor has the potential to radiate noise which can
cause problems in the system especially if the clock is a
square wave digital signal with large high frequency
harmonics. In order to minimize radiated noise, a 1.0 kΩ
resistor is included on–chip in–series with the “Clk Out” output
driver. A small capacitor can be connected to the “Clk Out” line
on the PCB to form a single pole low pass filter. This filter will
significantly reduce noise radiated from the “Clk Out” line.
Volume Control
The volume control can be programmed in 2.0 dB gain steps
from –14 dB to 16 dB. The power–up default value is 0 dB.
Figure 21. Volume Control
Volume Control
Bit #3
Volume Control
Bit #2
Volume Control
Bit #1
Volume Control
Bit #0
Volume
Control #
Gain/Attenuation
Amount
0
0
0
0
0
–14 dB
0
0
0
1
1
–12 dB
0
0
1
0
2
–10 dB
0
0
1
1
3
– 8.0 dB
0
1
0
0
4
– 6.0 dB
0
1
0
1
5
– 4.0 dB
0
1
1
0
6
– 2.0 dB
0
1
1
1
7
0 dB
1
0
0
0
8
2.0 dB
1
0
0
1
9
4.0 dB
1
0
1
0
10
6.0 dB
1
0
1
1
11
8.0 dB
1
1
0
0
12
10 dB
1
1
0
1
13
12 dB
1
1
1
0
14
14 dB
1
1
1
1
15
16 dB
Gain Control Register
The gain control register contains bits which control the
Carrier Detect threshold. Operation of these latch bits are
explained in Figures 22 and 23.
20
Figure 22. Gain Control Latch Bits
MSB
5–Bit CD Threshold Control
LSB
MOTOROLA RF/IF DEVICE DATA
MC13109A
Carrier Detect Threshold Programming
The “CD Out” pin will give an indication to the
microprocessor if a carrier signal is present on the selected
channel. The nominal value and tolerance of the carrier
detect threshold is given in the carrier detect specification
section of this document. If a different carrier detect threshold
value is desired, it can be set through the MPU interface as
shown in Figure 23 below.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Figure 23. Carrier Detect Threshold Control
CD
Bit #4
CD
Bit #3
CD
Bit #2
CD
Bit #1
CD
Bit #0
CD
Control #
Carrier Detect
Threshold
0
0
0
0
0
0
– 20 dB
0
0
0
0
1
1
–19 dB
0
0
0
1
0
2
–18 dB
0
0
0
1
1
3
–17 dB
0
0
1
0
0
4
–16 dB
0
0
1
0
1
5
–15 dB
0
0
1
1
0
6
–14 dB
0
0
1
1
1
7
–13 dB
0
1
0
0
0
8
–12 dB
0
1
0
0
1
9
–11 dB
0
1
0
1
0
10
–10 dB
0
1
0
1
1
11
– 9.0 dB
0
1
1
0
0
12
– 8.0 dB
0
1
1
0
1
13
–7.0 dB
0
1
1
1
0
14
– 6.0 dB
0
1
1
1
1
15
– 5.0 dB
1
0
0
0
0
16
– 4.0 dB
1
0
0
0
1
17
– 3.0 dB
1
0
0
1
0
18
– 2.0 dB
1
0
0
1
1
19
–1.0 dB
1
0
1
0
0
20
0 dB
1
0
1
0
1
21
1.0 dB
1
0
1
1
0
22
2.0 dB
1
0
1
1
1
23
3.0 dB
1
1
0
0
0
24
4.0 dB
1
1
0
0
1
25
5.0 dB
1
1
0
1
0
26
6.0 dB
1
1
0
1
1
27
7.0 dB
1
1
1
0
0
28
8.0 dB
1
1
1
0
1
29
9.0 dB
1
1
1
1
0
30
10 dB
1
1
1
1
1
31
11 dB
MOTOROLA RF/IF DEVICE DATA
21
MC13109A
Auxiliary Register
The auxiliary register contains a 3–Bit 1st LO Capacitor
Selection latch and a 4–Bit Test Mode latch. Operation of
these latch bits are explained in Figures 24, 25 and 26.
circuit to change the 1st LO sensitivity. Internal switches and
capacitors are provided to enable microprocessor control
over internal fixed capacitor values. Figure 25 shows the
schematic of the 1st LO tank circuit. Figure 26 shows the
latch control bit values.
Figure 24. Auxiliary Register Latch Bits
Figure 25. First LO Schematic
MSB
4–Bit Test Mode
LSB
MSB
3–Bit 1st LO
LSB
Capacitor Selection
Vcap Ctrl
Varactor
First Local Oscillator Capacitor Selection for 25
Channel U.S. Operation
There is a very large frequency difference between the
minimum and maximum channel frequencies in the proposed
25 Channel U.S. standard. The sensitivity of the 1st LO is not
large enough to accommodate this large frequency variation.
Fixed capacitors can be connected across the 1st LO tank
42
Internal Capacitor
LO1 In
1st LO
Varactor
Cext
40
LO1 Out
Lext
41
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
Figure 26. 1st LO Capacitor Select for U.S. 25 Channels
1st LO
Cap.
Bit 2
1st LO
Cap.
Bit 1
1st LO
Cap.
Bit 0
1st LO
Cap.
Select
U.S.
Base
Channels
U.S.
Handset
Channels
Varactor Value
over 0.5 to 2.2
V Range
External
Capacitor
Value
External
Inductor
Value
0
0
0
0
16 – 25
–
10 – 6.4 pF
27 pF
0.47 µH
0
0
0
0
–
16 – 25
10 – 6.4 pF
33 pF
0.47 µH
0
0
1
1
1–6
–
10 – 6.4 pF
27 pF
0.47 µH
0
1
0
2
7 – 15
–
10 – 6.4 pF
27 pF
0.47 µH
0
1
1
3
–
1–6
10 – 6.4 pF
33 pF
0.47 µH
1
0
0
4
–
7 – 15
10 – 6.4 pF
33 pF
0.47 µH
22
MOTOROLA RF/IF DEVICE DATA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
MC13109A
Figure 27. Test Mode Description
Counter Under Test or
Test Mode Option
“Tx VCO”
Input Signal
“Clk Out” Output Expected
>200 mVpp
–
TM #
TM 3
TM 2
TM 1
TM 0
0
0
0
0
0
Normal Operation
1
0
0
0
1
Rx Counter, upper 6
0 to 2.2 V
Input Frequency/64
2
0
0
1
0
Rx Counter, lower 8
0 to 2.2 V
See Note Below
3
0
0
1
1
Rx Prescaler
0 to 2.2 V
Input Frequency/4
4
0
1
0
0
Tx Counter, upper 6
0 to 2.2 V
Input Frequency/64
5
0
1
0
1
Tx Counter, lower 8
0 to 2.2 V
See Note Below
6
0
1
1
0
Tx Prescaler
7
0
1
1
1
Reference Counter
0 to 2.2 V
Input Frequency/Reference Counter Value
8
1
0
0
0
Divide by 4, 25
0 to 2.2 V
Input Frequency/100
9
1
0
0
1
AGC Gain = 10 Option
N/A
–
10
1
0
1
0
AGC Gain = 25 Option
N/A
–
NOTE:
>200 mVpp
Input Frequency/4
To determine the correct output, look at the lower 8 bits in the Rx or Tx register (Divisor (7;0). If the value of the divisor is > 16, then the output divisor
value is Divisor (7;2) (the upper 6 bits of the divisor). If Divisor (7;0) < 16 and Divisor (3;2) > = 2, then output divisor value is Divisor (3;2) (bits 2 and 3
of the divisor). If Divisor (7;0) < 16 and Divisor (3;2) < 2, then output divisor value is (Divisor (3;2) + 60).
Test Modes
Test Mode Control latch bits enable independent testing of
internal counters and set AGC Gain Options. In test mode,
the “Tx VCO” input pin is multiplexed to the input of the
counter under test and the output of the counter under test is
multiplexed to the “Clk Out” output pin so that each counter
can be individually tested. Make sure test mode bits are set to
“0” for normal operation. Test mode operation is described in
Figure 27. During normal operation and when testing the Tx
Prescaler, the “Tx VCO” input can be a minimum of 200 mVpp
at 80 MHz and should be ac coupled. For other test modes,
input signals should be standard logic levels of 0 to 2.2 V and
a maximum frequency of 16 MHz.
Power–Up Defaults for Control and Counter Registers
When the IC is first powered up, all latch registers are
initialized to a defined state. The MC13109A is initially placed
in the Rx mode with all mutes active and nothing disabled.
The reference counter is set to generate a 5.0 kHz reference
frequency from a 10.24 MHz crystal. The MPU clock output
divider is set to 10 to give the minimum clock output
frequency. The Tx and Rx latch registers are set for USA
Channel Frequency #21. Figure 28 shows the initial
power–up states for all latch registers.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
Á
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
Á
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
Á
ÁÁ
ÁÁÁ
Á
ÁÁ
Á
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
Á
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
Á
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁ
ÁÁ
Á
ÁÁ
Á
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
Figure 28. Latch Register Power–Up Defaults
MSB
LSB
Register
Count
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Tx
9965
–
–
1
0
0
1
1
0
1
1
1
0
1
1
1
0
Rx
7215
–
–
0
1
1
1
0
0
0
0
1
0
1
1
1
1
Ref
2048
–
–
0
0
1
0
0
0
0
0
0
0
0
0
0
0
Mode
N/A
–
0
0
0
0
1
1
0
1
1
1
0
1
1
1
1
Gain
N/A
–
–
–
–
–
–
–
–
–
–
–
1
0
1
0
0
TM
N/A
–
–
–
–
–
–
–
–
–
0
0
0
0
0
0
0
MOTOROLA RF/IF DEVICE DATA
23
MC13109A
Figure 29. ICC versus VCC at Active Mode
Figure 30. ICC versus VCC at Receive Mode
5.0
7.0
I CC , SUPPLY CURRENT (mA)
I CC , SUPPLY CURRENT (mA)
8.0
6.0
5.0
4.0
3.0
2.0
4.5
4.0
3.5
3.0
1.0
3.0
3.5
4.0
4.5
2.5
2.5
5.0
3.0
3.5
Figure 31. ICC versus VCC at Standby Mode
I CC , SUPPLY CURRENT (µ A)
I CC , SUPPLY CURRENT (mA)
0.8
0.6
0.4
0.2
70
60
50
40
30
20
10
3.0
3.5
4.0
4.5
0
2.5
5.0
3.0
3.5
VCC, SUPPLY VOLTAGE (V)
Figure 33. RSSI Output versus RFin
4.5
5.0
Figure 34. Recovered Audio/THD versus fDEV
300
1.4
250
RECOVERED AUDIO (V)
RSSI OUTPUT (dB)
4.0
VCC, SUPPLY VOLTAGE (V)
1.6
1.2
1.0
0.8
0.6
0.4
6.0
R22 = 12 kΩ
200
5.0
4.0
Recovered Audio
3.0
150
100
2.0
THD
1.0
50
0.2
–100
–80
–60
–40
RFin, RF INPUT (dBm)
24
5.0
80
1.0
0
–120
4.5
Figure 32. ICC versus VCC at Inactive Mode
1.2
0
2.5
4.0
VCC, SUPPLY VOLTAGE (V)
VCC, SUPPLY VOLTAGE (V)
–20
0
THD (%)
0
2.5
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
0
9.0
fDEV, DEVIATION, (kHz)
MOTOROLA RF/IF DEVICE DATA
MC13109A
Figure 36. Typical Compressor Response
EXPANDER, E OUT (dBV)
0
–10
–20
–30
–40
–50
–60
–30
–25
–20
–15
–10
–5.0
0
0
–30
–40
–50
–60
–80
–70
–60
–50
–40
–30
–20
–10
COMPRESSOR, Cin LEVEL INPUT (dBV)
Figure 37. First Mixer Third Order
Intercept Performance
Figure 38. Second Mixer Third Order
Intercept Performance
0
–20
–20
–40
–60
–70
ACL “On”
–20
0
–80
–80
ACL “Off”
–10
Rx AUDIO IN (dBV)
MIXER OUTPUT (dBm)
MIXER OUTPUT (dBm)
–70
–35
COMPRESSOR LEVEL OUTPUT, LIM OUT (dBV)
Figure 35. Typical Expander Response
10
–60
–50
–40
–30
MIXER1 IN (dBm)
MOTOROLA RF/IF DEVICE DATA
–20
–10
0
0
–40
–60
–80
–90
–80
–70
–60
–50
–40
–30
–20
–10
0
MIXER2 IN (dBm)
25
MC13109A
APPENDIX A – MEASUREMENT OF COMPANDOR ATTACK/DECAY TIME
This measurement definition is based on EIA/CCITT
recommendations.
Compressor Attack Time
For a 12 dB step up at the input, attack time is defined as
the time for the output to settle to 1.5X of the final steady state
value.
Compressor Decay Time
For a 12 dB step down at the input, decay time is defined
as the time for the input to settle to 0.75X of the final steady
state value.
Expander Attack
For a 6.0 dB step up at the input, attack time is defined as
the time for the output to settle to 0.57X of the final steady
state value.
Expander Decay
For a 6.0 dB step down at the input, decay time is defined
as the time for the output to settle to 1.5X of the final steady
state value.
6.0 dB
12 dB
Input
Input
0 mV
0 mV
Attack Time
Decay Time
Attack Time
Decay Time
1.5X Final Value
0.57X Final Value
Output
1.5X Final Value
0.75X Final Value
Output
0 mV
0 mV
26
MOTOROLA RF/IF DEVICE DATA
MC13109A
OUTLINE DIMENSIONS
FB SUFFIX
PLASTIC PACKAGE
CASE 848B–04
(QFP–52)
ISSUE C
L
39
B
B
27
–A–, –B–, –D–
F
S
D
C A–B
J
N
0.20 (0.008)
V
M
B
0.20 (0.008)
M
L
DETAIL A
S
S
H A–B
–B–
–A–
0.05 (0.002) A–B
S
DETAIL A
D
26
40
BASE METAL
D
14
52
1
0.02 (0.008)
13
M
C A–B
S
D
S
SECTION B–B
–D–
0.20 (0.008)
M
B
H A–B
S
D
S
S
D
S
0.05 (0.002) A–B
V
0.20 (0.008)
M
C A–B
DETAIL C
M_
C
E
–H–
DATUM
PLANE
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF LEAD AND IS
COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE
PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
4. DATUMS –A–, –B– AND –D– TO BE DETERMINED AT DATUM
PLANE –H–.
5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING
PLANE –C–.
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 (0.010) PER
SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH
AND ARE DETERMINED AT DATUM PLANE –H–.
7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION.
ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON
THE LOWER RADIUS OR THE FOOT.
0.10 (0.004)
H
–C–
M_
G
U_
R
Q_
K
T
W
X
DETAIL C
SEATING
PLANE
DIM
A
B
C
D
E
F
G
H
J
K
L
M
N
Q
R
S
T
U
V
W
X
MILLIMETERS
MIN
MAX
9.90
10.10
9.90
10.10
2.10
2.45
0.22
0.38
2.00
2.10
0.22
0.33
0.65 BSC
–––
0.25
0.13
0.23
0.65
0.95
7.80 REF
5_
10_
0.13
0.17
0_
7_
0.13
0.30
12.95
13.45
0.13
–––
0_
–––
12.95
13.45
0.35
0.45
1.6 REF
INCHES
MIN
MAX
0.390
0.398
0.390
0.398
0.083
0.096
0.009
0.015
0.079
0.083
0.009
0.013
0.026 BSC
–––
0.010
0.005
0.009
0.026
0.037
0.307 REF
5_
10_
0.005
0.007
0_
7_
0.005
0.012
0.510
0.530
0.005
–––
0_
–––
0.510
0.530
0.014
0.018
0.063 REF
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
MOTOROLA RF/IF DEVICE DATA
27
MC13109A
OUTLINE DIMENSIONS
FTA SUFFIX
PLASTIC PACKAGE
CASE 932–02
(Thin QFP)
ISSUE D
4X
0.200 (0.008) AB T–U Z
9
DETAIL Y
A
P
A1
48
37
1
36
–T–
–U–
B
V
AE
B1
12
25
13
AE
V1
NOTES:
1 DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2 CONTROLLING DIMENSION: MILLIMETER.
3 DATUM PLANE –AB– IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE LEAD
WHERE THE LEAD EXITS THE PLASTIC BODY AT
THE BOTTOM OF THE PARTING LINE.
4 DATUMS –T–, –U–, AND –Z– TO BE DETERMINED
AT DATUM PLANE –AB–.
5 DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE –AC–.
6 DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE PROTRUSION IS
0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO
INCLUDE MOLD MISMATCH AND ARE
DETERMINED AT DATUM PLANE –AB–.
7 DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. DAMBAR PROTRUSION SHALL
NOT CAUSE THE D DIMENSION TO EXCEED
0.350 (0.014).
8 MINIMUM SOLDER PLATE THICKNESS SHALL BE
0.0076 (0.0003).
9 EXACT SHAPE OF EACH CORNER IS OPTIONAL.
24
DIM
A
A1
B
B1
C
D
E
F
G
H
J
K
M
N
P
Q
R
S
S1
V
V1
W
X
–Z–
S1
–T–, –U–, –Z–
S
DETAIL Y
4X
0.200 (0.008) AC T–U Z
0.080 (0.003) AC
G
–AB–
–AC–
AD
M_
BASE METAL
ÉÉÉÉ
ÇÇÇÇ
ÇÇÇÇ
ÉÉÉÉ
ÇÇÇÇ
TOP & BOTTOM
N
MILLIMETERS
MIN
MAX
7.000 BSC
3.500 BSC
7.000 BSC
3.500 BSC
1.400
1.600
0.170
0.270
1.350
1.450
0.170
0.230
0.500 BASIC
0.050
0.150
0.090
0.200
0.500
0.700
12 _REF
0.090
0.160
0.250 BASIC
1_
5_
0.150
0.250
9.000 BSC
4.500 BSC
9.000 BSC
4.500 BSC
0.200 REF
1.000 REF
INCHES
MIN
MAX
0.276 BSC
0.138 BSC
0.276 BSC
0.138 BSC
0.055
0.063
0.007
0.011
0.053
0.057
0.007
0.009
0.020 BASIC
0.002
0.006
0.004
0.008
0.020
0.028
12 _REF
0.004
0.006
0.010 BASIC
1_
5_
0.006
0.010
0.354 BSC
0.177 BSC
0.354 BSC
0.177 BSC
0.008 REF
0.039 REF
R
J
GAUGE PLANE
0.250 (0.010)
C
E
F
D
0.080 (0.003)
M
AC T–U
S
Z
SECTION AE–AE
S
W
H
Q_
K
DETAIL AD
X
Mfax is a trademark of Motorola, Inc.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447
JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141,
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488
Customer Focus Center: 1–800–521–6274
Mfax: [email protected] – TOUCHTONE 1–602–244–6609
ASIA / PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,
Motorola Fax Back System
– US & Canada ONLY 1–800–774–1848 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.
– http://sps.motorola.com/mfax/
852–26668334
HOME PAGE: http://motorola.com/sps/
28
◊
MC13109A/D
MOTOROLA RF/IF DEVICE
DATA