MOTOROLA MRFIC1806

Order this document
by MRFIC1806/D
SEMICONDUCTOR TECHNICAL DATA
The MRFIC Line
Designed primarily for use in DECT, Japan Personal Handy System (PHS),
and other wireless Personal Communication Systems (PCS) applications. The
MRFIC1806 includes a two stage driver amplifier and transmit waveform
shaping circuitry in a low–cost SOIC–16 package. The amplifier portion
employs depletion mode power GaAs MESFETs to produce +21 dBm output
with 0 dBm input. The ramping circuit controls the burst–mode transmit rise and
fall time and is adjustable through external components. This circuitry also
places the amplifier in standby during TDMA receive mode. The MRFIC1806 is
sized to drive the MRFIC1807 PA/Switch.
Together with the rest of the MRFIC1800 GaAs ICs, this family offers the
complete transmit and receive functions, less LO and filters, needed for a
typical 1.8 GHz cordless telephone.
1.8 GHz DRIVER AMPLIFIER
AND RAMP CIRCUIT
GaAs MONOLITHIC
INTEGRATED CIRCUIT
• Usable 1500 – 2500 MHz
• 23 dB Typical Gain
• +21 dBm Typical 1.0 dB Compression
• Simple Off–Chip Matching for Maximum Flexibility
• 3.0 to 5.0 Volt Supply
• Low Cost Surface Mount Plastic Package
CASE 751B–05
(SO–16)
• Order MRFIC1806R2 for Tape and Reel.
R2 Suffix = 2,500 Units per 16 mm, 13 inch Reel.
• Device Marking = M1806
C1/VRAMP
1
TX RAMP
2
REG VDD
3
16 VDR
20K
RAMP
LOGIC
XLATOR
15 GND
14 VD1
VSS
VDD
GND
4
13 GND
GND
5
12 GND
RF IN
6
11 RF OUT
VDD
7
10 GND
PCNTRL
8
GATE
BIAS
9
VSS
Figure 1. Pin Connections and Functional Block Diagram
REV 2
MOTOROLA
 Motorola, Inc. 1997
MRFIC1806
1
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted)
Symbol
Limit
Unit
Supply Voltage
Rating
VDD
6.0
Vdc
Supply Voltage
VSS
– 4.0
Vdc
Supply Voltage
REG VDD
4.5
Vdc
Bias Control Voltage
PCNTRL
3.0
Vdc
PIN
10
dBm
TX RAMP
6.0
Vdc
Tstg
– 65 to +150
°C
Ambient Operating Temperature
TA
–10 to +70
°C
Thermal Resistance, Junction to Case
θJC
100
°C/W
RF Input Power
Ramp Circuit Input Voltage (High)
Storage Temperature Range
RECOMMENDED OPERATING RANGES
Parameter
Symbol
Value
Unit
RF Input Frequency
fRF
1.5 – 2.5
GHz
Supply Voltage
VDD
3.0 to 5.0
Vdc
Supply Voltage
VSS
– 2.75 to – 2.25
Vdc
Supply Voltage
REG VDD
2.9 to 3.1
Vdc
Bias Control Voltage
PCNTRL
0.5 to 1.5
Vdc
PIN
– 20 to + 5
dBm
Transmit Burst Enable Voltage (High)
TX RAMP
2.8 to 3.5
Vdc
Transmit Burst Enable Voltage (Low)
TX RAMP
– 0.2 to + 0.2
Vdc
RF Input Power
MRFIC1806
2
MOTOROLA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ELECTRICAL CHARACTERISTICS
DECT Application with Internal Logic Translator (See Figure 2. VDD = 3.5 V, REG VDD = 3.0 V, TA = 25°C, VSS = – 2.5 V,
TX RAMP = 3.0 V, PCNTRL set for Quiescent IDD = 120 mA, PIN = – 3.0 dBm @ 1.9 GHz unless otherwise stated.)
Characteristic
Min
Typ
Max
Unit
Small Signal Gain (PIN = – 7.0 dBm)
21
23
—
dB
Input Return Loss
—
12
—
dB
Reverse Isolation
—
36
—
dB
Output Power
18
19.5
—
dBm
Harmonic Output
—
– 36
—
dBc
Output Third Order Intercept
—
33
—
dBm
Supply Current, ISS (Pin 9)
—
0.35
0.6
mA
Supply Current, IDD (Pin 7)
—
115
135
mA
Supply Current, REG IDD (Pin 3)
—
0.6
0.9
mA
Ramp Circuit Dynamic Range
40
44
—
dB
STANDBY MODE (TX RAMP = 0 V)
Min
Typ
Max
Unit
Output Power
Characteristic
—
– 25
—
dBm
Supply Current, ISS (Pin 9)
—
0.4
0.6
mA
Supply Current, REG IDD (Pin 3)
—
0.25
0.4
mA
C1
330 pF
C2
330 pF
R1
22K
1
3 V (ON)
TX RAMP
0 V (OFF)
16
20K
2
REG VDD
3.0 V
3
RAMP
LOGIC
XLATOR
RF IN
50 OHM
C9
1.5 pF
VDD
4
13
5
12
6
11
VDD
3.5 V
7
C7
4700 pF
8
R2
2.2
C3
330 pF
14
VSS
T2 (FR4)
Zo = 100
L = 8.5 mm
15
C4
22 pF
T1 (FR4)
Zo = 100
L = 20 mm
C6
C5
1.5 pF 22 pF
RF OUT
50 OHM
10
GATE
BIAS
9
VSS
– 2.5 V
PCNTRL
1.4 V TYP
Figure 2. Applications Circuit Details for DECT using Internal Logic Translator
MOTOROLA
MRFIC1806
3
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ELECTRICAL CHARACTERISTICS
General Application without Internal Logic Translator (See Figure 3. VDD = 3.5 V, REG VDD (Pin 2) open, VSS = – 2.5 V,
TX RAMP (Pin 2) grounded, VRAMP = 3.0 V, PCNTRL set for Quiescent IDD = 120 mA, PIN = 0 dBm @ 1.9 GHz, TA = 25°C unless otherwise
stated.)
Characteristic
Min
Typ
Max
Unit
Small Signal Gain (PIN = – 7.0 dBm)
21
23
—
dB
Output Power (PIN = 0 dBm)
20
22
—
dBm
Output Power (PIN = + 4.0 dBm)
—
23
—
dBm
Supply Current, ISS (Pin 9)
—
0.3
0.5
mA
Supply Current, IDD (Pin 7)
—
130
145
mA
STANDBY MODE (VRAMP = – 2.4 V)
Min
Typ
Max
Unit
Output Power
Characteristic
—
– 25
—
dBm
Supply Current, ISS (Pin 9)
—
0.4
0.6
mA
R1
1K
V RAMP
1
16
20K
2
N/C
3
LOGIC
XLATOR
RF IN
50 OHM
C9
1.5 pF
R2
2.2
C3
330 pF
14
VSS
T2 (FR4)
Zo = 100
L = 8.5 mm
15
RAMP
VDD
4
13
5
12
6
11
C4
22 pF
C6
C5
1.5 pF 22 pF
VDD
7
C7
4700 pF
T1 (FR4)
Zo = 100
L = 20 mm
RF OUT
50 OHM
10
GATE
BIAS
8
VSS
– 2.5 V
9
PCNTRL
1.4 V TYP
Figure 3. 1.9 GHz General Application Circuit Details (Internal Translator Disabled)
Table 1. Small Signal S – Parameters
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
(VDD = 3.5 V, IDQ = 120 mA, TA = 25°C, no matching circuit, reference plane at pins 6 and 11.)
S11
S21
S12
S22
Freq (GHz)
Mag
Angle
Mag
Angle
Mag
Angle
Mag
Angle
1.5
0.734
– 76.8
13.11
– 87.9
0.009
– 176
0.278
– 98.9
1.6
0.654
– 82.4
13.01
– 109.4
0.012
178
0.326
– 116.4
1.7
0.620
– 72.6
11.17
– 117.4
0.011
152
0.344
– 109.8
1.8
0.636
– 79.8
12.25
– 137.0
0.014
170
0.423
– 134.1
1.9
0.607
– 80.6
10.77
– 151.3
0.017
169
0.421
– 147.7
2.0
0.592
– 79.4
10.88
– 165.1
0.019
163
0.427
– 161.8
2.1
0.581
– 79.4
9.64
– 174.9
0.024
163
0.432
– 172.3
2.2
0.571
– 78.9
9.30
174.1
0.026
158
0.429
178.8
2.3
0.560
– 79.1
7.95
166.9
0.029
157
0.432
171.1
2.4
0.541
– 79.8
7.80
155.7
0.033
153
0.442
164.6
2.5
0.521
– 80.1
6.90
147.2
0.042
154
0.445
161.7
MRFIC1806
4
MOTOROLA
DESIGN AND APPLICATIONS INFORMATION
DESIGN PHILOSOPHY
The MRFIC1806 is designed to drive the MRFIC1807
Power Amplifier and Transmit/Receive Switch IC in Personal
Communications System (PCS) applications such as
Europe’s DECT and Japan’s Personal Handy System (PHS).
The design incorporates not only a two–stage GaAs MESFET
driver/exciter amplifier, but also externally controllable bias
and ramping circuitry. The IC is designed to drive the
MRFIC1807 with about +19 dBm which will, in turn, produce
+26 dBm output, suitable for DECT. To reduce chip size (and
cost) and to allow for flexibility of application, the amplifier
has limited on–chip matching. The ramp circuitry is used to
shape the drain voltage to the FETs for Time Domain Multiple
Access (TDMA) applications and is comprised of a depletion
mode pass device driven by a logic translator. Attack and
release times are controllable through the use of external
components. The IC is configured such that all, part or none
of the ramping circuitry can be used, depending on the
application.
AMPLIFIER CIRCUIT APPLICATION
As can be seen in Figures 2 and 3, the off–chip matching is
straight forward. At frequencies near 1.9 GHz, the input
requires 4.7 nH in series and 1.5 pF in shunt. The 4.7 nH
series inductance may be implemented with a high–
impedance transmission line as shown. The output, being
close to 25 Ω, requires only a shunt 1.5 pF capacitor. Drain
voltage for stage 1 is supplied through pin 14 and for stage 2
through pin 11, the RF output. Pin 8, PCNTRL is used to set
the quiescent bias point for both stages. While nominal IDDQ
is 120 mA, it can be set as high as 180 mA for better linearity
or lower for better efficiency. 120 mA is a good compromise
for DECT and PHS. DECT, which employs GMSK constant
envelope modulation can use RF amplifiers close to or in
saturation without experiencing spectral regrowth of the
signal. PHS, on the other hand, employs π/4 DQPSK
modulation which has some residual AM associated with the
encoding. With AM present, RF amplifiers must be backed
off from saturation so as not to regrow the filtered sidebands.
The MRFIC1806 has plenty of backoff capability for PHS
where the MRFIC1807 PA/switch must only produce about
+21 dBm. With the 8.0 dB gain of the MRFIC1807, the
MRFIC1806 need only produce +13 dBm output so the bias
point can be reduced below the 120 mA suggested for DECT.
MOTOROLA
As with all RF circuits, board layout and grounding are
important. All RF signal paths must be controlled impedance
structures. RF chip components must be high quality.
Bypassing capacitors must be close to the IC and to ground
vias. Pins which are designated as ground connections must
be as close as possible to ground vias.
RAMPING CIRCUIT OPTIONS
The on–chip ramp circuit can be used to control the
amplifier attack and release time for DECT applications
through the use of a few external components as shown in
Figure 2. This ramping is required to control the burst signal
rise and fall time to avoid adjacent channel interference. At
the same time, system specifications require the transmitter
to reach full power in a minimum time. For DECT, it has been
shown that a rise time of not greater than 2 microseconds will
produce acceptable adjacent channel performance. The
system requires full power in not greater than 10 microseconds.
A good compromise, and the timing implemented in Figure 2,
is 7 microseconds.
The on–chip logic translator can be bypassed as shown in
Figure 3 by applying a ramp voltage to Pin 1 through a 1.0 kΩ
resistor. This configuration allows flexibility in ramping the
amplifier. The regulated VDD voltage is not required so
current consumption can be reduced. – 2.3 V at Pin 1 turns
the pass transistor, and the amplifier, off while a positive
voltage will turn the pass transistor on. For full on state it is
recommended that VRAMP be close to VDD. VRAMP can also
be used to on–off key the amplifier for simple telemetry
applications or as transmit/receive control.
For more complex modulation schemes such as π/4
DQPSK used in PHS, burst ramping can be implemented
with the burst mode logic. Referring to Figure 3, the VRAMP
voltage should be set to VDD to leave the pass transistor on.
The on–chip pass transistor can also be bypassed and VDD
applied to Pins 11 and 14.
EVALUATION BOARDS
Evaluation boards are available for RF Monolithic
Integrated Circuits by adding a “TF” suffix to the device
type. For a complete list of currently available boards and
ones in development for newly introduced product, please
contact your local Motorola Distributor or Sales Office.
MRFIC1806
5
22
21
20
OUTPUT POWER (dBm)
OUTPUT POWER (dBm)
21
19
–10°C
18
25°C
17
TA = 70°C
16
15
Pin = –3 dBm
VDD = 3.5 V
IDDQ = 120 mA
14
1.5
20
19
18
1.7
1.9
2.1
FREQUENCY (GHz)
2.3
Figure 4. Output Power versus Frequency
With Internal Logic Translator
2.3
5V
3.5 V
19
2.5
Pin = 0 dBm
TA = 25°C
PCNTRL = 1.5 V
22
3.5 V
OUTPUT POWER (dBm)
OUTPUT POWER (dBm)
1.9
2.1
FREQUENCY (GHZ)
23
5.0 V
18
VDD = 3.0 V
17
16
Pin = – 3 dBm
TA = 25°C
PCNTRL = 1.5 V
14
1.5
1.7
21
VDD = 3 V
20
19
1.9
2.1
FREQUENCY (GHz)
2.3
18
1.5
2.5
Figure 6. Output Power versus Frequency
With Internal Logic Translator
1.7
1.9
2.1
FREQUENCY (GHz)
2.3
2.5
Figure 7. Output Power versus Frequency
Without Internal Translator
25
22
18
1.5 V
OUTPUT POWER (dBm)
OUTPUT POWER (dBm)
1.7
Figure 5. Output Power versus Frequency
Without Internal Logic Translator
20
15
TA = 70°C
Pin = 0 dBm
VDD = 3.5 V
IDDQ = 120 mA
17
1.5
2.5
–10°C
25°C
14
1.0 V
10
6
2
PCNTRL = 0.5 V
12
–10
–8
–2
–6
–4
INPUT POWER (dBm)
VDD = 3.5 V
f = 1.9 GHz
TA = 25°C
0
Figure 8. Output Power versus Input Power
With Internal Logic Translator
MRFIC1806
6
20
15
2.0 V
1.0 V
10
PCNTRL = 0.5 V
VDD = 3.5 V
f = 1.9 GHz
TA = 25°C
5
2
0
–10
–5
0
INPUT POWER (dBm)
5
Figure 9. Output Power versus Input Power
Without Internal Logic Translator
MOTOROLA
24
22
22
–10°C
OUTPUT POWER (dBm)
OUTPUT POWER (dBm)
20
70°C
18
16
TA = 25°C
14
12
–10
–8
f = 1.9 GHz
VDD = 3.5 V
IDDQ = 120 mA
–2
–6
–4
INPUT POWER (dBm)
0
–10°C
20
70°C
18
16
12
–10
2
Figure 10. Output Power versus Input Power
With Internal Logic Translator
f = 1.9 GHz
VDD = 3.5 V
IDDQ = 120 mA
TA = 25°C
14
–5
0
INPUT POWER (dBm)
5
Figure 11. Output Power versus Input Power
Without Internal Logic Translator
22
26
5.0 V
5.0 V
24
VDD = 3.0 V
OUTPUT POWER (dBm)
OUTPUT POWER (dBm)
20
18
3.5 V
16
f = 1.9 GHz
TA = 25°C
PCNTRL = 1.5
14
12
–10
–8
–6
–4
–2
INPUT POWER (dBm)
0
22
3V
20
18
16
12
–10
2
–5
0
INPUT POWER (dBm)
5
Figure 13. Output Power versus Input Power
Without Internal Logic Translator
150
200
VDD = 3.5 V
Pin = –3 dBm
IDDQ = 120 mA
180
70°C
SUPPLY CURRENT (mA)
SUPPLY CURRENT (mA)
f = 1.9 GHz
TA = 25°C
PCNTRL = 1.5 V
14
Figure 12. Output Power versus Input Power
With Internal Logic Translator
140
VDD = 3.5 V
130
25°C
120
110
TA = 10°C
VDD = 3.5 V
IDDQ = 120 mA
Pin = 0 dBm
160
25°C
90
1.5
1.7
1.9
2.1
FREQUENCY (GHz)
2.3
Figure 14. Supply Current versus Frequency
With Internal Logic Translator
MOTOROLA
2.5
–10°C
140
–10°C
70°C
120
100
70°C
100
1.5
1.7
1.9
2.1
FREQUENCY (GHz)
2.3
2.5
Figure 15. Supply Current versus Frequency
Without Internal Logic Translator
MRFIC1806
7
150
210
Pin = –3 dBm
TA = 25°C
PCNTRL = 1.5 V
130
5V
3.5 V
120
Pin = 0 dBm
TA = 25°C
PCNTRL = 1.5 V
190
SUPPLY CURRENT (mA)
SUPPLY CURRENT (mA)
140
110
VDD = 3.0 V
100
170
150
130
VDD = 3.0 V
110
90
1.5
1.7
1.9
2.1
FREQUENCY (GHz)
2.3
90
1.5
2.5
Figure 16. Supply Current versus Frequency
With Internal Logic Translator
1.7
1.9
2.1
FREQUENCY (GHz)
2.3
2.5
Figure 17. Supply Current versus Frequency
Without Internal Logic Translator
126
150
f = 1.9 GHz
VDD = 3.5 V
IDDQ = 120 mA
122
25°C
70°C
120
TA = 10°C
118
f = 1.9 GHz
VDD = 3.5 V
IDDQ = 120 mA
140
OUTPUT POWER (dBm)
124
SUPPLY CURRENT (mA)
3.5 V
5.0 V
116
114
112
TA = 25°C
70°C
130
120
–10°C
110
70°C
110
108
–10
–8
–2
–6
–4
INPUT POWER (dBm)
0
100
–10
2
Figure 18. Supply Current versus Input Power
With Internal Translator
–2
–4
INPUT POWER (dBm)
0
2
4
170
f = 1.9 GHz
TA = 25°C
PCNTRL = 1.5 V
f = 1.9 GHz
PCNTRL = 1.5 V
TA = 25°C
160
SUPPLY CURRENT (mA)
SUPPLY CURRENT (mA)
–6
Figure 19. Supply Current versus Input Power
Without Internal Translator
130
125
–8
120
115
5.0 V
110
3.5 V
150
5V
140
3.5 V
130
120
VDD = 3 V
105
110
100
–10
–8
VDD = 3.0 V
–6
–4
–2
INPUT POWER (dBm)
0
Figure 20. Supply Current versus Input Power
With Internal Translator
MRFIC1806
8
2
100
–10
–8
–6
–4
–2
INPUT POWER (dBm)
0
2
4
Figure 21. Supply Current versus Input Power
Without Internal Logic Translator
MOTOROLA
23
225
f = 1.9 GHz
Pin = 0 dBm
21
Pout , OUTPUT POWER (dBm)
I DD, SUPPLY CURRENT (mA)
200
175
TA = 25°C
150
125
100
–10°C
70°C
75
17
0.75
1.5
1.25
PCNTRL (Volts)
1
1.75
13
1
1.5
1.25
PCNTRL (Volts)
1.75
2
25
24
–10°C
23
22
SMALL SIGNAL GAIN (dB)
SMALL SIGNAL GAIN (dBm)
0.75
Figure 23. Pout versus PCNTRL Without
Internal Logic Translator
24
25°C
21
TA = 70°C
20
Pin = 7 dBm
VDD = 3.5 V
IDDQ = 120 mA
17
1.5
1.7
22
2.3
19
TA = 25°C
I DDQ, QUIESCENT SUPPLY CURRENT (mA)
50
Pin = – 3 dBm
VDD = 3.5 V
IDDQ = 120 mA
45
70°C
40
35
1.5
1.7
1.9
2.1
f, FREQUENCY (GHz)
2.3
Figure 26. Dynamic Range versus Frequency
With Internal Logic Translator
MOTOROLA
Pin = 7 dBm
VDD = 3.5 V
IDDQ = 120 mA
1.7
1.9
2.1
f, FREQUENCY (GHz)
2.3
2.5
Figure 25. Small signal Gain versus
Frequency Without Internal Logic Translator
55
–10°C
25°C
20
17
1.5
2.5
TA = 70°C
21
18
1.9
2.1
f, FREQUENCY (GHz)
–10°C
23
Figure 24. Small Signal Gain versus
Frequency With Internal Logic Translator
RF DYNAMIC RANGE (dB)
f = 1.9 GHz
Pin = 0 dBm
10°C
9
0.5
2
25
18
25°C
15
Figure 22. Supply Current versus PCNTRL
Without Internal Logic Translator
19
70°C
11
50
25
0.5
19
2.5
300
250
f = 1.9 GHz
VDD = 3.5 V
200
150
70°C
100
TA = 25°C & –10°C
50
0
0.5
0.75
1
1.25
1.5
PCNTRL (Volts)
1.75
2
Figure 27. Quiescent Supply Current versus
PCNTRL With Internal Logic Translator
MRFIC1806
9
18
Pout
–45
22
–50
20
–55
15
–60
12
–65
600 kHz ACPR
9
CW
–70
Pout , OUTPUT POWER (dBm)
21
f = 1.9 GHz
VDD = 3.5 V
IDDQ = 120 mA
TA = 25°C
Mod = 384 kb/s π/4 DQPSK
ACPR (dBc)
Pout , OUTPUT POWER (dBm)
24
Burst
18
16
VDD = 3.5 V
Freq = 1.9 GHz
IDDQ = 120 mA
14
900 kHz ACPR
6
–10
–8
–6
–4
–2
0
PIN, INPUT POWER (DBM)
2
Figure 28. Output Power and Adjacent
Channel Power Ratio versus Input Power
Without Internal Logic Translator
MRFIC1806
10
4
–75
12
–10
–8
–6
–4
PIN, INPUT POWER (DBM)
–2
0
Figure 29. Continuous and Burst Mode Output
Power versus Input Power With Internal
Logic Translator
MOTOROLA
PACKAGE DIMENSIONS
–A–
16
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
9
–B–
1
P
8 PL
0.25 (0.010)
8
M
B
S
G
R
K
F
X 45 _
C
–T–
SEATING
PLANE
M
D
16 PL
0.25 (0.010)
M
T B
S
A
S
J
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.229
0.244
0.010
0.019
CASE 751B–05
ISSUE J
MOTOROLA
MRFIC1806
11
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
Mfax is a trademark of Motorola, Inc.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1,
Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488
Mfax: [email protected] – TOUCHTONE 602–244–6609
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
INTERNET: http://motorola.com/sps
MRFIC1806
12
◊
MOTOROLA
MRFIC1806/D