ONSEMI MC33470DWR2

MC33470
Synchronous Rectification
DC/DC Converter
Programmable Integrated
Controller
The MC33470 is a digitally programmable switching voltage
regulator, specifically designed for Microprocessor supply, Voltage
Regulator Module and general purpose applications, to provide a high
power regulated output voltage using a minimum of external parts. A
5−bit digital−to−analog converter defines the dc output voltage.
This product has three additional features. The first is a pair of high
speed comparators which monitor the output voltage and expedite the
circuit response to load current changes. The second feature is a
soft−start circuit which establishes a controlled response when input
power is applied and when recovering from external circuit fault
conditions. The third feature is two output drivers which provide
synchronous rectification for optimum efficiency.
This product is ideally suited for computer, consumer, and industrial
equipment where accuracy, efficiency and optimum regulation
performance is desirable.
http://onsemi.com
SOIC−20WB
DW SUFFIX
CASE 751D
1
MARKING DIAGRAM
20
MC33470DW
AWLYYWWG
Features
• 5−Bit Digital−to−Analog Converter Allows Digital Control of Output
•
•
•
•
•
•
•
•
•
Voltage
High Speed Response to Transient Load Conditions
Output Enable Pin Provides On/Off Control
Programmable Soft−Start Control
High Current Output Drives for Synchronous Rectification
Internally Trimmed Reference with Low Temperature Coefficient
Programmable Overcurrent Protection
Overvoltage Fault Indication
Functionally Similar to the LTC1553
Pb−Free Packages are Available*
1
A
= Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
G
= Pb−Free Package
(Note: Microdot may be in either location)
PIN CONNECTIONS
G2 1
20 G1
2
PV
CC
PGND 3
19 OUTEN
18 VID0
AGND 4
17 VID1
VCC 5
16 VID2
Sense 6
15 VID3
Imax 7
14 VID4
Ifb 8
13 Pwrgd
SS 9
12 Fault
Compensation 10
11 OT
(Top View)
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
© Semiconductor Components Industries, LLC, 2006
August, 2006 − Rev. 4
1
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 13 of this data sheet.
Publication Order Number:
MC33470/D
MC33470
OT
18
VID0
17
Voltage
Identification 16
Code
Input
15
VID1
VID3
14
VID4
19
Outen
11
VCC
5
Over
Temp
VID2
Digitally Programmed
Reference
Vref
VCC
7
Over Current
Detect
Oscillator
2.5 V
VCC
90 mA
1.5 V
S
R
SS
Vref
PV
CC
20
10 mA
0.96 Vref
2
En
PWM
Comparator
9
Imax
190 mA
+
Q
G1
Q
8
Delay
PWM
Latch
Ifb
1
G2
3
+
800 m
1.04 Vref
6
PGND
OTA Error Amp
Sense
20 mA
+
1.04 Vref
13
R
Power
Good
+
14
Q
0.93 Vref
Delay
S
Fault
1.14 Vref
AGND
4
10
Compensation
Figure 1. Simplified Block Diagram
MAXIMUM RATINGS (TC = 25°C, unless otherwise noted.)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
Rating
Symbol
Value
Unit
VCC
7.0
V
PV
CC
18
V
Imax, Ifb Inputs
Vin
−0.3 to 18
V
All Other Inputs and Digital (OT, Fault, Power Good) Outputs
Vin
−0.3 to VCC + 0.3
V
PD
RqJA
RqJC
0.60
91
60
W
°C/W
°C/W
TJ
125
°C
Power Supply Voltage
Output Driver Supply Voltage (Operating)
Power Dissipation and Thermal Characteristics
Maximum Power Dissipation
Case 751D DW Suffix (TA = 70°C)
Thermal Resistance, Junction−to−Ambient
Thermal Resistance, Junction−to−Case
Operating Junction Temperature
Operating Ambient Temperature (Note 1)
TA
0 to +70
°C
Storage Temperature Range
Tstg
−55 to +125
°C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. ESD data available upon request
http://onsemi.com
2
MC33470
ELECTRICAL CHARACTERISTICS (VCC = 5.0 V,PPVVCC , = 12 V for typical values TA = Low to High [Notes 2, 3, 4], for
CC
min/max values TA is the operating ambient temperature range that applies, unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
fosc
210
300
390
kHz
Vsense
1.764
2.744
3.43
1.8
2.8
3.5
1.836
2.856
3.57
V
IIB
−
20
−
mA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
OSCILLATOR
Frequency (VCC = 4.5 to 5.5 V)
FEEDBACK AMPLIFIER
Voltage Feedback Input Threshold (Note 5)
VID0, VID1, VID2 and VID4 = “1” and VID3 = “0”
VID4 = “1” and VID0, VID1, VID2 and VID3 = “0”
Input Bias Current (VCM = 2.8 V)
GM
400
800
1200
mmho
AVOL
−
67
−
dB
Output Line Regulation (VCC = 4.5 to 5.5 V)
Regline
−
7.0
−
mV
Output Load Regulation
Regload
−
5.0
−
mV
IOH
IOL
−
−
120
120
−
−
DCmax
DCmin
77
−
88
−
95
0
tPLH1
tPLH2
−
−
0.1
0.1
−
−
Charge Current (VSoft−Start = 0 V)
Ichg
7.0
10
13
mA
Discharge Current under Current Limit (Note 6)
(VSoft−Start = 2.0 V, Vsense = Vout, Vimax = VCC, Vifb = 0 V)
ISSIL
30
90
150
mA
Discharge Current under Hard Current Limit
(VSoft−Start = 2.0 V, Vsense < Vout/2, Vimax = VCC, Vifb = 0 V)
ISSHIL
40
64
−
mA
Hard Current Limit Hold Time
tSSHIL
100
200
300
ms
IOL
133
190
247
mA
−
0.93
1.04
0.96
1.07
−
200
50
400
100
600
150
Transconductance (VCM = 2.8 V, VCOMP = 2.0 V)
Open Loop Voltage Gain (VCOMP = 2.0 V)
mA
Output Current
Source
Sink
PWM SECTION
Duty Cycle at G1 Output
Maximum
Minimum
%
ms
Propagation Delay
Comp Input to G1 Output, TJ = 25°C
Comp Input to G2 Output, TJ = 25°C
SOFT−START SECTION
IMAX INPUT
Sink Current (Vin max = VCC, Vifb = VCC)
POWER GOOD OUTPUT
Threshold For Logic “1” to “0” Transition
Upper Threshold
Lower Threshold
Vth
Response Time
Logic “0” to “1” (Vsense changes from 0 V to VO)
Logic “1” to “0” (Vsense changes from VO to 0 V)
trPG
Vsense
ms
Sink Current (VOL = 0.5 V)
IOLPG
−
10
−
mA
Output Low Voltage (IOL = 100 mA) (Note 7)
VOLPG
−
250
500
mV
VthF
1.12
1.14
1.2
Vref
trF
50
100
150
ms
IOLF
−
10
−
mA
FAULT OUTPUT
Threshold For Logic “0” to “1” Transition
Vsense Response Time Switches from 2.8 V to VCC
Sink Current (VOL = 0.5 V)
2.
3.
4.
5.
6.
Maximum package power dissipation limits must be observed.
Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
VID1, VID3, VID4 = logic 0, and VID0, VID2 = logic 1.
Vsense is provided from a low impedance voltage source or shorted to the output voltage.
Under a typical soft current limit, the net soft−start discharge current will be 90 mA (ISSIL) − 10 mA (Ichg) = 80 mA. The soft−start sink to source
current ratio is designed to be 9:1.
7. Sense (Pin 6) = 5.0 V, Comp (Pin 10) open, VID4, VID2, VID1, VID0 = 1.0, VID3 = 0.
http://onsemi.com
3
MC33470
ELECTRICAL CHARACTERISTICS (VCC = 5.0 V,PPVVCC , = 12 V for typical values TA = Low to High [Notes 8, 9, 10],
CC
for min/max values TA is the operating ambient temperature range that applies, unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
VthOUTEN
1.85
2.0
2.2
V
Delay Time
tDOT
25
50
100
ms
Sink Current (VOL = 0.5 V)
IOLF
−
10
−
mA
Input Low State
VIL
−
−
0.8
V
Input High State
VIH
3.5
−
−
V
Input Impedance
Rin
−
10
−
kW
VOTDD
1.55
1.70
1.85
V
Source Resistance (Vsense = 2.0 V, VG = PV
VCC − 1.0 V)
Sink Resistance (Vsense = 0 V, VG = 1.0 V) CC
ROH
ROL
−
−
0.5
0.5
−
−
W
Output Voltage with OUTEN Reset (Isink = 1.0 mA)
VOL
−
0.1
0.5
V
Output Voltage Rise Time (CL = 10 nF, TJ = 25°C)
tr
−
70
140
ns
Output Voltage Fall Time (CL = 10 nF, TJ = 25°C)
tf
−
70
140
ns
tNOL
30
150
210
ns
PV
CC min
10.8
−
−
V
VCC min
3.0
−
4.25
V
ICC
−
3.7
8.0
mA
PI
CC
−
15
−
mA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
Á
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
OVERTEMPERTURE OUTPUT
Threshold For Logic “1” to “0” Transition (OUTEN Voltage Decreasing)
LOGIC INPUTS (VID0, VID1, VID2, VID3, VID4)
OUTPUT ENABLE CONTROL (OUTEN)
Over−Temperature Driver Disable and Reset (OUTEN Voltage Decreasing)
(Note 11)
OUTPUT SECTIONS (G1, G2)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
G1, G2 Non−Overlap Time (CL = 10 nF, TJ = 25°C)
TOTAL DEVICE
Minimum Operating Voltage After Turn−On (P
PVCC
VCC Decreasing)
Minimum Operating Voltage After Turn−On (VCC Decreasing)
VCC Current (Note 12) (OUTEN and PVCC
VCC open, VID0, 1, 2, 3, 4 Floating)
PPVVCC Current (OUTEN = 5.0 V, VID0, 1, 2, 3, 4 Open,PPVVCC = 12 V)
CC
CC
8. Maximum package power dissipation limits must be observed.
9. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
10. VID1, VID3, VID4 = logic 0, and VID0, VID2 = logic 1.
11. OUTEN is internally pulled low if VID0, 1, 2, 3, and 4 are floating.
12. Due to internal pullup resistors, there will be an additional 0.5 mA per pin if any of the VID0, 1, 2, 3, or 4 pins are pulled low.
http://onsemi.com
4
MC33470
2.0 V/DIV
I CC, SUPPLY CURRENT (mA)
8.0
VO = 2.8 V
IO = 3.3 A
Figure 14 Circuit
TA = 25°C
7.0
6.0
5.0
PV + 12V
CC
4.0
PV + Open
CC
3.0
2.0
1.0
0
0
1.0
2.0
3.0
4.0
5.0
6.0
8.0
7.0
200 nS/DIV
INPUT VOLTAGE (V)
Figure 2. Output Drive Waveform
Figure 3. 5.0 V Supply Current
0
PV
CC
−0.5
Source Saturation
(Load to Ground)
500 mV/DIV
−1.0
0
VO = 2.8 V
IO transient = 0.3 to 16 A
Figure 14 Circuit
Sink Saturation
(LoadtoPV )
CC
1.0
0.5
Ground
0
2.5 mS/DIV
Figure 4. Error Amplifier Transient Response
0
0.2
0.4
0.6
0.8
1.0
Figure 5. Drive Output Source/Sink Saturation
Voltage versus Load Current
0
20
VO = 2.8 V
IO transient = 0.3 to 16 A
Figure 14 Circuit
15
LOOP GAIN (dB)
50 mV/DIV
1.2
10
VCCP = 12 V
VCC = 5.0 V
VO = 2.8 V
IO = 3.3 A
TA = 25°C
30
Phase
0
120
−5.0
150
Figure 6. Feedback Circuit Load
Transient Response
1.0 k
3.0 k
10 k
30 k
f, FREQUENCY (Hz)
100 k
Figure 7. Feedback Loop Gain and Phase
versus Frequency
http://onsemi.com
5
60
90
5.0
−10
300
2.5 mS/DIV
Gain
180
300 k
MC33470
GAIN (μmho)
Gain
30
VCCP = 12 V
VCC = 5.0 V
VO = 2.8 V
R2 = 18.2 k
C16 = 0
TA = 25°C
Figure 14
100
10
0.8
60
90
Phase
120
180
1000
1.0
1.0
10
∅
150
, EXCESS PHASE (DEGREES)
THRESHOLD VOLTAGE CHANGE (%)
0
1000
100
FREQUENCY (kHz)
0.4
0.2
0
−0.2
−75
−25
0
25
50
75
100
125
Figure 9. Feedback Threshold Voltage
versus Temperature
5.0
I sense, CURRENT CHANGE (%)
4.0
2.0
IO = 3.3 A
VO = 2.8 V
0
−2.0
−4.0
−6.0
−75
−50
−25
0
25
50
75
100
4.0
2.0
125
−2.0
−50
−25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
TA, AMBIENT TEMPERATURE (°C)
Figure 10. Imax Current versus Temperature
Figure 11. Vsense Current Source
versus Temperature
1.0
2.5
0.5
2.0
0
−0.5
−1.0
−1.5
−2.0
−2.5
VCC Increasing
IO = 3.3 A
VO = 2.8 V
−3.0
−3.5
−4.0
−75
IO = 3.3 A
VO = 2.8 V
0
−4.0
−5.0
−75
UVLO THRESHOLD CHANGE (%)
I max, CURRENT CHANGE (%)
−50
TA, AMBIENT TEMPERATURE (°C)
Figure 8. Drive Output Source/Sink Saturation
Voltage versus Load Current
UVLO THRESHOLD CHANGE (%)
IO = 3.3 A
VO = 2.8 V
0.6
−50
−25
0
25
50
75
100
1.5
1.0
100
125
IO = 3.3 A
VO = 2.8 V
0
−0.5
−1.0
−1.5
−2.0
−50
−25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
TA, AMBIENT TEMPERATURE (°C)
Figure 12. VCC Undervoltage Lockout Trip Point
versus Temperature
Figure 13. Oscillator Frequency
versus Temperature
http://onsemi.com
6
125
0.5
−2.5
−75
125
100
To μP
J1−B9
R3
100 k
SS
http://onsemi.com
7
Figure 14. MC33470 Application Circuit
13
Power
Good
6
Sense
4
A Gnd
+
+
+
+
2.5 V
1.04 Vref
C1, C2 −
C3 −
C6, C13 −
C10, C11 −
C17
100 pF
0.96 Vref
1.04 Vref
1.14 Vref
Vref
Over
Temp
Q
Delay
En
OSCON 16SA150M
TDK C3216Y5V1C476Z
TDK C3216Y5V1C106Z
OSCON 4SP820M
PWM
Latch
R
S
+
4.0/3.8
VCC 5
R
Q
U1
S
Delay
I max
R4
56
20
Ifb
12
Fault
3
1
PGnd
G2
8
R8
4.7
4
2, 3
Q1
MMSF3300R2
5, 6, 7, 8
12 V
J1−A4, B4
C5
470 pF
R5
1.2 k
R6
100 k
D2
Fault Indicate
C10
C11 C13
820 μ F 820 μ F 1.0 μ F
4.0 V 4.0 V
+ C2
150 μ F
16 V
Q2
MMSF3300R2
5, 6, 7, 8
L1
1.5 μH
+ C1
150 μ F
16 V
Q4 MBRD1035CT
MMSF3300R2
2, 3
Q3
MMSF3300R2
5, 6, 7, 8
R7
4.7
4
R9
10
2
G1
V DRIVE
+ C6
1.0 μF
7
R1
2.7 k
C3
4.7 μ F
L2
1.5 μ H
Input Voltage
Vin = 5.0 V
J1−A1, A2, A3, B1, B2
J1 − AMP 532956−7
L1, L2 − Coilraft U6904
VCC
R10
10
Over Current
190 μA
Detect
≤90 μA
OUTEN 19
J1−B5
D1
J1−B6
Undervoltage
Lockout
11
10 Compensation
C16
2200 pF
R2
8.2 k
0.96 Vref
PWM
Comparator
OTA Error Amp
800 μ
Vref /2
1.5 V
Digitally Programmed
Reference
Oscillator
Vref
20 μA
64 mA
10 μA
VCC
14 VID4
15 VID3
16 VID2
17 VID1
C18
9
0.01 μF
J1−A9
Voltage
Identification J1−A8
Code
Input
J1−B8
J1−B7
J1−A7
18 VID0
OT
UP#
OUTEN
VSS
J1−A11, A13, A15
A17, A19, B10, B12
B14, B16, B18, B20
VO
0.3 to 14 A
J1−A10, A12, A14,
A16, A18, A20,
B11, B13, B15,
B17, B19
MC33470
MC33470
UVL Threshold
12 V
UVL Threshold
5.0 V
Internal
Vref
Timing Capacitor
2.5 V
1.5 V
Compensation
G1
G2
Figure 15. Timing Diagram
OPERATING DESCRIPTION
The MC33470 is a monolithic, fixed frequency power
switching regulator specifically designed for dc−to−dc
converter applications which provide a precise supply voltage
for state of the art processors. The MC33470 operates as fixed
frequency, voltage mode regulator containing all the active
functions required to directly implement digitally
programmable step−down synchronous rectification with a
minimum number of external components.
combination prevents multiple output pulses during a given
oscillator cycle.
The sense voltage input at Pin 6 is applied to the
noninverting inputs of a pair of high speed comparators. The
high speed comparators’ inverting inputs are tied 0.96 x Vref
and 1.04 x Vref, respectively, to provide an optimum response
to load changes. When load transients which cause the output
voltage to fall outside a "4% regulation window occur, the
high speed comparators override the PWM comparator to
force a zero or maximum duty cycle operating condition until
the output voltage is once again within the linear window.
When voltages are initially provided to the supply pins,
VCC and PV , undervoltage lockout circuits monitor each
Oscillator
The oscillator frequency is internally programmed to
300 kHz. The charge to discharge ratio is controlled to yield
a 95% maximum duty cycle at the switch outputs. During the
fall time of the internal sawtooth waveform, the oscillator
generates an internal blanking pulse that disables the G1 output
switching MOSFET. The internal sawtooth waveform has a
nominal peak voltage of 2.5 V and a valley voltage of 1.5 V.
CC
of the supply voltage levels. Both G1 and G2 output pins are
held low until the VCC pin voltage exceeds 4.0 V and the
pin voltage exceeds 9.0 V.
PV
CC
Pulse Width Modulator
Error Amplifier and Voltage Reference
The pulse width modulator consists of a comparator with
the oscillator ramp voltage applied to the noninverting input,
while the error amplifier output is applied to the inverting
input. Output switch conduction is initiated when the ramp
waveform is discharged to the valley voltage. As the ramp
voltage increases to a voltage that exceeds the error
amplifier output, the latch resets, terminating output G1
MOSFET conduction, and turning on output G2 MOSFET,
for the duration of the oscillator ramp. This PWM/latch
The error amplifier is a transconductance type amplifier,
having a nominal transconductance of 800 mmho. The
transconductance has a negative temperature coefficient.
Typical transconductance is 868 mmho at 0°C and 620 mmho
at 125°C junction temperature. The amplifier has a cascode
output stage which provides a typical 3.0 Mega−Ohms of
impedance. The typical error amplifier dc voltage gain is
67 dB.
http://onsemi.com
8
MC33470
Because the Imax pin draws 190 mA of input current, the
overcurrent threshold is programmed by an external resistor.
Referring to Figure 14, the current limit resistor value can be
determined from the following equation:
External loop compensation is required for converter
stability. Compensation components may be connected from
the compensation pin to ground. The error amplifier input is
tied to the sense pin which also has an internal 20 mA current
source to ground. The current source is intended to provide a
24 mV offset when an external 1.2 k resistor is placed
between the output voltage and the sense pin. The 24 mV
offset voltage is intended to allow a greater dynamic load
regulation range within a given specified tolerance for the
output voltage. The offset may be increased by increasing the
resistor value. The offset can be eliminated by connecting the
sense pin directly to the regulated output voltage.
The voltage reference consists of an internal, low
temperature coefficient, reference circuit with an added offset
voltage. The offset voltage level is the output of the
digital−to−analog converter. Control bits VID0 through VID4
control the amount of offset voltage which sets the value of
the voltage reference, as shown in Table 1. The VID0−4 input
bits each have internal 10 k pullup resistances. Therefore, the
reference voltage, and the output voltage, may be
programmed by connecting the VID pins to ground for logic
“0” or by an open for a logic “1”. Typically, a logic “1” will
be recognized by a voltage > 0.67 x VCC. A logic “0” is a
voltage < VCC/3.
R1 +
[( I
)( R
)]
L(max) DS(on)
(Imax)
where:
I
I
L(max)
+
O
)I
ripple
2
IO = Maximum load current
Iripple = Inductor peak to peak ripple current
OUTEN Input and OT Output Pins
On and off control of the MC33470 may be implemented
with the OUTEN pin. A logic “1” applied the OUTEN pin,
where a logic “1” is above 2.0 V, will allow normal operation
of the MC33470. The OUTEN pin also has multiple
thresholds to provide over temperature protection. An
negative temperature coefficient thermistor can be connected
to the OUTEN pin, as shown in Figure 16. Together with RS,
a voltage divider is formed. The divider voltage will decrease
as the thermistor temperature increases. Therefore, the
thermistor should be mounted to the hottest part on the circuit
board. When the OUTEN voltage drops below 2.0 V
typically, the MC33470 OT pin open collector output will
switch from a logic “1” to a logic “0”, providing a warning to
the system. If the OUTEN voltage drops below 1.7 V, both G1
and G2 output driver pins are latched to a logic “0” state.
MOSFET Switch Outputs
The output MOSFETs are designed to switch a maximum
of 18 V, with a peak drain current of 2.0 A. Both G1 and G2
output drives are designed to switch N−channel MOSFETs.
Output drive controls to G1 and G2 are phased to prevent
cross conduction of the internal IC output stages. Output dead
time is typically 100 nanoseconds between G1 and G2 in
order to minimize cross conduction of the external switching
MOSFETs.
VCC
10 k
Current Limit and Soft−Start Controls
The soft−start circuit is used both for initial power
application and during current limit operation. A single
external capacitor and an internal 10 mA current source
control the rate of voltage increase at the error amplifier
output, establishing the circuit turn on time. The G1 output
will increase from zero duty cycle as the voltage across the
soft−start capacitor increases beyond about 0.5 V. When the
soft−start capacitor voltage has reached about 1.5 V, normal
duty cycle operation of G1 will be allowed.
An overcurrent condition is detected by the current limit
amplifier. The current limit amplifier is activated whenever the
G1 output is high. The current limit amplifier compares the
voltage drop across the external MOSFET driven by G1, as
measured at the IFB pin, with the voltage at the Imax pin.
OT
VCC
RS
MC33470
OUTEN
NTC
Thermistor
Figure 16. OUTEN/OT Overtemperature Function
http://onsemi.com
9
MC33470
APPLICATIONS INFORMATION
Design Example
6. Feedback Loop Compensation
The corner frequency of the output filter with L = 1.5 mH and
Co = 1640 mF is 3.2 kHz. In addition, the ESR of each output
capacitor creates a zero at:
fz = 1/(2π C ESR) = 1/(2π x 820 mF x 0.012) = 16.2 kHz
The dc gain of the PWM is: Gain = Vin/Vpp = 5/1 = 5.0.
Where Vpp is the peak−to−peak sawtooth voltage across the
internal timing capacitor. In order to make the feedback loop
as responsive as possible to load changes, choose the unity
gain frequency to be 10% of the switching frequency, or
30 kHz. Plotting the PWM gain over frequency, at a frequency
of 30 kHz the gain is about −16.5 dB = 0.15. Therefore, to have
a 30 kHz unity gain loop, the error amplifier gain at 30 kHz
should be 1/0.15 = 6.7. Choose a design phase margin for the
loop of 60°. Also, choose the error amp type to be an integrator
for best dc regulation performance. The phase boost needed by
the error amplifier is then 60° for the desired phase margin.
Then, the following calculations can be made:
k = tan [Boost/2 + 45°] = tan [60/2 + 45] = 3.73
Error Amp zero freq = fc/K = 30 kHz/3.73 = 8.0 kHz
Error Amp pole freq = Kfc = 3.73 x 30 kHz = 112 kHz
R2 = Error Amp Gain/Gm = 6.7/800 m = 8.375 k − use an
8.2 k standard value
C16 = 1/(2π R2 fz) = 1/(2π x 8.2 k x 8.0 kHz)
= 2426 pF − use 2200 pF
C17 = 1/(2π R2 fp) = 1/(2π x 8.2 k x 112 kHz)
= 173 pF − use 100 pF
The complete design is shown in Figure 14. The PC board
top and bottom views are shown in Figures 18 and 19.
Given the following requirements, design a switching
dc−to−dc converter:
VCC =
VCCP =
VID4−0 bits =
Output current =
5.0 V
12 V
10111 − Output Voltage = 2.8 V
0.3 A to 14 A
Efficiency > 80% at full load
Output ripple voltage ≈ 1% of output voltage
1. Choose power MOSFETs.
In order to meet the efficiency requirement, MOSFETs
should be chosen which have a low value of RDS(on). However,
the threshold voltage rating of the MOSFET must also be
greater than 1.5 V, to prevent turn on of the synchronous
rectifier MOSFETs due to dv/dt coupling through the Miller
capacitance of the MOSFET drain−to−source junction.
Figure 17 shows the gate voltage transient due to this effect.
In this design, choose two parallel MMSF3300 MOSFETs
for both the main switch and the synchronous rectifier to
maximize efficiency.
2. D ≈ VO/Vin = 2.8/5.0 = 0.56
3. Inductor selection
In order to maintain continuous mode operation at 10% of
full load current, the minimum value of the inductor will be:
Lmin = (Vin − VO)(DTs)/(2IO min)
= (5 − 2.8)(0.56 x 3.3 ms)/(2 x 1.4 A) = 1.45 mH
Coilcraft’s U6904, or an equivalent, provides a surface
mount 1.5 mH choke which is rated for for full load current.
4. Output capacitor selection
Vripple ≈ D IL x ESR, where ESR is the equivalent series
resistance of the output capacitance. Therefore:
ESRmax = Vripple/D IL = 0.01 x 2.8 V/1.4 A = 0.02 W
maximum
The AVX TPS series of tantalum chip capacitors may be
chosen. Or OSCON capacitors may be used if leaded parts are
acceptable. In this case, the output capacitance consists of two
parallel 820 mF, 4.0 V capacitors. Each capacitor has a
maximum specified ESR of 0.012 W.
5. Input Filter
As with all buck converters, input current is drawn in pulses.
In this case, the current pulses may be 14 A peak. If a 1.5 mH
choke is used, two parallel OSCON 150 mF, 16 V capacitors
will provide a filter cutoff frequency of 7.5 kHz.
Figure 17. Voltage Coupling Through Miller
Capacitance
http://onsemi.com
10
MC33470
PIN FUNCTION DESCRIPTION
Pin
Name
Description
1
G2
This is a high current dual totem pole output Gate Drive for the Lower, or rectifier, N−channel MOSFET. Its output
swings from ground to PVCC. During initial power application, both G2 and G1 are held low until both VCC and
PVCC have reached proper levels.
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
2
PV
CC
This is a separate power source connection for driving N−channel MOSFETs from the G1 and G2 outputs. It may
be connected to 12 V.
3
PGND
This is a separate power ground return that is connected back to the power source. It is used to reduce the
effects of switching transient noise on the control circuitry.
4
AGND
This pin is the ground for the control circuitry.
5
VCC
6
Sense
This pin is used for feedback from the output of the power supply. It has a 20 mA current source to ground which
can be used to provide offset in the converter output voltage.
7
Imax
This pin sets the current limit threshold. 190 mA must be sourced into the pin. The external resistor is determined
from the following equation: R = ([RDS(on)] [ILIM]/[190 mA])
8
IFB
This pin has two functions. First, it provides cycle−by−cycle current limiting. Second, if the current is excessive,
this pin will reinitiate a soft−start cycle. If the voltage at the IFB pin drops below the voltage at the Imax pin when
G1 is on, the controller will go into current limit. The current limit circuit can be disabled by floating the Imax pin
and shorting the IFB pin to VCC.
9
SS
This is the soft−start pin. A capacitor at this pin, in conjunction with a 10 mA internal current source, sets the
soft−start time. During moderate overload (current limit with VO > 50% of the set value), the soft−start capacitor
will be discharged by an internal 90 mA current source in order to reduce the duty cycle of G1. During hard
current limit (current limit with VO < 50% of set value), the soft−start capacitor will be discharged by a 64 mA
current source.
10
Comp
This pin is provided for compensating the error amp for poles and zeros encountered in the power supply system,
mostly the output LC filter.
11
OT
This is the over temperature fault pin. OT is an open drain output that will be pulled low if the OUTEN pin is less
than 2.0 V.
12
Fault
This pin indicates a fault condition. Fault is an open drain output that switches low if VO exceeds 115% of its set
value. Once triggered, the controller will remain in this state until the power supply is recycled or the OUTEN pin
is toggled.
13
Pwrgd
This pin is an open drain output which indicates that VO is properly regulated. A high level on Pwrgd indicates that
VO is within "4% of its set value for more than 400 ms. Pwrgd will switch low if VO is outside "4% for more than
100 ms.
14
VID4
Voltage ID pin. This CMOS−compatible input programs the output voltage as shown in Table 2. This pin has an
internal 10 k pullup resistor to VCC.
15
VID3
Voltage ID pin. This CMOS−compatible input programs the output voltage as shown in Table 2. This pin has an
internal 10 k pullup resistor to VCC.
16
VID2
Voltage ID pin. This CMOS−compatible input programs the output voltage as shown in Table 2. This pin has an
internal 10 k pullup resistor to VCC.
17
VID1
Voltage ID pin. This CMOS−compatible input programs the output voltage as shown in Table 2. This pin has an
internal 10 k pullup resistor to VCC.
18
VID0
Voltage ID pin. This CMOS−compatible input programs the output voltage as shown in Table 2. This pin has an
internal 10 k pullup resistor to VCC.
19
OUTEN
This is the on/off control pin. A CMOS−compatible logic “1” allows the controller to operate. This pin can also be
used as a temperature sensor to trigger the OT pin (when OUTEN drops below 2.0 V OT pulls low). When
OUTEN drops below 1.7 V for longer than 50 ms, the controller will shut down.
20
G1
This is a high current dual totem pole output Gate Drive for the Upper, or switching, N−channel MOSFET. Its
output swings from ground to PVCC. During initial power application, both G2 and G1 are held low until both VCC
and PVCC have reached proper levels.
This pin is the positive supply of the control IC.
http://onsemi.com
11
MC33470
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Table 1. Voltage Identification Code
VID4
VID3
VID2
VID1
VID0
VO
0
1
1
1
1
−
0
1
1
1
0
−
0
1
1
0
1
−
0
1
1
0
0
−
0
1
0
1
0
−
0
1
0
0
1
−
0
1
0
0
0
−
0
0
1
1
1
−
0
0
1
1
0
−
0
0
1
0
1
1.8
0
0
1
0
0
1.85
0
0
0
1
1
1.9
0
0
0
1
0
1.95
0
0
0
0
1
2.0
0
0
0
0
0
2.05
1
1
1
1
1
No CPU
1
1
1
1
0
2.1
1
1
1
0
1
2.2
1
1
1
0
0
2.3
1
1
0
1
1
2.4
1
1
0
1
0
2.5
1
1
0
0
1
2.6
1
1
0
0
0
2.7
1
0
1
1
1
2.8
1
0
1
1
0
2.9
1
0
1
0
1
3.0
1
0
1
0
0
3.1
1
0
0
1
1
3.2
1
0
0
1
0
3.3
1
0
0
0
1
3.4
1
0
0
0
0
3.5
http://onsemi.com
12
MC33470
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Table 2. Connector Pin Function
PIN
ROW A
ROW B
1
5.0 Vin
5.0 Vin
2
5.0 Vin
5.0 Vin
3
5.0 Vin
Reserved
4
12 Vin
12 Vin
5
Reserved
UP#
6
Ishare
OUTEN
7
VID0
VID1
8
VID2
VID3
9
VID4
Pwrgd
10
VCCP
VSS
11
VSS
VCCP
12
VCCP
VSS
13
VSS
VCCP
14
VCCP
VSS
15
VSS
VCCP
16
VCCP
VSS
17
VSS
VCCP
18
VCCP
VSS
19
VSS
VCCP
20
VCCP
VSS
ORDERING INFORMATION
Package
Shipping †
MC33470DW
SOIC−20WB
38 Units / Rail
MC33470DWG
SOIC−20WB
(Pb−Free)
38 Units / Rail
SOIC−20WB
1000 / Tape & Reel
SOIC−20WB
(Pb−Free)
1000 / Tape & Reel
Device
MC33470DWR2
Operating Temperature Range
TA = 0° to +75°C
MC33470DWR2G
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
13
MC33470
C1
R10
L2
C2
R8
L1
R9
C3
C12
C11
C10
Figure 18. PC Board Top View
R1
R3
C5
R5
Q1
D2
Q2
J1
Q3
Q4
R4
C6 R7
R2
C13
R6
C16
R2
C17
Figure 19. PC Board Bottom View
http://onsemi.com
14
MC33470
PACKAGE DIMENSIONS
SOIC−20WB
DW SUFFIX
PLASTIC PACKAGE
CASE 751D−05
ISSUE G
20
11
X 45 _
h
H
M
E
0.25
10X
NOTES:
1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1994.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF B
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
q
A
B
M
D
1
10
20X
B
B
0.25
M
T A
S
B
S
L
A
18X
e
A1
DIM
A
A1
B
C
D
E
e
H
h
L
q
MILLIMETERS
MIN
MAX
2.35
2.65
0.10
0.25
0.35
0.49
0.23
0.32
12.65
12.95
7.40
7.60
1.27 BSC
10.05
10.55
0.25
0.75
0.50
0.90
0_
7_
SEATING
PLANE
C
T
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
15
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC33470/D